Research Article
BibTex RIS Cite

The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars

Year 2025, Volume: 15 Issue: 2, 448 - 458, 01.06.2025
https://doi.org/10.21597/jist.1595057

Abstract

This study describes the development of antibacterial eco-friendly disposable chewable bar in order to provide convenience to the user in cases where hygiene methods are difficult to apply or there is not enough time and materials for application. Firstly, essential oils and methanolic extracts of clove, lavender and pomegranate fruit peel were obtained. Disc diffusion method was used to find out the antibacterial activity of each extracts and essential oils against Streptococcus mutans, Streptococcus salivarius, Streptococcus mitis, Staphylococcus aureus, Staphylococcus epidermidis. Analyses of HPLC-UV were carried out by using the HPLC Agilent-1100 modular compact system. Cinnamic acid, Caffeic acid, Punicalagin, Kaempferol-3-O-rutinoside, Quercetin-3-O-hexoside, and Catechin were detected in all methanolic extracts. Next, antibacterial chewable bars, which were made of beeswax, mastic gum, extracts and essential oils of lavender, clove, pomegranate fruit peel, were prepared. Then, the antibacterial activity of antibacterial chewable bars was determined against human saliva, S. mitis, S. aureus, S. epidermidis. The chewable bar 1, which contains beeswax and mastic gum, showed 71-90% antibacterial activity against S. aureus, S. mitis and S. epidermidis. The chewable bar 2, which includes beeswax, mastic gum, extracts and essential oils, showed 100% antibacterial activity against S. aureus, S. mitis and S. epidermidis. Also, chewable bar 2 has 99% antibacterial activity against human saliva.The current research is the first research about the preparation of antibacterial chewable bar and the determination of the antibacterial activity of it. It is needed further research to discover the side effects of this antibacterial chewable bar before using for human.

Project Number

1919B012105372

References

  • Abhary, M., Al-Hazmi, A.A. (2016). Antibacterial activity of Miswak (Salvadora persica L.) extracts on oral hygiene. Journal of Taibah University for Science, 10(4), 513-520. https://doi.org/10.1016/j.jtusci.2015.09.007.
  • Ablikim, G., Bobakulov, K., Li, J., Yadikar, N., Aisa, H.A. (2021). Two new glucoside derivatives of truxinic and cinnamic acids from Lavandula angustifolia mill. Natural Product Research, 35(15), 2526-2534. https://doi.org/10.1080/14786419.2019.1684283.
  • Akarca, G., Başpınar, E. (2019). Determination of pomegranate peel and seed extracted in different solvents for antimicrobial effect. Turkish Journal of Agriculture - Food Science and Technology 7(sp1), 46-53. https://doi.org/10.24925/turjaf.v7isp1.46-53.2689.
  • Anitha, A., Praveen, G. (2015). Use of herbs in preventive dental care. Journal of Education and Ethics in Dentistry, 5(2), 55. https://doi.org/10.4103/0974-7761.188571.
  • Armbruster, D.A., Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. The Clinical Biochemist Reviews, 29 (Suppl 1), S49-S52.
  • Babu, A.J., Sundari, A.R., Indumathi, J., Srujan, R.V.N., Sravanthi, M. (2011). Study on the antimicrobial activity and minimum inhibitory concentration of essential oils of spices. Veterinary World, 4(7), 311-316. https://doi.org/10.5455/vetworld.4.311.
  • Bairwa, R., Gupta, P., Gupta, V.K., Srivastava, B. (2012) Traditional medicinal plants: Use in oral hygiene. International Journal of Pharmaceutical and Chemical Sciences, 1(4), 1529-1538.
  • Dinis, M., Agnello, M., Cen, L., Shokeen, B., He, X., Shi, W., Wong, D.T.W., Lux, R., Tran, C.N. (2022). Oral microbiome: Streptococcus mutans/caries concordant-discordant children. Frontiers in Microbiology, 13, 782825. https://doi.org/10.3389/fmicb.2022.782825.
  • Divakar, D.D., Aldeyab, S.S., Alfawaz, S.A., AlKheraif, A.A., Khan, A.A. (2017). High proportions of Staphylococcus epidermidis in dental caries harbor multiple classes of antibiotics resistance, significantly increase inflammatory interleukins in dental pulps. Microbial Pathogenesis, 109, 29-34. https://doi.org/10.1016/j.micpath.2017.05.017.
  • Djenane, D., Aïder, M., Yangüela, J., Idir, L., Gómez, D., Roncalés, P. (2012). Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157:H7 and S. aureus during storage at abuse refrigeration temperature. Meat Science, 92(4), 667-674. https://doi.org/10.1016/j.meatsci.2012.06.019.
  • Dulger, B., Gonuz, A. (2004). Antimicrobial activity of certain plants used in Turkish traditional medicine. Asian Journal Plant Sciences, 3, 104-107.
  • Duman, A.D., Ozgen, M., Dayisoylu, K.S., Erbil, N., Durgac, C. (2009). Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules, 14(5), 1808-1817. https://doi.org/10.3390/molecules14051808.
  • Engen, S.A., Schreurs, O., Petersen, F., Blix, I.J.S., Baekkevold, E.S., Schenck, K. (2018). The regulatory role of the oral commensal Streptococcus mitis on human monocytes. Scandinavian Journal of Immunology, 87(2), 80-87. https://doi.org/10.1111/sji.12636.
  • Fleck, A., Cabral, P.F.G., Vieira, F.F.M., Pinheiro, D.A., Pereira, C.R., Santos, W.C., Machado, T.B. (2016). Punica granatum L. hydrogel for wound care treatment: From case study to phytomedicine standardization. Molecules, 21(8), 1059. https://doi.org/10.3390/molecules21081059.
  • Gupta, P., Shetty, H. (2018). Use of natural products for oral hygiene maintenance: revisiting traditional medicine. Journal of Complementary and Integrative Medicine, 15(3), 20150103. https://doi.org/10.1515/jcim-2015-0103.
  • Güler, B., Doğan, E. (2022). Bazı bitki ekstrelerinin cerrahi maske üretiminde kullanılabilirliğinin antibakteriyel açıdan araştırılması / Antibacterial research of the usability of some plant extracts in surgical mask production. Bilim Armonisi Dergisi, 5(1), 4-12. https://doi.org/10.37215/bilar.852264.
  • Halawany, H.S. (2012). A review on miswak (Salvadora persica) and its effect on various aspects of oral health. The Saudi Dental Journal, 24(2), 63-69. https://doi.org/10.1016/j.sdentj.2011.12.004.
  • Hegazy, S.A., Awad, S.M. (2012). Antibacterial effect of plant extracts on plaque and saliva in a group of high caries risk children. Egyptian Dental Journal, 56(4), 1-7.
  • Hoş, A., Tunç, K., Olgun, U. (2020). Antibacterial nano biocomposite poly (ε-caprolactone) films with nano Ag-hydroxyapatite filler particles. Composite Interfaces, 27(5), 479-493. https://doi.org/10.1080/09276440.2019.1655315.
  • Kafeel, S., Inam-ur-Rahem, M., Khan, M.R., Faisal, M.N. (2023). Phytochemical characterisation and antioxidant capacities of pomegranate peel. International Journal of Food Science & Technology, 58(9), 4543-4550. https://doi.org/10.1111/ijfs.16537.
  • Koptaget, E. (2019). Tarçın yağının ve karanfil yağının antimikrobiyal etkinliğinin mikrobiyolojik miktar tayini yöntemi ile araştırılması (Doctoral dissertation). Sakarya, Sakarya University.
  • Kwiatkowski, P., Łopusiewicz, Ł., Kostek, M., Drozłowska, E., Pruss, A., Wojciuk, B., Sienkiewicz, M., Zielińska-Bliźniewska, H., Dołȩgowska, B. (2019). The antibacterial activity of lavender essential oil alone and in combination with octenidine dihydrochloride against MRSA strains. Molecules, 25(1), 95. https://doi.org/10.3390/molecules25010095.
  • Malcolm, B.J., Tallian, K. (2017). Essential oil of lavender in anxiety disorders: Ready for prime time? Mental Health Clinician, 7(4), 147-155. https://doi.org/10.9740/mhc.2017.07.147.
  • Mirpour, M., Siahmazgi, Z.G., Kiasaraie, M.S. (2015). Antibacterial activity of clove, gall nut methanolic and ethanolic extracts on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448. Journal of Oral Biology and Craniofacial Research, 5(1), 7-10. https://doi.org/10.1016/j.jobcr.2015.02.002.
  • Newman, R.A., Lansky, E.P., Block, M.L. (2007). Pomegranate: The most medicinal fruit. America: Basic Health Publications.
  • Nzeako, B.C., Al-Kharousi, Z.S.N., Al-Mahrooqui, Z. (2006). Antimicrobial activities of clove and thyme extracts. Sultan Qaboos University Medical Journal, 6(1), 33.
  • Omar, A.H., Gad, M.F., Abdelhafez, H.M., Mersal, A.T.E., Mossa, A.T.H. (2023). Phytochemical study, antioxidant potential and preparation of a clove nanoemulsion loaded with pomegranate peel extract. Egyptian Journal of Chemistry, 66(13), 21-37. https://doi.org/10.21608/EJCHEM.2023.213866.8034.
  • Seidi, Z., Fateh, E., Aynehband, A. (2021). Changes in secondary metabolite and biologically active compounds of Ajowan (Trachyspermum ammi L.) upon organic and conventional production systems. Acta Ecologica Sinica, 41(3), 215-222. https://doi.org/10.1016/j.chnaes.2021.02.009.
  • Semerci, A.B., İnceçayır, D., Mammadova, V., Hoş, A., Tunç, K. (2020). Antimicrobial activities of Allium staticiforme and Allium subhirsutum. Bangladesh Journal of Pharmacology, 15, 19-23. https://dx.doi.org/10.3329/bjp.v15i1.42373.
  • Sinan, K.I., Mahomoodally, M.F., Eyupoglu, O.E., Etienne, O.K., Sadeer, N.B., Ak, G. et al. (2021). HPLC-FRAP methodology and biological activities of different stem bark extracts of Cajanus cajan (L.) Millsp. Journal of Pharmaceutical and Biomedical Analysis, 192, 113678. https://doi.org/10.1016/j.jpba.2020.113678.
  • Smigielski, K., Prusinowska, R., Stobiecka, A., Kunicka-Styczyñska, A., Gruska, R. (2018). Biological properties and chemical composition of essential oils from flowers and aerial parts of lavender (Lavandula angustifolia). Journal of Essential Oil Bearing Plants, 21(5), 1303-1314. https://doi.org/10.1080/0972060X.2018.1503068.
  • Takahashi, K., Fukazawa, M., Motohira, H., Ochiai, K., Nishikawa, H., Miyata, T. (2023). A pilot study on antiplaque effects of mastic chewing gum in the oral cavity. Journal of Periodontology, 74(4), 501-505. https://doi.org/10.1902/jop.2003.74.4.501.
  • Tunç, K., Konca, T., Hoş, A. (2013). Punica granatum Linn. (nar) bitkisinin antibakteriyel etkisinin araştırılması. Sakarya University Journal of Science, 17(2), 167-172.
  • Wang, H., Ren, D. (2017). Controlling Streptococcus mutans and Staphylococcus aureus biofilms with direct current and chlorhexidine. AMB Express, 7, 1-9. https://doi.org/10.1186/s13568-017-0505-z.
  • Waty, S., Suryanto, D. (2018). Antibacterial activity of cinnamon ethanol extract (Cinnamomum burmannii) and its application as a mouthwash to inhibit streptococcus growth. IOP Conference Series: Earth and Environmental Science, 130, 012049. https://doi.org/10.1088/1755-1315/130/1/012049.

Antibakteriyel Çiğneme Barlarının Hazırlanması, Biyoaktivitesi ve HPLC-UV İçerik Analizi

Year 2025, Volume: 15 Issue: 2, 448 - 458, 01.06.2025
https://doi.org/10.21597/jist.1595057

Abstract

Bu çalışmada, hijyen yöntemlerinin uygulanmasının zor olduğu veya uygulama için yeterli zaman ve malzemenin bulunmadığı durumlarda kullanıcıya kolaylık sağlamak amacıyla antibakteriyel, çevre dostu, tek kullanımlık çiğneme barının geliştirilmesi anlatılmaktadır. İlk olarak karanfil, nar meyve kabuğu ve lavanta uçucu yağları ve metanolik ekstraktları elde edilmiştir. Her bir ekstrakt ve uçucu yağın Staphylococcus aureus, Streptococcus mutans, Streptococcus salivarius, Streptococcus mitis ve Staphylococcus epidermidis'e karşı antibakteriyel aktivitesini belirlemek için disk difüzyon yöntemi kullanılmıştır. HPLC-UV analizleri HPLC Agilent-1100 modular compact system kullanılarak gerçekleştirilmiştir. Tüm metanolik ekstraktlarda Cinnamic acid, Caffeic acid, Punicalagin, Kaempferol-3-O-rutinoside, Catechin ve Quercetin-3-O-hexoside tespit edilmiştir. Daha sonra, lavanta, karanfil, nar meyvesi kabuğu ekstraktları ve uçucu yağları, balmumu ve damla sakızından oluşan antibakteriyel çiğnenebilir barlar hazırlanmıştır. Ardından antibakteriyel çiğneme barlarının hem insan tükürüğü üzerindeki hem de S. mitis, S. aureus ve S. epidermidis üzerindeki antibakteriyel aktivitesi belirlenmiştir. Balmumu ve damla sakızı içeren çiğneme barı 1, S. aureus, S. mitis ve S. epidermidis'e karşı %71-90 antibakteriyel aktivite göstermiştir. Balmumu, damla sakızı, ekstraktlar ve uçucu yağlar içeren çiğneme barı 2, S. aureus, S. mitis ve S. epidermidis'e karşı %100 antibakteriyel aktivite göstermiştir. Ayrıca, çiğneme barı 2’nin, insan tükürüğüne karşı %99 antibakteriyel aktiviteye sahip olduğu belirlenmiştir. Bu çalışma, antibakteriyel çiğneme barlarının hazırlanması ve antibakteriyel aktivitesinin belirlenmesi ile ilgili ilk araştırmadır. Bu antibakteriyel çiğneme barının insanların kullanımına sunulmadan önce yan etkilerinin belirlenmesi için daha fazla araştırmaya ihtiyaç vardır.

Project Number

1919B012105372

References

  • Abhary, M., Al-Hazmi, A.A. (2016). Antibacterial activity of Miswak (Salvadora persica L.) extracts on oral hygiene. Journal of Taibah University for Science, 10(4), 513-520. https://doi.org/10.1016/j.jtusci.2015.09.007.
  • Ablikim, G., Bobakulov, K., Li, J., Yadikar, N., Aisa, H.A. (2021). Two new glucoside derivatives of truxinic and cinnamic acids from Lavandula angustifolia mill. Natural Product Research, 35(15), 2526-2534. https://doi.org/10.1080/14786419.2019.1684283.
  • Akarca, G., Başpınar, E. (2019). Determination of pomegranate peel and seed extracted in different solvents for antimicrobial effect. Turkish Journal of Agriculture - Food Science and Technology 7(sp1), 46-53. https://doi.org/10.24925/turjaf.v7isp1.46-53.2689.
  • Anitha, A., Praveen, G. (2015). Use of herbs in preventive dental care. Journal of Education and Ethics in Dentistry, 5(2), 55. https://doi.org/10.4103/0974-7761.188571.
  • Armbruster, D.A., Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. The Clinical Biochemist Reviews, 29 (Suppl 1), S49-S52.
  • Babu, A.J., Sundari, A.R., Indumathi, J., Srujan, R.V.N., Sravanthi, M. (2011). Study on the antimicrobial activity and minimum inhibitory concentration of essential oils of spices. Veterinary World, 4(7), 311-316. https://doi.org/10.5455/vetworld.4.311.
  • Bairwa, R., Gupta, P., Gupta, V.K., Srivastava, B. (2012) Traditional medicinal plants: Use in oral hygiene. International Journal of Pharmaceutical and Chemical Sciences, 1(4), 1529-1538.
  • Dinis, M., Agnello, M., Cen, L., Shokeen, B., He, X., Shi, W., Wong, D.T.W., Lux, R., Tran, C.N. (2022). Oral microbiome: Streptococcus mutans/caries concordant-discordant children. Frontiers in Microbiology, 13, 782825. https://doi.org/10.3389/fmicb.2022.782825.
  • Divakar, D.D., Aldeyab, S.S., Alfawaz, S.A., AlKheraif, A.A., Khan, A.A. (2017). High proportions of Staphylococcus epidermidis in dental caries harbor multiple classes of antibiotics resistance, significantly increase inflammatory interleukins in dental pulps. Microbial Pathogenesis, 109, 29-34. https://doi.org/10.1016/j.micpath.2017.05.017.
  • Djenane, D., Aïder, M., Yangüela, J., Idir, L., Gómez, D., Roncalés, P. (2012). Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157:H7 and S. aureus during storage at abuse refrigeration temperature. Meat Science, 92(4), 667-674. https://doi.org/10.1016/j.meatsci.2012.06.019.
  • Dulger, B., Gonuz, A. (2004). Antimicrobial activity of certain plants used in Turkish traditional medicine. Asian Journal Plant Sciences, 3, 104-107.
  • Duman, A.D., Ozgen, M., Dayisoylu, K.S., Erbil, N., Durgac, C. (2009). Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules, 14(5), 1808-1817. https://doi.org/10.3390/molecules14051808.
  • Engen, S.A., Schreurs, O., Petersen, F., Blix, I.J.S., Baekkevold, E.S., Schenck, K. (2018). The regulatory role of the oral commensal Streptococcus mitis on human monocytes. Scandinavian Journal of Immunology, 87(2), 80-87. https://doi.org/10.1111/sji.12636.
  • Fleck, A., Cabral, P.F.G., Vieira, F.F.M., Pinheiro, D.A., Pereira, C.R., Santos, W.C., Machado, T.B. (2016). Punica granatum L. hydrogel for wound care treatment: From case study to phytomedicine standardization. Molecules, 21(8), 1059. https://doi.org/10.3390/molecules21081059.
  • Gupta, P., Shetty, H. (2018). Use of natural products for oral hygiene maintenance: revisiting traditional medicine. Journal of Complementary and Integrative Medicine, 15(3), 20150103. https://doi.org/10.1515/jcim-2015-0103.
  • Güler, B., Doğan, E. (2022). Bazı bitki ekstrelerinin cerrahi maske üretiminde kullanılabilirliğinin antibakteriyel açıdan araştırılması / Antibacterial research of the usability of some plant extracts in surgical mask production. Bilim Armonisi Dergisi, 5(1), 4-12. https://doi.org/10.37215/bilar.852264.
  • Halawany, H.S. (2012). A review on miswak (Salvadora persica) and its effect on various aspects of oral health. The Saudi Dental Journal, 24(2), 63-69. https://doi.org/10.1016/j.sdentj.2011.12.004.
  • Hegazy, S.A., Awad, S.M. (2012). Antibacterial effect of plant extracts on plaque and saliva in a group of high caries risk children. Egyptian Dental Journal, 56(4), 1-7.
  • Hoş, A., Tunç, K., Olgun, U. (2020). Antibacterial nano biocomposite poly (ε-caprolactone) films with nano Ag-hydroxyapatite filler particles. Composite Interfaces, 27(5), 479-493. https://doi.org/10.1080/09276440.2019.1655315.
  • Kafeel, S., Inam-ur-Rahem, M., Khan, M.R., Faisal, M.N. (2023). Phytochemical characterisation and antioxidant capacities of pomegranate peel. International Journal of Food Science & Technology, 58(9), 4543-4550. https://doi.org/10.1111/ijfs.16537.
  • Koptaget, E. (2019). Tarçın yağının ve karanfil yağının antimikrobiyal etkinliğinin mikrobiyolojik miktar tayini yöntemi ile araştırılması (Doctoral dissertation). Sakarya, Sakarya University.
  • Kwiatkowski, P., Łopusiewicz, Ł., Kostek, M., Drozłowska, E., Pruss, A., Wojciuk, B., Sienkiewicz, M., Zielińska-Bliźniewska, H., Dołȩgowska, B. (2019). The antibacterial activity of lavender essential oil alone and in combination with octenidine dihydrochloride against MRSA strains. Molecules, 25(1), 95. https://doi.org/10.3390/molecules25010095.
  • Malcolm, B.J., Tallian, K. (2017). Essential oil of lavender in anxiety disorders: Ready for prime time? Mental Health Clinician, 7(4), 147-155. https://doi.org/10.9740/mhc.2017.07.147.
  • Mirpour, M., Siahmazgi, Z.G., Kiasaraie, M.S. (2015). Antibacterial activity of clove, gall nut methanolic and ethanolic extracts on Streptococcus mutans PTCC 1683 and Streptococcus salivarius PTCC 1448. Journal of Oral Biology and Craniofacial Research, 5(1), 7-10. https://doi.org/10.1016/j.jobcr.2015.02.002.
  • Newman, R.A., Lansky, E.P., Block, M.L. (2007). Pomegranate: The most medicinal fruit. America: Basic Health Publications.
  • Nzeako, B.C., Al-Kharousi, Z.S.N., Al-Mahrooqui, Z. (2006). Antimicrobial activities of clove and thyme extracts. Sultan Qaboos University Medical Journal, 6(1), 33.
  • Omar, A.H., Gad, M.F., Abdelhafez, H.M., Mersal, A.T.E., Mossa, A.T.H. (2023). Phytochemical study, antioxidant potential and preparation of a clove nanoemulsion loaded with pomegranate peel extract. Egyptian Journal of Chemistry, 66(13), 21-37. https://doi.org/10.21608/EJCHEM.2023.213866.8034.
  • Seidi, Z., Fateh, E., Aynehband, A. (2021). Changes in secondary metabolite and biologically active compounds of Ajowan (Trachyspermum ammi L.) upon organic and conventional production systems. Acta Ecologica Sinica, 41(3), 215-222. https://doi.org/10.1016/j.chnaes.2021.02.009.
  • Semerci, A.B., İnceçayır, D., Mammadova, V., Hoş, A., Tunç, K. (2020). Antimicrobial activities of Allium staticiforme and Allium subhirsutum. Bangladesh Journal of Pharmacology, 15, 19-23. https://dx.doi.org/10.3329/bjp.v15i1.42373.
  • Sinan, K.I., Mahomoodally, M.F., Eyupoglu, O.E., Etienne, O.K., Sadeer, N.B., Ak, G. et al. (2021). HPLC-FRAP methodology and biological activities of different stem bark extracts of Cajanus cajan (L.) Millsp. Journal of Pharmaceutical and Biomedical Analysis, 192, 113678. https://doi.org/10.1016/j.jpba.2020.113678.
  • Smigielski, K., Prusinowska, R., Stobiecka, A., Kunicka-Styczyñska, A., Gruska, R. (2018). Biological properties and chemical composition of essential oils from flowers and aerial parts of lavender (Lavandula angustifolia). Journal of Essential Oil Bearing Plants, 21(5), 1303-1314. https://doi.org/10.1080/0972060X.2018.1503068.
  • Takahashi, K., Fukazawa, M., Motohira, H., Ochiai, K., Nishikawa, H., Miyata, T. (2023). A pilot study on antiplaque effects of mastic chewing gum in the oral cavity. Journal of Periodontology, 74(4), 501-505. https://doi.org/10.1902/jop.2003.74.4.501.
  • Tunç, K., Konca, T., Hoş, A. (2013). Punica granatum Linn. (nar) bitkisinin antibakteriyel etkisinin araştırılması. Sakarya University Journal of Science, 17(2), 167-172.
  • Wang, H., Ren, D. (2017). Controlling Streptococcus mutans and Staphylococcus aureus biofilms with direct current and chlorhexidine. AMB Express, 7, 1-9. https://doi.org/10.1186/s13568-017-0505-z.
  • Waty, S., Suryanto, D. (2018). Antibacterial activity of cinnamon ethanol extract (Cinnamomum burmannii) and its application as a mouthwash to inhibit streptococcus growth. IOP Conference Series: Earth and Environmental Science, 130, 012049. https://doi.org/10.1088/1755-1315/130/1/012049.
There are 35 citations in total.

Details

Primary Language English
Subjects Bacteriology
Journal Section Biyoloji / Biology
Authors

Ayşegül Hoş 0000-0001-5605-6159

Ayşe İnci 0000-0003-0959-5760

Ayşe Çalış 0009-0001-9976-0637

Ebrar Oktay 0009-0002-0381-4336

Dilara Demirel 0009-0007-2962-2013

Gülpembe İmrak 0009-0005-6930-4728

Ozan Emre Eyupoglu 0000-0002-4449-0537

Project Number 1919B012105372
Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date December 3, 2024
Acceptance Date February 11, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Hoş, A., İnci, A., Çalış, A., Oktay, E., et al. (2025). The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars. Journal of the Institute of Science and Technology, 15(2), 448-458. https://doi.org/10.21597/jist.1595057
AMA Hoş A, İnci A, Çalış A, Oktay E, Demirel D, İmrak G, Eyupoglu OE. The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars. J. Inst. Sci. and Tech. June 2025;15(2):448-458. doi:10.21597/jist.1595057
Chicago Hoş, Ayşegül, Ayşe İnci, Ayşe Çalış, Ebrar Oktay, Dilara Demirel, Gülpembe İmrak, and Ozan Emre Eyupoglu. “The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 448-58. https://doi.org/10.21597/jist.1595057.
EndNote Hoş A, İnci A, Çalış A, Oktay E, Demirel D, İmrak G, Eyupoglu OE (June 1, 2025) The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars. Journal of the Institute of Science and Technology 15 2 448–458.
IEEE A. Hoş, A. İnci, A. Çalış, E. Oktay, D. Demirel, G. İmrak, and O. E. Eyupoglu, “The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 448–458, 2025, doi: 10.21597/jist.1595057.
ISNAD Hoş, Ayşegül et al. “The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars”. Journal of the Institute of Science and Technology 15/2 (June 2025), 448-458. https://doi.org/10.21597/jist.1595057.
JAMA Hoş A, İnci A, Çalış A, Oktay E, Demirel D, İmrak G, Eyupoglu OE. The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars. J. Inst. Sci. and Tech. 2025;15:448–458.
MLA Hoş, Ayşegül et al. “The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 448-5, doi:10.21597/jist.1595057.
Vancouver Hoş A, İnci A, Çalış A, Oktay E, Demirel D, İmrak G, Eyupoglu OE. The Preparation, Bioactivity and HPLC-UV Contents Analysis of Antibacterial Chewable Bars. J. Inst. Sci. and Tech. 2025;15(2):448-5.