Research Article
BibTex RIS Cite

Time–Dependent Hydrolysis of Starch by Mutant B. subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy

Year 2025, Volume: 15 Issue: 2, 437 - 447, 01.06.2025
https://doi.org/10.21597/jist.1577711

Abstract

In this study, the hydrolysis products of soluble potato starch by α–amylase from mutant B. subtilis EBUE 5–3 were determined in time. The enzyme was observed as hydrolysis products from starch within the first 5 minutes as G2, G3 and G5 and a small amount of G4. G4 was detected between 15-45 minutes, while G5 was observed in small amounts in 15 minutes. G4 and G5 were not observed at other times. The amounts of G1, G2 and G3 increased with the increase of time. A small amount of G1 and a large amount of G2 and G3 were obtained as the final main products. The degradation capabilities of the enzyme on raw wheat, corn, rice and potato starch granules were investigated by scanning electron microscope. While deep holes were observed in wheat, corn and rice granules, a spongy structure was formed in rice and corn granules. It was observed that the surfaces of both were completely degraded. Only superficial disintegration was determined in potato granules. It was determined that the enzyme preferred rice, corn and wheat as the best starches in terms of substrate specificity, respectively.

References

  • Adeniran, H. A. & Abiose, S. (2011). Partial purification, characterization and hydrolytic activities of amylases from Bacillus licheniformis and Aspergillus niger cultured on agricultural residues. African Journal of Biotechnology, 11(6), 1465–1477.
  • Anonymous (2024). Global Starch Market Report,https://www.reportlinker.com.
  • Apostolidi, M. E., Kalantzi, S., Hatzinikolaou, D. G., Kekos, D. & Mamma, D. (2020). Catalytic and thermodynamic properties of an acidic α–amylase produced by the fungus Paecilomyces variotii ATHUM 8891. 3 Biotech, 10 (7), 311.
  • Aquino, A. C. M. M., Jorge, J. A., Terenzi, H. F. & Polizeli, M. L. T. M. (2003). Studies on a thermostable α–amylase from the thermophilic fungus Scytalidium thermophilum. Applied Microbiology and Biotechnology, 61, 323–328.
  • Baldwin, P. M., Davies, M. C. & Melia, C. D. (1997). Starch granule surface imaging using low-voltage scanning electron microscopy and atomic force microscopy. International Journal of Biological Macromolecules. 21(1-2), 103–107.
  • Barreteau, H., Delattre, C. & Michaud P. (2006). Production of oligosaccharides as promising new food additive generation. Food Technol Biotechnol, 44, 323–333.
  • Berfeld, P. (1955). Amylases, α and β. Methods in Enzymology, 1, 149–58.
  • Chakraborty, I., Pallen, S., Shetty, Y., Roy, N. & Mazumder, N. (2020). Advanced microscopy techniques for revealing molecular structureof starch granules. Biophysical Reviews. 12(1), 105–122.
  • Cho, H. Y., Kim, Y. W., Kim, T. J., Lee, H. S., Kim, D. Y., Kim, J. W., Lee, Y. W., Lee, S. B. & Park, K. H. (2000). Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochimica et Biophysica Acta, 1478(2), 333–340.
  • Demirkan Sarikaya E., Mikami, B., Adachi, M., Higasa, T. & Utsumi, S. (2005). α–Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochemistry, 40(8), 2629–2636.
  • Demirkan. E. (2011). Production, purification and characterization of α–amylase by Bacillus subtilis and its mutant derivate. Turkish Journal of Biology. 35, 705–712.
  • Gligorijevic, N., Stevanović, N., Lončar, N., Baošıć, R., Vujčıć, Z. & Božić N. (2014). Thin layer chromatographic comparison of raw and soluble starch hydrolysis patterns of some α–amylases from Bacillus sp. isolated in Serbia. J. Serb. Chem. Soc. 79(4), 411–420.
  • Gupta, A., Gautam, N. & Modi, D. J. (2010). Optimization of α–amylase production from free and immobilized cells of Aspergillus niger. E3 Journal of Biotechnology and Pharmaceutical Research, 1(1), 001–008.
  • Hamaker, B. R., Tuncil, Y. E. & Shen, X. (2019). Carbohydrates of the kernel. S. O. Serna-Saldivar, (Ed.), Chemistry and Technology, (pp. 305–318) Amsterdam: Elsevier.
  • Helbert, W., Schülein, M. & Henrissat, B. (1996). Electron microscopic investigation of he diffusion of Bacillus licheniformis α–amylase into corn starch granules. International Journal of Biological Macromolecules. 19(3), 165–169.
  • Ismaya, W. T., Hasan, K., Subroto, D. N. T. & Soemitro, S. (2012). Chromatography as the major tool in the ıdentification and the structure–function relationship study of amylolytic enzymes from Saccharomycopsis fibuligera R64. L. A. Calderon (Ed.), Chromatography–The most versatile method of chemical analysis, (pp. 271–294). London: Intech Open.
  • Jensen, B., Olsen, J. & Allermann, K. (1988). Purification of extracellular amylolytic enzymes from the termophilic fungus Thermomyces lanuginosus. Canadian Journal of Microbiology, 34, 218–223.
  • Kim, T. U., Gu, B. G., Jeong, J. Y., Byun, S. M. & Shin, Y. C. (1995). Purification and characterization of a maltotetraoseforming alkaline 𝛼–amylase fromanalkalophilic Bacillus strain, GM8901. Applied and Environmental Microbiology, 61(8), 3105–3112.
  • Laemmli, U. K. (1970). Cleavages of structural proteins during the assembly of the head of Bacteriophage T4. Nature, 227, 680–685.
  • Li, X., Gao, W., Wang, Y., Jiang, Q. & Huang, L. (2011). Granule structural, crystalline, and thermal changes in native Chinese yam starch after hydrolysis with two different enzymes– α–amylase and gluco–amylase. Starch-Stärke. 63, 75–82.
  • Li, Z., Wu, J., Zhang, B., Wang, F., Ye, X., Huang, Y., Huang, Q. & Cui, Z. (2015). AmyM, a novel maltohexaose-forming α–amylase from Corallococcus sp. strain EGB. Applied and Environmental Microbiology. 81(6), 1977–1987.
  • Lovšin-Kukman, I., Zelenik-Blatnik, M. & Abram, V. (1998). Quantitative estimation of the action of α–amylase from Bacillus subtilis on native corn starch by HPLC and HPTLC. Eur. Food Res. Technol. 206, 175–178.
  • Maalej, H., Ayed, H. B., Ghorbel-Bellaaj, O., Nasri, M. & Hmidet, N. (2014). Production and biochemical characterization of a high maltotetraose (G4) producing amylase from Pseudomonas stutzeri AS22. BioMed Research International. 156438, 11.
  • Mehta, D. & Satyanarayana, T. (2013). Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolysing α–amylase from an extreme thermophile Geobacillus thermoleovorans. Journal of Molecular Catalysis B: Enzymatic, 85–86, 229–238.
  • Michelin, M., Silva, T.M., Benassi, V.M., Peixoto-Nogueira, S.C., Moraes, L.A.B., Leão, J.M., Jorge, J.A, Terenzi, H.F., Maria de Lourdes, M., T.M., Polizeli, T.M. (2010). Purification and characterization of a thermostable α–amylase produced by the fungus Paecilomyces variotii, Carbohydrate Research. 345, 2348–2353.
  • Mu, T. H., Zhang, M., Raad, L., Sun, H. N. & Wang, C. (2015). Effect of α-amylase degradation on physicochemical properties of pre–high hydrostatic pressure–treated potato starch. Plos One. 10(12), e0143620.
  • Murakami, S., Nagasaki, K., & Nishimoto, H. (2008). Purification and characterization of five alkaline, thermotolerant, and maltotetraose–producing 𝛼–amylases from Bacillus halodurans MS–2–5, and production of recombinant enzymes in Escherichia coli. Enzyme and Microbial Technology. 43(4–5), 321–328.
  • Nakanishi, T., Nomura, K. & Hironori Yoshida, H. (2014). Starch degradation product, food additive containing the starch degradation product, food and drink, drug, and method for producing starch degradation product. URL: https://patents.google.com/patent/JP5507107B2/en (accessed date: September 15, 2024).
  • Nirmala, M. & Muralikrishna G. (2003). Three alpha-amylases from malted finger millet (Ragi, Eleusine coracana, Indaf–15)-purification and partial characterization. Phytochemistry, 62(1), 21-30.
  • Parker, K., Salas, M. & Nwosu, V. C. (2010). High fructose corn syrup: Production, uses and publichealth concerns. Biotechnology and Molecular Biology Review, 5(5), 71–78.
  • Pawar, R., Jadhav, W., Bhusare, S., Borade, R., Farber, S., Itzkowitz, D. & Domb A. (2008). Polysaccharides as carriers of bioactive agents for medical applications. In natural-based polymers for biomedical applications, Woodhead Publishing Series in Biomaterials, 3–53, Publisher: Elsevier.
  • Pilling, E. & Smith, A.M. (2003). Growth ring formation in the starch granules of potato tubers. Plant Physiology, 132(1), 365–371.
  • Pokhrel, S. (2015). A Review on introduction and applications of starch and its biodegradable polymers. International Journal of Environment, 4, 114–125.
  • Robyt, J. F. & White, B. J. (1987). Biochemical techniques: theory and practice. J. F. Robyt ve B. J. White (Ed.). Wadsworth, Belmont, California, USA: Brooks/Cole Pub. Co.
  • Robyt, J. F. (2008). Starch: Structure, Properties, Chemistry, and Enzymology. Fraser-Reid, B. O., Tatsuta, K. ve Thiem, J. (Ed.), Glycoscience, (pp. 1437–1472). Berlin: Springer.
  • Roy, J. K., Borah, A, Mahanta. C. L. & Mukherjee, A. K. (2013). Cloning and overexpression of raw starch digesting α–amylase gene from Bacillus subtilis strain AS01a in Escherichia coli and application of the purified recombinant α–amylase (AmyBS-I) in raw starch digestion and baking industry. Journal of Molecular Catalysis B: Enzymatic, 97, 118–129.
  • Sarikaya E. (1999). Obtaining α–amylase producing mutants from some Bacillus strains using mutagenic agents. Biotechnology, 22, 27–34.
  • Sarikaya, E. & Gurgun, V. (2000). Increase of the α–amylase yield by some Bacillus strains. Turkish Journal of Biology, 24(2), 299–308.
  • Sharma, S., Khan, F. G. & Qazi, G. N. (2010). Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas. Applied Microbiology and Biotechnology, 86, 1821–1828.
  • Stahl, E. (1965). Thin-Layer chromatography: A laboratory handbook. Berlin: Springer Science and Business Media.
  • Sujka, M., Udeh, K. O. & Jamroz J. (2006). α–Amylolysis of native corn, potato, wheat and rice starch granules. Italian Journal of Food Science. 18(4), 433–439.
  • Tako, M., Tamaki, Y., Teruya, T. & Takeda, Y. (2014). The Principles of starch gelatinization and retrogradation. Food and Nutrition Sciences, 5(3), 280–291.
  • Tonkova, A. (2006). Microbial starch converting enzymes of the α–amylase family. R. C. Ray ve O. P. Wards (Ed.), Microbial Biotechnology in Horticulture, (pp. 421-472). New Hampshire, USA: Science Publishers.
  • Vidilaseris, K., Hidayat, K., Retnoningrum, D. S., Nurachman, Z., Noer, A. S. & Natalia D. (2009). Biochemical characterization of a raw starch degrading α–amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3. Biologia, 64(6), 1047–1052.
  • Vilpoux, O.F. & Junior J.F.S.S. (2023). Global production and use of starch. M.P. Cereda ve O. François (Ed.), Starchy Crops Morphology, Extraction, Properties and Applications, (pp. 43–66). Brazil: Elsevier.
  • Wanderley, K. J., Torres, F. A. G., Moraes, L. M. P. & Ulhoa, C. J. (2004). Biochemical characterization of α–amylase from the yeast Cryptococcus flavus. FEMS Microbiology Letters, 231(2), 165–169.
  • Zhang Y., Rempel C. & Liu Q. (2014). Thermoplastic starch processing and characteristics– a review. Crit Rev Food Sci Nutr, 54(10), 1353–1370.
Year 2025, Volume: 15 Issue: 2, 437 - 447, 01.06.2025
https://doi.org/10.21597/jist.1577711

Abstract

References

  • Adeniran, H. A. & Abiose, S. (2011). Partial purification, characterization and hydrolytic activities of amylases from Bacillus licheniformis and Aspergillus niger cultured on agricultural residues. African Journal of Biotechnology, 11(6), 1465–1477.
  • Anonymous (2024). Global Starch Market Report,https://www.reportlinker.com.
  • Apostolidi, M. E., Kalantzi, S., Hatzinikolaou, D. G., Kekos, D. & Mamma, D. (2020). Catalytic and thermodynamic properties of an acidic α–amylase produced by the fungus Paecilomyces variotii ATHUM 8891. 3 Biotech, 10 (7), 311.
  • Aquino, A. C. M. M., Jorge, J. A., Terenzi, H. F. & Polizeli, M. L. T. M. (2003). Studies on a thermostable α–amylase from the thermophilic fungus Scytalidium thermophilum. Applied Microbiology and Biotechnology, 61, 323–328.
  • Baldwin, P. M., Davies, M. C. & Melia, C. D. (1997). Starch granule surface imaging using low-voltage scanning electron microscopy and atomic force microscopy. International Journal of Biological Macromolecules. 21(1-2), 103–107.
  • Barreteau, H., Delattre, C. & Michaud P. (2006). Production of oligosaccharides as promising new food additive generation. Food Technol Biotechnol, 44, 323–333.
  • Berfeld, P. (1955). Amylases, α and β. Methods in Enzymology, 1, 149–58.
  • Chakraborty, I., Pallen, S., Shetty, Y., Roy, N. & Mazumder, N. (2020). Advanced microscopy techniques for revealing molecular structureof starch granules. Biophysical Reviews. 12(1), 105–122.
  • Cho, H. Y., Kim, Y. W., Kim, T. J., Lee, H. S., Kim, D. Y., Kim, J. W., Lee, Y. W., Lee, S. B. & Park, K. H. (2000). Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochimica et Biophysica Acta, 1478(2), 333–340.
  • Demirkan Sarikaya E., Mikami, B., Adachi, M., Higasa, T. & Utsumi, S. (2005). α–Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochemistry, 40(8), 2629–2636.
  • Demirkan. E. (2011). Production, purification and characterization of α–amylase by Bacillus subtilis and its mutant derivate. Turkish Journal of Biology. 35, 705–712.
  • Gligorijevic, N., Stevanović, N., Lončar, N., Baošıć, R., Vujčıć, Z. & Božić N. (2014). Thin layer chromatographic comparison of raw and soluble starch hydrolysis patterns of some α–amylases from Bacillus sp. isolated in Serbia. J. Serb. Chem. Soc. 79(4), 411–420.
  • Gupta, A., Gautam, N. & Modi, D. J. (2010). Optimization of α–amylase production from free and immobilized cells of Aspergillus niger. E3 Journal of Biotechnology and Pharmaceutical Research, 1(1), 001–008.
  • Hamaker, B. R., Tuncil, Y. E. & Shen, X. (2019). Carbohydrates of the kernel. S. O. Serna-Saldivar, (Ed.), Chemistry and Technology, (pp. 305–318) Amsterdam: Elsevier.
  • Helbert, W., Schülein, M. & Henrissat, B. (1996). Electron microscopic investigation of he diffusion of Bacillus licheniformis α–amylase into corn starch granules. International Journal of Biological Macromolecules. 19(3), 165–169.
  • Ismaya, W. T., Hasan, K., Subroto, D. N. T. & Soemitro, S. (2012). Chromatography as the major tool in the ıdentification and the structure–function relationship study of amylolytic enzymes from Saccharomycopsis fibuligera R64. L. A. Calderon (Ed.), Chromatography–The most versatile method of chemical analysis, (pp. 271–294). London: Intech Open.
  • Jensen, B., Olsen, J. & Allermann, K. (1988). Purification of extracellular amylolytic enzymes from the termophilic fungus Thermomyces lanuginosus. Canadian Journal of Microbiology, 34, 218–223.
  • Kim, T. U., Gu, B. G., Jeong, J. Y., Byun, S. M. & Shin, Y. C. (1995). Purification and characterization of a maltotetraoseforming alkaline 𝛼–amylase fromanalkalophilic Bacillus strain, GM8901. Applied and Environmental Microbiology, 61(8), 3105–3112.
  • Laemmli, U. K. (1970). Cleavages of structural proteins during the assembly of the head of Bacteriophage T4. Nature, 227, 680–685.
  • Li, X., Gao, W., Wang, Y., Jiang, Q. & Huang, L. (2011). Granule structural, crystalline, and thermal changes in native Chinese yam starch after hydrolysis with two different enzymes– α–amylase and gluco–amylase. Starch-Stärke. 63, 75–82.
  • Li, Z., Wu, J., Zhang, B., Wang, F., Ye, X., Huang, Y., Huang, Q. & Cui, Z. (2015). AmyM, a novel maltohexaose-forming α–amylase from Corallococcus sp. strain EGB. Applied and Environmental Microbiology. 81(6), 1977–1987.
  • Lovšin-Kukman, I., Zelenik-Blatnik, M. & Abram, V. (1998). Quantitative estimation of the action of α–amylase from Bacillus subtilis on native corn starch by HPLC and HPTLC. Eur. Food Res. Technol. 206, 175–178.
  • Maalej, H., Ayed, H. B., Ghorbel-Bellaaj, O., Nasri, M. & Hmidet, N. (2014). Production and biochemical characterization of a high maltotetraose (G4) producing amylase from Pseudomonas stutzeri AS22. BioMed Research International. 156438, 11.
  • Mehta, D. & Satyanarayana, T. (2013). Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolysing α–amylase from an extreme thermophile Geobacillus thermoleovorans. Journal of Molecular Catalysis B: Enzymatic, 85–86, 229–238.
  • Michelin, M., Silva, T.M., Benassi, V.M., Peixoto-Nogueira, S.C., Moraes, L.A.B., Leão, J.M., Jorge, J.A, Terenzi, H.F., Maria de Lourdes, M., T.M., Polizeli, T.M. (2010). Purification and characterization of a thermostable α–amylase produced by the fungus Paecilomyces variotii, Carbohydrate Research. 345, 2348–2353.
  • Mu, T. H., Zhang, M., Raad, L., Sun, H. N. & Wang, C. (2015). Effect of α-amylase degradation on physicochemical properties of pre–high hydrostatic pressure–treated potato starch. Plos One. 10(12), e0143620.
  • Murakami, S., Nagasaki, K., & Nishimoto, H. (2008). Purification and characterization of five alkaline, thermotolerant, and maltotetraose–producing 𝛼–amylases from Bacillus halodurans MS–2–5, and production of recombinant enzymes in Escherichia coli. Enzyme and Microbial Technology. 43(4–5), 321–328.
  • Nakanishi, T., Nomura, K. & Hironori Yoshida, H. (2014). Starch degradation product, food additive containing the starch degradation product, food and drink, drug, and method for producing starch degradation product. URL: https://patents.google.com/patent/JP5507107B2/en (accessed date: September 15, 2024).
  • Nirmala, M. & Muralikrishna G. (2003). Three alpha-amylases from malted finger millet (Ragi, Eleusine coracana, Indaf–15)-purification and partial characterization. Phytochemistry, 62(1), 21-30.
  • Parker, K., Salas, M. & Nwosu, V. C. (2010). High fructose corn syrup: Production, uses and publichealth concerns. Biotechnology and Molecular Biology Review, 5(5), 71–78.
  • Pawar, R., Jadhav, W., Bhusare, S., Borade, R., Farber, S., Itzkowitz, D. & Domb A. (2008). Polysaccharides as carriers of bioactive agents for medical applications. In natural-based polymers for biomedical applications, Woodhead Publishing Series in Biomaterials, 3–53, Publisher: Elsevier.
  • Pilling, E. & Smith, A.M. (2003). Growth ring formation in the starch granules of potato tubers. Plant Physiology, 132(1), 365–371.
  • Pokhrel, S. (2015). A Review on introduction and applications of starch and its biodegradable polymers. International Journal of Environment, 4, 114–125.
  • Robyt, J. F. & White, B. J. (1987). Biochemical techniques: theory and practice. J. F. Robyt ve B. J. White (Ed.). Wadsworth, Belmont, California, USA: Brooks/Cole Pub. Co.
  • Robyt, J. F. (2008). Starch: Structure, Properties, Chemistry, and Enzymology. Fraser-Reid, B. O., Tatsuta, K. ve Thiem, J. (Ed.), Glycoscience, (pp. 1437–1472). Berlin: Springer.
  • Roy, J. K., Borah, A, Mahanta. C. L. & Mukherjee, A. K. (2013). Cloning and overexpression of raw starch digesting α–amylase gene from Bacillus subtilis strain AS01a in Escherichia coli and application of the purified recombinant α–amylase (AmyBS-I) in raw starch digestion and baking industry. Journal of Molecular Catalysis B: Enzymatic, 97, 118–129.
  • Sarikaya E. (1999). Obtaining α–amylase producing mutants from some Bacillus strains using mutagenic agents. Biotechnology, 22, 27–34.
  • Sarikaya, E. & Gurgun, V. (2000). Increase of the α–amylase yield by some Bacillus strains. Turkish Journal of Biology, 24(2), 299–308.
  • Sharma, S., Khan, F. G. & Qazi, G. N. (2010). Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas. Applied Microbiology and Biotechnology, 86, 1821–1828.
  • Stahl, E. (1965). Thin-Layer chromatography: A laboratory handbook. Berlin: Springer Science and Business Media.
  • Sujka, M., Udeh, K. O. & Jamroz J. (2006). α–Amylolysis of native corn, potato, wheat and rice starch granules. Italian Journal of Food Science. 18(4), 433–439.
  • Tako, M., Tamaki, Y., Teruya, T. & Takeda, Y. (2014). The Principles of starch gelatinization and retrogradation. Food and Nutrition Sciences, 5(3), 280–291.
  • Tonkova, A. (2006). Microbial starch converting enzymes of the α–amylase family. R. C. Ray ve O. P. Wards (Ed.), Microbial Biotechnology in Horticulture, (pp. 421-472). New Hampshire, USA: Science Publishers.
  • Vidilaseris, K., Hidayat, K., Retnoningrum, D. S., Nurachman, Z., Noer, A. S. & Natalia D. (2009). Biochemical characterization of a raw starch degrading α–amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3. Biologia, 64(6), 1047–1052.
  • Vilpoux, O.F. & Junior J.F.S.S. (2023). Global production and use of starch. M.P. Cereda ve O. François (Ed.), Starchy Crops Morphology, Extraction, Properties and Applications, (pp. 43–66). Brazil: Elsevier.
  • Wanderley, K. J., Torres, F. A. G., Moraes, L. M. P. & Ulhoa, C. J. (2004). Biochemical characterization of α–amylase from the yeast Cryptococcus flavus. FEMS Microbiology Letters, 231(2), 165–169.
  • Zhang Y., Rempel C. & Liu Q. (2014). Thermoplastic starch processing and characteristics– a review. Crit Rev Food Sci Nutr, 54(10), 1353–1370.
There are 47 citations in total.

Details

Primary Language English
Subjects Industrial Biotechnology (Other)
Journal Section Biyoloji / Biology
Authors

Baran Enes Güler 0000-0001-7967-9041

Eren Baygın 0000-0002-3251-0705

Elif Demirkan 0000-0002-5292-9482

Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date November 1, 2024
Acceptance Date November 27, 2024
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Güler, B. E., Baygın, E., & Demirkan, E. (2025). Time–Dependent Hydrolysis of Starch by Mutant B. subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy. Journal of the Institute of Science and Technology, 15(2), 437-447. https://doi.org/10.21597/jist.1577711
AMA Güler BE, Baygın E, Demirkan E. Time–Dependent Hydrolysis of Starch by Mutant B. subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy. J. Inst. Sci. and Tech. June 2025;15(2):437-447. doi:10.21597/jist.1577711
Chicago Güler, Baran Enes, Eren Baygın, and Elif Demirkan. “Time–Dependent Hydrolysis of Starch by Mutant B. Subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 437-47. https://doi.org/10.21597/jist.1577711.
EndNote Güler BE, Baygın E, Demirkan E (June 1, 2025) Time–Dependent Hydrolysis of Starch by Mutant B. subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy. Journal of the Institute of Science and Technology 15 2 437–447.
IEEE B. E. Güler, E. Baygın, and E. Demirkan, “Time–Dependent Hydrolysis of Starch by Mutant B. subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 437–447, 2025, doi: 10.21597/jist.1577711.
ISNAD Güler, Baran Enes et al. “Time–Dependent Hydrolysis of Starch by Mutant B. Subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy”. Journal of the Institute of Science and Technology 15/2 (June 2025), 437-447. https://doi.org/10.21597/jist.1577711.
JAMA Güler BE, Baygın E, Demirkan E. Time–Dependent Hydrolysis of Starch by Mutant B. subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy. J. Inst. Sci. and Tech. 2025;15:437–447.
MLA Güler, Baran Enes et al. “Time–Dependent Hydrolysis of Starch by Mutant B. Subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 437-4, doi:10.21597/jist.1577711.
Vancouver Güler BE, Baygın E, Demirkan E. Time–Dependent Hydrolysis of Starch by Mutant B. subtilis EBUE 5–3 α–Amylase, Investigation of Its Effect on Starch Granules by SEM Microscopy. J. Inst. Sci. and Tech. 2025;15(2):437-4.