Research Article
BibTex RIS Cite

Konteyner Gemisinin Yakıt Bazlı Dinamik Gemi Direnci Analizi: Denizcilik Yakıtlarına Alternatif Bir Yaklaşım

Year 2025, Volume: 21 Issue: 1, 97 - 121
https://doi.org/10.56850/jnse.1649152

Abstract

Literatürde, alternatif yakıtların düşük hacimsel yoğunluk (örneğin hidrojen için) ve düşük ısıl değer (örneğin metanol, amonyak vb. için) gibi bazı özelliklerinden bir “dezavantaj” olarak bahsedilmektedir. Ancak, bu dezavantajın kesin etkisi açık değildir. Bu durumu açıklığa kavuşturmak için, bu çalışmada 11 farklı alternatif denizcilik yakıtı, yakıt ısıl değeri ve yoğunluk değeri kullanılarak yakıt gravimetrik enerji yoğunluğu analizine göre incelenmiştir. Gemi direncinin dinamik davranışını görmek için farklı senaryolar oluşturulmuştur. Sonuçlara göre, alternatif temiz yakıtlar “düşük gemi seyir menzili” ve “mesafe başına artan enerji tüketimi” dezavantajlarına sahip olabilir. En popüler yakıtlar arasında yer alan hidrojen (H2) ve amonyak (NH3) yakıtlı gemilerin menzili, yakıt tankı hacmi değiştirilmediği takdirde HFO kullanan gemi menzilinden %87 ve %68 daha düşük olabilir. Alternatif olarak, daha fazla depolanmış yakıt kütlesi ile aynı seyir menzilini sağlamak için gemide eşdeğer enerji depolanabilir. Bu durumda, mesafe başına tüketilen enerji bazı yakıtlar için artmaktadır (örneğin, amonyak için %1 artış).

References

  • Abd, A. H., Balla, H. H., & Almulla, E. (2019). New Design of Carburetor Liquefied Petroleum Gas (LPG) and Gasoline for Spark Ignition Engine Using CFD. Journal of Advanced Research in Dynamic and Control Systems, Volume 11(01-Special Issue), 1879–1887. http://www.jardcs.org/abstract.php?id=1725
  • Al-Dawody, M. F., Al-Obaidi, W., Aboud, E. D., Abdulwahid, M. A., Al-Farhany, K., Jamshed, W., ... & Iqbal, A. (2023). Mechanical engineering advantages of a dual fuel diesel engine powered by diesel and aqueous ammonia blends. Fuel, 346, 128398
  • Ammonia solution - Merck. (2025). https://www.sigmaaldrich.com/TR/en/product/mm/105432
  • Arutyunov, V. S. (2022). Hydrogen energy: Significance, sources, problems, and prospects (A review). Petroleum Chemistry, 62(6), 583-593
  • Bekdaş, A., Kaya, C., & Kökkülünk, G. (2023). Comprehensive economic analyses in terms of maritime Sulphur 2020 regulation. Ships and Offshore Structures, 18(6), 798-809
  • Bilgili, L. (2021). Comparative assessment of alternative marine fuels in life cycle perspective. Renewable and Sustainable Energy Reviews, 144, 110985
  • Chiong, M. C., Chong, C. T., Ng, J. H., Mashruk, S., Chong, W. W. F., Samiran, N. A., ... & Valera-Medina, A. (2021). Advancements of combustion technologies in the ammonia-fuelled engines. Energy Conversion and Management, 244, 114460
  • Dağ, B., Aydın, S., & Şener, R. (2025). Investigating the influence of heterocyclic Schiff bases as a biofuel additive on combustion, performance and emissions. Case Studies in Thermal Engineering, 105836
  • Demirci, U. B., & Miele, P. (2011). Chemical hydrogen storage:‘material’gravimetric capacity versus ‘system’gravimetric capacity. Energy & Environmental Science, 4(9), 3334-3341
  • Ethyl Alcohol Safety Data Sheet- Sigma Aldrich. (2020). https://www.sigmaaldrich.com/TR/en/sds/sial/459836?userType=undefined
  • Frost, J., Tall, A., Sheriff, A. M., Schönborn, A., & Hellier, P. (2021). An experimental and modelling study of dual fuel aqueous ammonia and diesel combustion in a single cylinder compression ignition engine. International Journal of Hydrogen Energy, 46(71), 35495-35510
  • Grannell, S. M., Assanis, D. N., Bohac, S. V., & Gillespie, D. E. (2008). The fuel mix limits and efficiency of a stoichiometric, ammonia, and gasoline dual fueled spark ignition engine. Journal of Engineering for Gas Turbines and Power, 130(4). https://doi.org/10.1115/1.2898837
  • Holtrop, J., & Mennen, G. G. J. (1978). A statistical power prediction method. International shipbuilding progress, 25(290), 253-256
  • Holtrop, J., & Mennen, G. G. J. (1982). An approximate power prediction method. International shipbuilding progress, 29(335), 166-170
  • Joghee, P., Malik, J. N., Pylypenko, S., & O’Hayre, R. (2015). A review on direct methanol fuel cells–In the perspective of energy and sustainability. MRS Energy & Sustainability, 2, E3
  • Kaya, C. (2019). Biyodizelin Gemi Dizel Motorlarında Alternatif Yakıt Olarak Kullanımının Deneysel Olarak İncelenmesi- Master Thesis. Yildiz Technical University
  • Kaya, C. (2024a). Hidrojenin sodyum bor hidrürde depolanması ve dizel motorlarda amonyak ile üçlü yakıt olarak kullanılması- Doctoral Thesis. Yildiz Technical University.
  • Kaya, C. (2024). Sodium Borohydride (NaBH4) as a Maritime Transportation Fuel. Hydrogen, 5(3), 540-558
  • Kaya, C., Aydin, Z., Kökkülünk, G., & Safa, A. (2023). Exergetic and exergoeconomic analyzes of compressed natural gas as an alternative fuel for a diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 3722-3741
  • Kaya, C., & Kökkülünk, G. (2023). Biodiesel as alternative additive fuel for diesel engines: an experimental and theoretical investigation on emissions and performance characteristics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 10741-10763
  • Lee, S., Oh, S., & Choi, Y. (2009). Performance and emission characteristics of an SI engine operated with DME blended LPG fuel. Fuel, 88(6), 1009-1015
  • Lensing, D. (2020). A study on the integration of a novel NaBH4 fuelled hybrid system for a small inland vessel. Delft University of Technology
  • Lion, S., Vlaskos, I., & Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207, 112553
  • LNG Fundamentals. (2014). Içinde Handbook of Liquefied Natural Gas (ss. 1–106). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-404585-9.00001-5
  • Methanol Safety Data Sheet - Sigma Aldrich. (2020). https://www.sigmaaldrich.com/TR/tr/sds/mm/5.89596?userType=anonymous
  • Negro, V., Noussan, M., & Chiaramonti, D. (2023). The potential role of ammonia for hydrogen storage and transport: A critical review of challenges and opportunities. Energies, 16(17), 6192
  • Okumuş, F., Kanberoğlu, B., Gonca, G., Kökkülünk, G., Aydın, Z., & Kaya, C. (2024). The effects of ammonia addition on the emission and performance characteristics of a diesel engine with variable compression ratio and injection timing. International Journal of Hydrogen Energy, 64, 186-195
  • Okumuş, F., Sönmez, H. İ., Safa, A., Kaya, C., & Kökkülünk, G. (2023). Gradient boosting machine for performance and emission investigation of diesel engine fueled with pyrolytic oil–biodiesel and 2-EHN additive. Sustainable Energy & Fuels, 7(16), 4002-4018
  • Online density calculation according to ASTM D1250. (2024). https://energy1.ru/en/calculator/
  • Pulkrabek, W. W. (2016). Engineering Fundamentals of the International Combustion Engine (H. Yaşar (Ed.); 1st Editio). İzmir Güven Kitabevi. https://doi.org/10.1115/1.1669459
  • Said, E. N. M., Ferhat, I., Anja, F., Bernd, W., Marc, S., Maximilian, B., Carsten, V. E., Yixi, Y., Wolfram, G. H., & Jürgen, K. (2021). Accelerated Transition to CO2 Neutrality —Energy Carriers and Powertrain Technologies. Journal of Tongji University (Natural Science), 49(12). https://doi.org/10. 11908/j. issn. 0253-374x. 227100
  • Savaş, A., Şener, R., Uslu, S., & Der, O. (2025). Experimental Study on Performance and Emission Optimization of MgO Nanoparticle-enriched 2nd Generation Biodiesel: A Method for Employing Nanoparticles to Improve Cleaner Diesel Combustion. Journal of the Energy Institute, 102024
  • Senecal, K., & Leach, F. (2021). Racing toward zero: the untold story of driving green. SAE International
  • Shamsul, N. S., Kamarudin, S. K., Rahman, N. A., & Kofli, N. T. (2014). An overview on the production of bio-methanol as potential renewable energy. Renewable and Sustainable Energy Reviews, 33, 578-588
  • Sönmez, H. İ., Okumuş, F., Kaya, C., Aydin, Z., Safa, A., & Kökkülünk, G. (2022). Waste to energy conversion: Pyrolytic oil and biodiesel as a renewable fuel blends on diesel engine combustion, performance, and emissions. International Journal of Green Energy, 19(12), 1333-1344
  • Sönmez, H. İ., Okumuş, F., Safa, A., Aydin, Z., Kaya, C., & Kökkülünk, G. (2023). Renewable energy resources: Combustion and environmental impact of diesel with pyrolytic and biodiesel blends. Energy & Environment, 34(4), 855-872
  • Suner, M. (2024). Analysis of air pollution from three main transportation vehicles: a case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 1890-1906
  • Usman, M. R. (2022). Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 167, 112743
  • Wang, Q., Zhang, H., Huang, J., & Zhang, P. (2023). The use of alternative fuels for maritime decarbonization: Special marine environmental risks and solutions from an international law perspective. Frontiers in Marine Science, 9, 1082453
  • Yang, S., Ghadikolaei, M. A., Gali, N. K., Xu, Z., Chu, M., Qin, X., & Ning, Z. (2024). Evaluating methods for marine fuel sulfur content using microsensor sniffing systems on ocean-going vessels. Science of The Total Environment, 942, 173765.

Fuel Based Dynamic Ship Resistance Analysis of a Container Ship: An Alternative Approach to Marine Fuels

Year 2025, Volume: 21 Issue: 1, 97 - 121
https://doi.org/10.56850/jnse.1649152

Abstract

In the literature, some properties of alternative fuels, such as low volumetric density (e.g. for hydrogen) and low heating value (e.g. for methanol, ammonia and etc.) have been mentioned as a “disadvantage”. However, the precise impact of this disadvantage is not clear. To clarify this situation, in this study, 11 different alternative marine fuels have been analyzed according to fuel gravimetric energy density analysis, using fuel heating value and density value. Different scenarios have been created to see the dynamic behavior of ship resistance. According to results, alternative clean fuels can have “low ship sailing range” and “increased energy consumption per distance” disadvantages. Among the most popular fuels, range of hydrogen (H2) and ammonia (NH3) fueled ships can be 87% and 68% lower than HFO fueled ship, if fuel tank volume is not changed. Alternatively, equivalent energy can be stored in the ship to ensure same sailing range with more stored fuel mass. In this situation, consumed energy per distance is increasing for some fuels (e.g., 1% increase for ammonia).

References

  • Abd, A. H., Balla, H. H., & Almulla, E. (2019). New Design of Carburetor Liquefied Petroleum Gas (LPG) and Gasoline for Spark Ignition Engine Using CFD. Journal of Advanced Research in Dynamic and Control Systems, Volume 11(01-Special Issue), 1879–1887. http://www.jardcs.org/abstract.php?id=1725
  • Al-Dawody, M. F., Al-Obaidi, W., Aboud, E. D., Abdulwahid, M. A., Al-Farhany, K., Jamshed, W., ... & Iqbal, A. (2023). Mechanical engineering advantages of a dual fuel diesel engine powered by diesel and aqueous ammonia blends. Fuel, 346, 128398
  • Ammonia solution - Merck. (2025). https://www.sigmaaldrich.com/TR/en/product/mm/105432
  • Arutyunov, V. S. (2022). Hydrogen energy: Significance, sources, problems, and prospects (A review). Petroleum Chemistry, 62(6), 583-593
  • Bekdaş, A., Kaya, C., & Kökkülünk, G. (2023). Comprehensive economic analyses in terms of maritime Sulphur 2020 regulation. Ships and Offshore Structures, 18(6), 798-809
  • Bilgili, L. (2021). Comparative assessment of alternative marine fuels in life cycle perspective. Renewable and Sustainable Energy Reviews, 144, 110985
  • Chiong, M. C., Chong, C. T., Ng, J. H., Mashruk, S., Chong, W. W. F., Samiran, N. A., ... & Valera-Medina, A. (2021). Advancements of combustion technologies in the ammonia-fuelled engines. Energy Conversion and Management, 244, 114460
  • Dağ, B., Aydın, S., & Şener, R. (2025). Investigating the influence of heterocyclic Schiff bases as a biofuel additive on combustion, performance and emissions. Case Studies in Thermal Engineering, 105836
  • Demirci, U. B., & Miele, P. (2011). Chemical hydrogen storage:‘material’gravimetric capacity versus ‘system’gravimetric capacity. Energy & Environmental Science, 4(9), 3334-3341
  • Ethyl Alcohol Safety Data Sheet- Sigma Aldrich. (2020). https://www.sigmaaldrich.com/TR/en/sds/sial/459836?userType=undefined
  • Frost, J., Tall, A., Sheriff, A. M., Schönborn, A., & Hellier, P. (2021). An experimental and modelling study of dual fuel aqueous ammonia and diesel combustion in a single cylinder compression ignition engine. International Journal of Hydrogen Energy, 46(71), 35495-35510
  • Grannell, S. M., Assanis, D. N., Bohac, S. V., & Gillespie, D. E. (2008). The fuel mix limits and efficiency of a stoichiometric, ammonia, and gasoline dual fueled spark ignition engine. Journal of Engineering for Gas Turbines and Power, 130(4). https://doi.org/10.1115/1.2898837
  • Holtrop, J., & Mennen, G. G. J. (1978). A statistical power prediction method. International shipbuilding progress, 25(290), 253-256
  • Holtrop, J., & Mennen, G. G. J. (1982). An approximate power prediction method. International shipbuilding progress, 29(335), 166-170
  • Joghee, P., Malik, J. N., Pylypenko, S., & O’Hayre, R. (2015). A review on direct methanol fuel cells–In the perspective of energy and sustainability. MRS Energy & Sustainability, 2, E3
  • Kaya, C. (2019). Biyodizelin Gemi Dizel Motorlarında Alternatif Yakıt Olarak Kullanımının Deneysel Olarak İncelenmesi- Master Thesis. Yildiz Technical University
  • Kaya, C. (2024a). Hidrojenin sodyum bor hidrürde depolanması ve dizel motorlarda amonyak ile üçlü yakıt olarak kullanılması- Doctoral Thesis. Yildiz Technical University.
  • Kaya, C. (2024). Sodium Borohydride (NaBH4) as a Maritime Transportation Fuel. Hydrogen, 5(3), 540-558
  • Kaya, C., Aydin, Z., Kökkülünk, G., & Safa, A. (2023). Exergetic and exergoeconomic analyzes of compressed natural gas as an alternative fuel for a diesel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(2), 3722-3741
  • Kaya, C., & Kökkülünk, G. (2023). Biodiesel as alternative additive fuel for diesel engines: an experimental and theoretical investigation on emissions and performance characteristics. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(4), 10741-10763
  • Lee, S., Oh, S., & Choi, Y. (2009). Performance and emission characteristics of an SI engine operated with DME blended LPG fuel. Fuel, 88(6), 1009-1015
  • Lensing, D. (2020). A study on the integration of a novel NaBH4 fuelled hybrid system for a small inland vessel. Delft University of Technology
  • Lion, S., Vlaskos, I., & Taccani, R. (2020). A review of emissions reduction technologies for low and medium speed marine Diesel engines and their potential for waste heat recovery. Energy Conversion and Management, 207, 112553
  • LNG Fundamentals. (2014). Içinde Handbook of Liquefied Natural Gas (ss. 1–106). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-404585-9.00001-5
  • Methanol Safety Data Sheet - Sigma Aldrich. (2020). https://www.sigmaaldrich.com/TR/tr/sds/mm/5.89596?userType=anonymous
  • Negro, V., Noussan, M., & Chiaramonti, D. (2023). The potential role of ammonia for hydrogen storage and transport: A critical review of challenges and opportunities. Energies, 16(17), 6192
  • Okumuş, F., Kanberoğlu, B., Gonca, G., Kökkülünk, G., Aydın, Z., & Kaya, C. (2024). The effects of ammonia addition on the emission and performance characteristics of a diesel engine with variable compression ratio and injection timing. International Journal of Hydrogen Energy, 64, 186-195
  • Okumuş, F., Sönmez, H. İ., Safa, A., Kaya, C., & Kökkülünk, G. (2023). Gradient boosting machine for performance and emission investigation of diesel engine fueled with pyrolytic oil–biodiesel and 2-EHN additive. Sustainable Energy & Fuels, 7(16), 4002-4018
  • Online density calculation according to ASTM D1250. (2024). https://energy1.ru/en/calculator/
  • Pulkrabek, W. W. (2016). Engineering Fundamentals of the International Combustion Engine (H. Yaşar (Ed.); 1st Editio). İzmir Güven Kitabevi. https://doi.org/10.1115/1.1669459
  • Said, E. N. M., Ferhat, I., Anja, F., Bernd, W., Marc, S., Maximilian, B., Carsten, V. E., Yixi, Y., Wolfram, G. H., & Jürgen, K. (2021). Accelerated Transition to CO2 Neutrality —Energy Carriers and Powertrain Technologies. Journal of Tongji University (Natural Science), 49(12). https://doi.org/10. 11908/j. issn. 0253-374x. 227100
  • Savaş, A., Şener, R., Uslu, S., & Der, O. (2025). Experimental Study on Performance and Emission Optimization of MgO Nanoparticle-enriched 2nd Generation Biodiesel: A Method for Employing Nanoparticles to Improve Cleaner Diesel Combustion. Journal of the Energy Institute, 102024
  • Senecal, K., & Leach, F. (2021). Racing toward zero: the untold story of driving green. SAE International
  • Shamsul, N. S., Kamarudin, S. K., Rahman, N. A., & Kofli, N. T. (2014). An overview on the production of bio-methanol as potential renewable energy. Renewable and Sustainable Energy Reviews, 33, 578-588
  • Sönmez, H. İ., Okumuş, F., Kaya, C., Aydin, Z., Safa, A., & Kökkülünk, G. (2022). Waste to energy conversion: Pyrolytic oil and biodiesel as a renewable fuel blends on diesel engine combustion, performance, and emissions. International Journal of Green Energy, 19(12), 1333-1344
  • Sönmez, H. İ., Okumuş, F., Safa, A., Aydin, Z., Kaya, C., & Kökkülünk, G. (2023). Renewable energy resources: Combustion and environmental impact of diesel with pyrolytic and biodiesel blends. Energy & Environment, 34(4), 855-872
  • Suner, M. (2024). Analysis of air pollution from three main transportation vehicles: a case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 1890-1906
  • Usman, M. R. (2022). Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 167, 112743
  • Wang, Q., Zhang, H., Huang, J., & Zhang, P. (2023). The use of alternative fuels for maritime decarbonization: Special marine environmental risks and solutions from an international law perspective. Frontiers in Marine Science, 9, 1082453
  • Yang, S., Ghadikolaei, M. A., Gali, N. K., Xu, Z., Chu, M., Qin, X., & Ning, Z. (2024). Evaluating methods for marine fuel sulfur content using microsensor sniffing systems on ocean-going vessels. Science of The Total Environment, 942, 173765.
There are 40 citations in total.

Details

Primary Language English
Subjects Marine Transportation, Ship Energy Efficiency, Ocean Engineering
Journal Section Articles
Authors

Cenk Kaya 0000-0003-4470-5427

Emre Kahramanoğlu 0000-0002-3646-1170

Early Pub Date May 20, 2025
Publication Date
Submission Date February 28, 2025
Acceptance Date May 6, 2025
Published in Issue Year 2025 Volume: 21 Issue: 1

Cite

APA Kaya, C., & Kahramanoğlu, E. (2025). Fuel Based Dynamic Ship Resistance Analysis of a Container Ship: An Alternative Approach to Marine Fuels. Journal of Naval Sciences and Engineering, 21(1), 97-121. https://doi.org/10.56850/jnse.1649152