Research Article
BibTex RIS Cite
Year 2025, Volume: 14 Issue: 1, 26 - 36, 30.04.2025
https://doi.org/10.54187/jnrs.1653788

Abstract

Project Number

FYL-2021-3774

References

  • R. W. Baker, B. T. Low, Gas separation membrane materials: a perspective, Macromolecules 47 (20) (2014) 6999-7013.
  • N. Behnia, V. Pirouzfar, Effect of operating pressure and pyrolysis conditions on the performance of carbon membranes for CO2/CH4 and O2/N2 separation derived from polybenzimidazole/Matrimid and UIP-S precursor blends, Polymer Bulletin 75 (10) (2018) 4341-4358.
  • N. Kosinov, J. Gascon, F. Kapteijn, E. J. M. Hensen, Recent developments in zeolite membranes for gas separation, Journal of Membrane Science 499 (2016) 65- 79.
  • M. S. Saufi, A. F. Ismail, Fabrication of carbon membranes for gas separation – A review, Carbon 42 (2) (2004) 241-259.
  • P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art, Industrial & Engineering Chemistry Research 48 (10) (2009) 4638-4663.
  • W. V. Chiu, I. S. Park, K. Shqau, J. C. White, M. C. Schillo, W. S. W. Ho, H. Verweij, Post-synthesis defect abatement of inorganic membranes for gas separation, Journal of Membrane Science 377 (1-2) (2011) 182-190.
  • S. R. Armstrong, G. T. Offord, D. R. Paul, B. D. Freeman, A. Hiltner, E. Baer, Co‐extruded polymeric films for gas separation membranes, Journal of Applied Polymer Science 131 (2) (2014) 39765.
  • H. Fu, D. Yang, S. Zhang, X. Jian, Preparation of poly (phthalazinone ether sulfone ketone) hollow fiber membrane for gas separation, Journal of Applied Polymer Science 105 (2) (2007) 405-411.
  • L M. Robeson, Z. P. Smith, B. D. Freeman, D. R. Paul, Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes, Journal of Membrane Science 453 (2014) 71- 83.
  • Y. Yampolskii, Polymeric gas separation membranes, Macromolecules 45 (8) (2012) 3298- 3311.
  • J. Ahn, W. J. Chung, I. Pinnau, M. D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, Journal of Membrane Science 314 (1-2) (2008) 123- 133.
  • A. Javaid, Membranes for solubility-based gas separation applications, Chemical Engineering Journal 112 (1-3) (2005) 219-226.
  • M. Gou, R. Guo, H. Cao, W. Zhu, F. Liu, Z. Wei, Z. An MOF-tailored hierarchical porous microenvironment for CO2 as an efficient filler for mixed matrix membranes, Chemical Engineering Journal 438 (2022) 135651.
  • Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan, Z. Jiang, A MOF glass membrane for gas separation, Angewandte Chemie 132 (11) (2020) 4395-4399.
  • W. Fan, X. Zhang, Z. Kang, X. Liu, D. Sun, D. Isoreticular chemistry within metal–organic frameworks for gas storage and separation, Coordination Chemistry Reviews, 443 (2021) 213968.
  • J. Dechnik, C J. Sumby, C. Janiak, Enhancing mixed-matrix membrane performance with metal-organic framework additives, Crystal Growth & Design 17 (8) (2017) 4467- 4488.
  • K. Kalantari, P. Moradihamedani, N. A. Ibrahim, A. H. B. Abdullah, A. B. M. Afifi, Polysulfone mixed-matrix membrane incorporating talc clay particles for gas separation, Polymer Bulletin 75 (8) (2018) 3723-3738.
  • H. Ahmadizadegan, S. Esmaielzadeh, Preparation and application of novel bionanocomposite green membranes for gas separation, Polymer Bulletin 76(10) (2019) 4903-4927.
  • K. G. Liu, F. Bigdeli, A. Panjehpour, S. H. Jhung, H. A. Al Lawati, A. Morsali, Potential applications of MOF composites as selective membranes for separation of gases, Coordination Chemistry Reviews 496 (2023) 215413.
  • X. Xu, Y. Hartanto, J. Zheng, P. Luis, Recent advances in continuous MOF membranes for gas separation and pervaporation, Membranes 12 (12) (2022) 1205.
  • P. Su, S. Chen, L. Chen, W. Li, Constructing polymer/metal-organic framework nanohybrids to design compatible polymer-filler-polymer membranes for CO2 separation, Journal of Membrane Science 691 (2024) 122246.
  • H. Demir, G. O. Aksu, H. C. Gulbalkan, S. Keskin, MOF membranes for CO2 capture: past, present and future, Carbon Capture Science & Technology, 2 (2022) 100026.
  • N. Z. S. Yahaya, N. F. Yusof, S. H. Paiman, N. Abdullah, S. N. N. M. Makhtar, M. A. Rahman, N. H. Othman, Interaction of metal organic framework with fluorinated polymer on ceramic hollow fiber, Applied Surface Science 555 (2021) 149674.

Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas

Year 2025, Volume: 14 Issue: 1, 26 - 36, 30.04.2025
https://doi.org/10.54187/jnrs.1653788

Abstract

The objective of this work was to prepare glassy polymeric membranes for the purpose of separating carbon dioxide from flue gas mixtures and to conduct gas separation experiments using these membranes. Metal organic framework (MOF) was added to the membranes to improve their ability to select carbon dioxide, thereby enhancing the strength of the membrane and gas separation performance. Therefore, MIL 140B was synthesized, composite polyvinyl alcohol membranes were prepared, characterized and tested for carbon dioxide nitrogen removal. Increasing MIL 140B content significantly increased the tensile strength and mechanical strength. However, a significant decrease in mechanical strength was observed at 4 wt.% of filler doped membrane. In gas separation studies, first single gas and then mixed gas tests were performed. In both cases, MIL 140B additive increased both carbon dioxide selectivity and permeability. MIL 140B ratio increased from 0 wt.% to 4 wt.%, CO$_2$ permeability increased from 92 Barrer to 179 Barrer and selectivity increased from 41.4 to 58.7.

Project Number

FYL-2021-3774

Thanks

This work was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University, Grant number: FYL-2021-3774 and Tübitak (Grant Number: 123M086).

References

  • R. W. Baker, B. T. Low, Gas separation membrane materials: a perspective, Macromolecules 47 (20) (2014) 6999-7013.
  • N. Behnia, V. Pirouzfar, Effect of operating pressure and pyrolysis conditions on the performance of carbon membranes for CO2/CH4 and O2/N2 separation derived from polybenzimidazole/Matrimid and UIP-S precursor blends, Polymer Bulletin 75 (10) (2018) 4341-4358.
  • N. Kosinov, J. Gascon, F. Kapteijn, E. J. M. Hensen, Recent developments in zeolite membranes for gas separation, Journal of Membrane Science 499 (2016) 65- 79.
  • M. S. Saufi, A. F. Ismail, Fabrication of carbon membranes for gas separation – A review, Carbon 42 (2) (2004) 241-259.
  • P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: a review/state of the art, Industrial & Engineering Chemistry Research 48 (10) (2009) 4638-4663.
  • W. V. Chiu, I. S. Park, K. Shqau, J. C. White, M. C. Schillo, W. S. W. Ho, H. Verweij, Post-synthesis defect abatement of inorganic membranes for gas separation, Journal of Membrane Science 377 (1-2) (2011) 182-190.
  • S. R. Armstrong, G. T. Offord, D. R. Paul, B. D. Freeman, A. Hiltner, E. Baer, Co‐extruded polymeric films for gas separation membranes, Journal of Applied Polymer Science 131 (2) (2014) 39765.
  • H. Fu, D. Yang, S. Zhang, X. Jian, Preparation of poly (phthalazinone ether sulfone ketone) hollow fiber membrane for gas separation, Journal of Applied Polymer Science 105 (2) (2007) 405-411.
  • L M. Robeson, Z. P. Smith, B. D. Freeman, D. R. Paul, Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes, Journal of Membrane Science 453 (2014) 71- 83.
  • Y. Yampolskii, Polymeric gas separation membranes, Macromolecules 45 (8) (2012) 3298- 3311.
  • J. Ahn, W. J. Chung, I. Pinnau, M. D. Guiver, Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation, Journal of Membrane Science 314 (1-2) (2008) 123- 133.
  • A. Javaid, Membranes for solubility-based gas separation applications, Chemical Engineering Journal 112 (1-3) (2005) 219-226.
  • M. Gou, R. Guo, H. Cao, W. Zhu, F. Liu, Z. Wei, Z. An MOF-tailored hierarchical porous microenvironment for CO2 as an efficient filler for mixed matrix membranes, Chemical Engineering Journal 438 (2022) 135651.
  • Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan, Z. Jiang, A MOF glass membrane for gas separation, Angewandte Chemie 132 (11) (2020) 4395-4399.
  • W. Fan, X. Zhang, Z. Kang, X. Liu, D. Sun, D. Isoreticular chemistry within metal–organic frameworks for gas storage and separation, Coordination Chemistry Reviews, 443 (2021) 213968.
  • J. Dechnik, C J. Sumby, C. Janiak, Enhancing mixed-matrix membrane performance with metal-organic framework additives, Crystal Growth & Design 17 (8) (2017) 4467- 4488.
  • K. Kalantari, P. Moradihamedani, N. A. Ibrahim, A. H. B. Abdullah, A. B. M. Afifi, Polysulfone mixed-matrix membrane incorporating talc clay particles for gas separation, Polymer Bulletin 75 (8) (2018) 3723-3738.
  • H. Ahmadizadegan, S. Esmaielzadeh, Preparation and application of novel bionanocomposite green membranes for gas separation, Polymer Bulletin 76(10) (2019) 4903-4927.
  • K. G. Liu, F. Bigdeli, A. Panjehpour, S. H. Jhung, H. A. Al Lawati, A. Morsali, Potential applications of MOF composites as selective membranes for separation of gases, Coordination Chemistry Reviews 496 (2023) 215413.
  • X. Xu, Y. Hartanto, J. Zheng, P. Luis, Recent advances in continuous MOF membranes for gas separation and pervaporation, Membranes 12 (12) (2022) 1205.
  • P. Su, S. Chen, L. Chen, W. Li, Constructing polymer/metal-organic framework nanohybrids to design compatible polymer-filler-polymer membranes for CO2 separation, Journal of Membrane Science 691 (2024) 122246.
  • H. Demir, G. O. Aksu, H. C. Gulbalkan, S. Keskin, MOF membranes for CO2 capture: past, present and future, Carbon Capture Science & Technology, 2 (2022) 100026.
  • N. Z. S. Yahaya, N. F. Yusof, S. H. Paiman, N. Abdullah, S. N. N. M. Makhtar, M. A. Rahman, N. H. Othman, Interaction of metal organic framework with fluorinated polymer on ceramic hollow fiber, Applied Surface Science 555 (2021) 149674.
There are 23 citations in total.

Details

Primary Language English
Subjects Physical Chemistry (Other), Metal Organic Frameworks, Physical Properties of Materials
Journal Section Articles
Authors

Filiz Uğur Nigiz 0000-0003-0509-8425

Project Number FYL-2021-3774
Publication Date April 30, 2025
Submission Date March 8, 2025
Acceptance Date April 30, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Uğur Nigiz, F. (2025). Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas. Journal of New Results in Science, 14(1), 26-36. https://doi.org/10.54187/jnrs.1653788
AMA Uğur Nigiz F. Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas. JNRS. April 2025;14(1):26-36. doi:10.54187/jnrs.1653788
Chicago Uğur Nigiz, Filiz. “Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas”. Journal of New Results in Science 14, no. 1 (April 2025): 26-36. https://doi.org/10.54187/jnrs.1653788.
EndNote Uğur Nigiz F (April 1, 2025) Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas. Journal of New Results in Science 14 1 26–36.
IEEE F. Uğur Nigiz, “Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas”, JNRS, vol. 14, no. 1, pp. 26–36, 2025, doi: 10.54187/jnrs.1653788.
ISNAD Uğur Nigiz, Filiz. “Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas”. Journal of New Results in Science 14/1 (April 2025), 26-36. https://doi.org/10.54187/jnrs.1653788.
JAMA Uğur Nigiz F. Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas. JNRS. 2025;14:26–36.
MLA Uğur Nigiz, Filiz. “Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas”. Journal of New Results in Science, vol. 14, no. 1, 2025, pp. 26-36, doi:10.54187/jnrs.1653788.
Vancouver Uğur Nigiz F. Fabrication and Characterization of MOF-Doped Composite Polyvinyl Alcohol Membrane and Investigation of Its Potential for Carbon Dioxide Separation from Flue Gas. JNRS. 2025;14(1):26-3.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).