Research Article
BibTex RIS Cite

Optimization of Fermented Bio-Regulators Applied to Soil and Leaves for Sustainable Okra (Abelmoschus esculentus) Production

Year 2025, Volume: 6 Issue: 1, 1 - 13, 30.06.2025
https://doi.org/10.58728/joinabt.1595917

Abstract

The study aims to develop eco-friendly alternatives to conventional fertilization for the sustainable intensification of vegetable production. This research assessed the impact of locally produced fermented amendments and methods of their application on okra, Abelmoschus esculentus. The experiment employed a randomized complete block design with nine treatments comparing four fermented preparations (plant juice, fruit juice, fish amino acids, and eggshells) applied through subsurface or foliar methods against conventional soil test recommendations. Bio-amendments demonstrated superior performance in maintaining soil nutrient status, with fermented amendments maintaining higher soil organic matter (3.32%) than conventional fertilization (3.18%). Foliar application of fermented fruit juice (FFJ) produced the tallest plants (62.32 cm at 90 DAS), while FFJ-subsurface significantly accelerated flowering (30.50 days). Fish amino acid foliar application yielded the highest number of marketable fruits (3.00), while FFJ-foliar treatment achieved the maximum marketable fruit weight (72.50 g). Bio-amended treatments also influenced fruit nutritional composition, with FAA-subsurface and FPJ-foliar treatments resulting in significantly lower fiber content (24.35%) compared to conventional fertilization (24.46%), while maintaining consistent levels of ash (6.37-6.42%), protein (10.38-10.42%), and fats (1.38-1.41%). Results demonstrate that locally sourced fermented bio-amendments can effectively match or exceed conventional fertilization while supporting soil health, particularly when applied through appropriate delivery methods. This research provides practical guidance for sustainable okra production while advancing the understanding of bio-amendment delivery system optimization.

Thanks

The authors acknowledge the Surigao del Norte State University Research and Extension Office's institutional support in facilitating this research. The successful completion of this study would not have been possible without the collaborative effort of these organizations.

References

  • Bilias, F., Kalderis, D., Richardson, C., Barbayiannis, N and Gasparatos, D. (2022). Biochar application as a soil potassium management strategy: A review. The Science of the Total Environment, 858, 1-15. https://doi.org/10.1016/j.scitotenv.2022.159782
  • Chattoo, M.A., Ahmed, N.A., Wani, M.H., Mir, S.A., Khan, S.H and Jabeen, N. (2011). Effect of organic manures and inorganic fertilizers on growth, yield and quality of Okra [Abelmochus esculentus (L.) Moench]. Vegetable Science, 38, 135-139.
  • Wagh, S.S., Laharia, G.S., Iratkar, A.G and Gajare, A.S. (2014). Effect of INM on nutrient uptake, yield and quality of okra [Abelmoschus esculents (L.) Moench]. Asian Journal of Soil Science, 9, 21-24.
  • Sulok, K.M., Ahmed, O.H., Khew, C.Y., Zehnder, J.A., Jalloh, M.B., Musah, A.A and Abdu, A.B. (2021). Chemical and biological characteristics of organic amendments produced from selected agro-wastes with potential for sustaining soil health: A Laboratory Assessment. Sustainability, 13, 4919. https://doi.org/10.3390/su13094919
  • Urra, J., Alkorta, I., Mijangos, I and Garbisu, C. (2020). Commercial and farm fermented liquid organic amendments to improve soil quality and lettuce yield. Journal of environmental management, 264, 110422. https://doi.org/10.1016/j.jenvman.2020.110422
  • Luo, Y., Chavez-Rico, V.S., Sechi, V., Bezemer, T.M., Buisman, C.J and Heijne, A. (2023). Effect of organic amendments obtained from different pretreatment technologies on soil microbial community. Environmental research, 116346. https://doi.org/10.1016/j.envres.2023.11634
  • Ahuja, I., Daukšas, E., Remme, J.F., Richardsen, R.N and Løes, A. (2020). Fish and fish waste-based fertilizers in organic farming - With status in Norway: A review. Waste management, 115, 95-112. https://doi.org/10.1016/j.wasman.2020.07.025
  • Teshome, Y. (2021). Review for fermentation on the rate of plant nutrient management practices in Ethiopia. International Journal of Research in Agronomy. 4(2), 127-131 https://doi.org/10.33545/2618060X.2021.v4.i2a.139
  • Bhuiyan, M.N., Rahman, A., Loladze, I., Das, S and Kim, P.J. (2023). Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis. The Science of the Total Environment, 876, 162712. https://doi.org/10.1016/j.scitotenv.2023.162712
  • Krishnasree, R.K., Raj, S.K and Chacko, S.R. (2021). Foliar nutrition in vegetables: A review. Journal of Pharmacognosy and Phytochemistry, 10(1), 2393-2398. https://doi.org/10.22271/phyto.2021.v10.i1ah.13716
  • Thomas, G.W. (1996). Soil pH and soil acidity. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 475-490. https://doi.org/10.2136/sssabookser5.3.c16
  • Nelson, D.W and Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 539-579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  • Olsen, S.R and Sommers, L.E. (1982). Phosphorus. Pp: 403-430. Methods of Soil Analysis, Chemical and Microbiological Properties. Part, 2. https://doi.org/10.2134/agronmonogr9.2.2ed.c24
  • Helmke, P.A and Sparks, D.L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 551-574. https://doi.org/10.2136/sssabookser5.3.c19
  • Cunniff, P and Washington, D. (1997). Official methods of analysis of AOAC International. Journal of AOAC International, 80(6), 127A. https://doi.org/10.1093/jaoac/80.1.277
  • Marshall, M.R. (2010). Ash analysis. Food analysis, 4, 105-116. https://doi.org/10.1007/978-1-4419-1478-1_7
  • Nehring, K. (1966). Crude fibre or crude cellulose. The development of Weende analysis of feedingstuffs. Archiv für Tierernährung, 16, 77-102
  • Van Soest, P.V., Robertson, J.B and Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Mariotti, F., Tomé, D and Mirand, P.P. (2008). Converting nitrogen into protein-beyond 6.25 and Jones' factors. Critical Reviews in Food Science and Nutrition, 48(2), 177-184. https://doi.org/10.1080/10408390701279749
  • De Castro, M.L and Priego-Capote, F. (2010). Soxhlet extraction: Past and present panacea. Journal of Chromatography A, 1217(16), 2383-2389. https://doi.org/10.1016/j.chroma.2009.11.027
  • Herencia, J.F., Ruiz, J.C., Melero, S., Garcia Galavís, P and Maqueda, C. (2008). A short-term comparison of organic v. conventional agriculture in a silty loam soil using two organic amendments. The Journal of Agricultural Science, 146, 677 - 687. https://doi.org/10.1017/S0021859608008071
  • Kim, H.W., Choi, H.S., Kim, B.H., Kim, H.J., Choi, K.J., Jeong, D.Y and Jeong, S.K. (2012). Changes in rice yield according to surface and full-layer application of organic fertilizer. Korean Journal of Organic Agriculture, 20 (1), 81-89.
  • Nayakekorola, H and Woodard, H.J. (1995). Profile distribution of extractable phosphorus following a knife-applied subsurface phosphorus fertilizer band. Communications in Soil Science and Plant Analysis, 26, 3193-3203. https://doi.org/10.1080/00103629509369520
  • Bao, Z., Dai, W., Su, X., Liu, Z., An, Z., Sun, Q., Jing, H., Lin, L., Chen, Y and Meng, J. (2024). Long‐term biochar application promoted soil aggregate‐associated potassium availability and maize potassium uptake. GCB Bioenergy, 16, 1-13. https://doi.org/10.1111/gcbb.13134.
  • Sheoran, H.S., Kakar, R., Kumar, N and Seema, J. (2019). Impact of organic and conventional farming practices on soil quality: A global review. Applied Ecology and Environmental Research. 17(1), p951. https://doi.org/10.15666/aeer/1701_951968
  • Herencia, J.F and Maqueda, C. (2016). Effects of time and dose of organic fertilizers on soil fertility, nutrient content and yield of vegetables. The Journal of Agricultural Science, 154, 1343 - 1361. https://doi.org/10.1017/S0021859615001136.
  • He, C., Zhang, L and Li, X. (2022). Plant performance and soil fungal community impacts of enhancing Dioscorea opposita with spraying foliar fertilizer with different nutrient element combinations. Agronomy. https://doi.org/10.3390/agronomy12092017.
  • Haytova, D.I. (2013). A review of foliar fertilization of some vegetables crops. Annual Review & Research in Biology, 3(4), 455-465.
  • Fahrurrozi, F., Muktamar, Z., Setyowati, N., Sudjatmiko, S and Chozin, M. (2019). Comparative effects of soil and foliar applications of tithonia-enriched liquid organic fertilizer on yields of sweet corn in closed agriculture production system. AGRIVITA Journal of Agricultural Science. 41(2), 238-245. https://doi.org/10.17503/agrivita.v41i2.1256
  • Aslani, M and Souri, M.K. (2018). Growth and quality of green bean (Phaseolus vulgaris L.) under foliar application of organic-chelate fertilizers. Open Agriculture, 3, 146 - 154. https://doi.org/10.1515/opag-2018-0015
  • Cox, J., Hue, N.V., Ahmad, A.A and Kobayashi, K.D. (2021). Surface-applied or incorporated biochar and compost combination improves soil fertility, Chinese cabbage and papaya biomass. Biochar, 3(2), 213-227. https://doi.org/10.1007/s42773-020-00081-z
  • Derrick, O. (2009). Foliar fertilization: Mechanisms and magnitude of nutrient uptake. In Proceedings of the fluid forum (pp. 15-17).
  • Zhang, J., Akyol, Ç and Meers, E. (2023). Nutrient recovery and recycling from fishery waste and by-products. Journal of Environmental Management, 348, 119266. https://doi.org/10.1016/j.jenvman.2023.119266
  • Ziogas, V., Michailidis, M., Karagiannis, E., Tanou, G and Molassiotis, A. (2020). Manipulating fruit quality through foliar nutrition. In Fruit crops (pp. 401-417). https://doi.org/10.1016/B978-0-12-818732-6.00029-0
  • Zhang, J., Pang, H., Tian, J., Liu, M., Ji, Q and Yao, Y. (2017). Effects of apple fruit fermentation (AFF) solution on growth and fruit quality of apple trees. Brazilian Journal of Botany, 41, 11 - 19. https://doi.org/10.1007/s40415-017-0418-8
  • Urjintseren, P and Byambaa, J. (2024). Determination of egg shell structure and mineral composition using SEM - EDS and identification the possibility to produce fertilizer. Journal of Materials Science and Chemical Engineering. 12(3), 21-30. https://doi.org/10.4236/msce.2024.123003
  • Alzamel, N.M., Taha, E.M., Bakr, A.A and Loutfy, N.M. (2022). Effect of organic and inorganic fertilizers on soil properties, growth yield, and physiochemical properties of sunflower seeds and oils. Sustainability. 14(19), 12928. https://doi.org/10.3390/su141912928
  • Gulzar, O., Shoqer, L.M., Bahaa, L.F and Mahmood, Y.M. (2024). Utilization of eggshell-derived calcium carbonate as an eco-friendly fertilizer enhancing growth of Rosa abientina, Rosa, and Fragaria × ananassa, and soil health. British Journal of Environmental Studies. 4(1), 29-34. https://doi.org/10.32996/bjes.2024.4.1.4
  • Blackshaw, R.E., Semach, G and Janzen, H.H. (2002). Fertilizer application method affects nitrogen uptake in weeds and wheat. Weed Science, 50(5), 634-641. https://doi.org/10.1614/0043-1745(2002)050[0634:FAMANU]2.0.CO;2
  • Dao, V.T and Kim, J. (2011). Scaled-up bioconversion of fish waste to liquid fertilizer using a 5 L ribbon-type reactor. Journal of Environmental Management, 92 10, 2441-6. https://doi.org/10.1016/j.jenvman.2011.05.003
  • de Hita, D., Fuentes, M., Fernández, V., Zamarreño, Á.M., Olaetxea, M and García-Mina, J.M. (2020). Discriminating the short-term action of root and foliar application of humic acids on plant growth: emerging role of jasmonic acid. Frontiers in Plant Science, 11, 493. https://doi.org/10.3389/fpls.2020.00493
  • Dong, C., Zhou, J.M., Fan, X.H., Wang, H.Y., Duan, Z and Tang, C. (2005). Application methods of calcium supplements affect nutrient levels and calcium forms in mature tomato fruits. Journal of Plant Nutrition, 27, 1443 - 1455. https://doi.org/10.1081/PLN-200025861
  • Benjamin, Y.N., Edith, K.N., Marie-Michel, C.A., Jules, S.K and Kablan, T. (2020). Comparative study of the effects of two types of organic fertilizers (R1 and R4) and a chemical fertilizer (NPK) on some physico-chemical and biochemical parameters of lettuce (Latuca sativa L.). Journal of Food Science and Nutrition Research, 3(3), 181-194. https://doi.org/10.26502/jfsnr.2642-11000048
  • Dabiré, C., Sérémé, A., Parkouda, C., Somda, M.K and Traoré, A.S. (2016). Influence of organic and mineral fertilizers on chemical and biochemical compounds content in tomato (Solanum lycopersicum) var. Mongal F1. Journal of Experimental Biology and Agricultural Sciences, 4, 631-636. https://doi.org/10.18006/2016.4(Issue6).631.636
  • Sharma, A. (2017). A Review on the effect of organic and chemical fertilizers on plants. International Journal for Research in Applied Science and Engineering Technology, 677-680. https://doi.org/10.22214/ijraset.2017.2103
  • Ebel, R and Kissmann, S. (2019). Fermented leaf fertilizers-principles and preparation. Organic Farming, 5(1), 14-22. https://doi.org/10.12924/of2019.05010014
  • Kannan, S.V. (2010). Foliar Fertilization for Sustainable Crop Production. Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming, 371-402. https://doi.org/10.1007/978-90-481-8741-6_13
  • Gayathri, K and Krishnaveni, K. (2015). Effect of organic manures and inorganic fertilizers on certain quality parameters of okra [Abelmoschus esculentus (L). Moench] cv. Arka Anamika. Advance Research Journal of Crop improvement, 6, 116-118. https://doi.org/10.15740/HAS/ARJCI/6.2/116-118
  • Nithiya, T. (2015). Effect of organic and inorganic fertilizer on growth, phenolic compounds and antioxidant activity of Solanum nigrum L. World Journal of Pharmacy and Pharmaceutical Sciences, 4(5), 808-822.

Sürdürülebilir Bamya (Abelmoschus esculentus) Üretimi İçin Toprak Altı ve Yaprak Uygulamalı Fermente Biyo-Düzenleyicilerin Optimizasyonu

Year 2025, Volume: 6 Issue: 1, 1 - 13, 30.06.2025
https://doi.org/10.58728/joinabt.1595917

Abstract

Çalışma, sebze üretiminin sürdürülebilir yoğunlaştırılması için geleneksel gübreleme yöntemlerine çevre dostu alternatifler geliştirmeyi amaçlamaktadır. Bu araştırmada, yerel olarak üretilen fermente düzenleyicilerin ve bunların bamya (Abelmoschus esculentus) üzerindeki uygulama yöntemlerinin etkisi değerlendirilmiştir. Deney, rastgele tam blok deneme deseni kullanılarak dokuz farklı uygulamayı içermektedir. Dört fermente hazırlık (bitki suyu, meyve suyu, balık amino asitleri ve yumurta kabukları), toprak altı veya yaprak uygulama yöntemleriyle, geleneksel toprak analizine dayalı gübreleme önerileriyle karşılaştırılmıştır. Biyo-düzenleyiciler, toprak besin durumunu koruma açısından üstün performans göstermiş ve fermente düzenleyiciler, geleneksel gübrelemeye göre daha yüksek organik madde içeriğini (3,32%) sağlamıştır (geleneksel gübreleme: 3,18%). Fermente meyve suyu (FFJ) yaprak uygulaması, en uzun bitkileri üretmiştir (90. gün sonunda 62,32 cm), FFJ-toprak altı uygulaması ise çiçeklenmeyi önemli ölçüde hızlandırmıştır (30,50 gün). Balık amino asidi yaprak uygulaması, en yüksek pazar değerindeki meyve sayısını (3,00) sağlamış, FFJ-yaprak uygulaması ise en ağır pazar değerindeki meyve ağırlığını (72,50 g) elde etmiştir. Biyo-düzenleyici uygulamaları, meyve besin bileşimini de etkilemiştir. FAA-toprak altı ve FPJ-yaprak uygulamaları, geleneksel gübrelemeye (24,46%) kıyasla önemli ölçüde daha düşük lif içeriği (24,35%) sağlamış, aynı zamanda kül (6,37-6,42%), protein (10,38-10,42%) ve yağ (1,38-1,41%) seviyelerini tutarlı bir şekilde korumuştur. Sonuçlar, yerel kaynaklı fermente biyo-düzenleyicilerin uygun uygulama yöntemleriyle kullanıldığında geleneksel gübrelemeyle eşit veya üstün performans gösterebildiğini ve toprak sağlığını desteklediğini ortaya koymaktadır. Bu araştırma, sürdürülebilir bamya üretimi için pratik rehberlik sağlamakta ve biyo-düzenleyici uygulama sistemlerinin optimizasyonuna ilişkin anlayışı geliştirmektedir.

References

  • Bilias, F., Kalderis, D., Richardson, C., Barbayiannis, N and Gasparatos, D. (2022). Biochar application as a soil potassium management strategy: A review. The Science of the Total Environment, 858, 1-15. https://doi.org/10.1016/j.scitotenv.2022.159782
  • Chattoo, M.A., Ahmed, N.A., Wani, M.H., Mir, S.A., Khan, S.H and Jabeen, N. (2011). Effect of organic manures and inorganic fertilizers on growth, yield and quality of Okra [Abelmochus esculentus (L.) Moench]. Vegetable Science, 38, 135-139.
  • Wagh, S.S., Laharia, G.S., Iratkar, A.G and Gajare, A.S. (2014). Effect of INM on nutrient uptake, yield and quality of okra [Abelmoschus esculents (L.) Moench]. Asian Journal of Soil Science, 9, 21-24.
  • Sulok, K.M., Ahmed, O.H., Khew, C.Y., Zehnder, J.A., Jalloh, M.B., Musah, A.A and Abdu, A.B. (2021). Chemical and biological characteristics of organic amendments produced from selected agro-wastes with potential for sustaining soil health: A Laboratory Assessment. Sustainability, 13, 4919. https://doi.org/10.3390/su13094919
  • Urra, J., Alkorta, I., Mijangos, I and Garbisu, C. (2020). Commercial and farm fermented liquid organic amendments to improve soil quality and lettuce yield. Journal of environmental management, 264, 110422. https://doi.org/10.1016/j.jenvman.2020.110422
  • Luo, Y., Chavez-Rico, V.S., Sechi, V., Bezemer, T.M., Buisman, C.J and Heijne, A. (2023). Effect of organic amendments obtained from different pretreatment technologies on soil microbial community. Environmental research, 116346. https://doi.org/10.1016/j.envres.2023.11634
  • Ahuja, I., Daukšas, E., Remme, J.F., Richardsen, R.N and Løes, A. (2020). Fish and fish waste-based fertilizers in organic farming - With status in Norway: A review. Waste management, 115, 95-112. https://doi.org/10.1016/j.wasman.2020.07.025
  • Teshome, Y. (2021). Review for fermentation on the rate of plant nutrient management practices in Ethiopia. International Journal of Research in Agronomy. 4(2), 127-131 https://doi.org/10.33545/2618060X.2021.v4.i2a.139
  • Bhuiyan, M.N., Rahman, A., Loladze, I., Das, S and Kim, P.J. (2023). Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis. The Science of the Total Environment, 876, 162712. https://doi.org/10.1016/j.scitotenv.2023.162712
  • Krishnasree, R.K., Raj, S.K and Chacko, S.R. (2021). Foliar nutrition in vegetables: A review. Journal of Pharmacognosy and Phytochemistry, 10(1), 2393-2398. https://doi.org/10.22271/phyto.2021.v10.i1ah.13716
  • Thomas, G.W. (1996). Soil pH and soil acidity. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 475-490. https://doi.org/10.2136/sssabookser5.3.c16
  • Nelson, D.W and Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9, 539-579. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  • Olsen, S.R and Sommers, L.E. (1982). Phosphorus. Pp: 403-430. Methods of Soil Analysis, Chemical and Microbiological Properties. Part, 2. https://doi.org/10.2134/agronmonogr9.2.2ed.c24
  • Helmke, P.A and Sparks, D.L. (1996). Lithium, sodium, potassium, rubidium, and cesium. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 551-574. https://doi.org/10.2136/sssabookser5.3.c19
  • Cunniff, P and Washington, D. (1997). Official methods of analysis of AOAC International. Journal of AOAC International, 80(6), 127A. https://doi.org/10.1093/jaoac/80.1.277
  • Marshall, M.R. (2010). Ash analysis. Food analysis, 4, 105-116. https://doi.org/10.1007/978-1-4419-1478-1_7
  • Nehring, K. (1966). Crude fibre or crude cellulose. The development of Weende analysis of feedingstuffs. Archiv für Tierernährung, 16, 77-102
  • Van Soest, P.V., Robertson, J.B and Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  • Mariotti, F., Tomé, D and Mirand, P.P. (2008). Converting nitrogen into protein-beyond 6.25 and Jones' factors. Critical Reviews in Food Science and Nutrition, 48(2), 177-184. https://doi.org/10.1080/10408390701279749
  • De Castro, M.L and Priego-Capote, F. (2010). Soxhlet extraction: Past and present panacea. Journal of Chromatography A, 1217(16), 2383-2389. https://doi.org/10.1016/j.chroma.2009.11.027
  • Herencia, J.F., Ruiz, J.C., Melero, S., Garcia Galavís, P and Maqueda, C. (2008). A short-term comparison of organic v. conventional agriculture in a silty loam soil using two organic amendments. The Journal of Agricultural Science, 146, 677 - 687. https://doi.org/10.1017/S0021859608008071
  • Kim, H.W., Choi, H.S., Kim, B.H., Kim, H.J., Choi, K.J., Jeong, D.Y and Jeong, S.K. (2012). Changes in rice yield according to surface and full-layer application of organic fertilizer. Korean Journal of Organic Agriculture, 20 (1), 81-89.
  • Nayakekorola, H and Woodard, H.J. (1995). Profile distribution of extractable phosphorus following a knife-applied subsurface phosphorus fertilizer band. Communications in Soil Science and Plant Analysis, 26, 3193-3203. https://doi.org/10.1080/00103629509369520
  • Bao, Z., Dai, W., Su, X., Liu, Z., An, Z., Sun, Q., Jing, H., Lin, L., Chen, Y and Meng, J. (2024). Long‐term biochar application promoted soil aggregate‐associated potassium availability and maize potassium uptake. GCB Bioenergy, 16, 1-13. https://doi.org/10.1111/gcbb.13134.
  • Sheoran, H.S., Kakar, R., Kumar, N and Seema, J. (2019). Impact of organic and conventional farming practices on soil quality: A global review. Applied Ecology and Environmental Research. 17(1), p951. https://doi.org/10.15666/aeer/1701_951968
  • Herencia, J.F and Maqueda, C. (2016). Effects of time and dose of organic fertilizers on soil fertility, nutrient content and yield of vegetables. The Journal of Agricultural Science, 154, 1343 - 1361. https://doi.org/10.1017/S0021859615001136.
  • He, C., Zhang, L and Li, X. (2022). Plant performance and soil fungal community impacts of enhancing Dioscorea opposita with spraying foliar fertilizer with different nutrient element combinations. Agronomy. https://doi.org/10.3390/agronomy12092017.
  • Haytova, D.I. (2013). A review of foliar fertilization of some vegetables crops. Annual Review & Research in Biology, 3(4), 455-465.
  • Fahrurrozi, F., Muktamar, Z., Setyowati, N., Sudjatmiko, S and Chozin, M. (2019). Comparative effects of soil and foliar applications of tithonia-enriched liquid organic fertilizer on yields of sweet corn in closed agriculture production system. AGRIVITA Journal of Agricultural Science. 41(2), 238-245. https://doi.org/10.17503/agrivita.v41i2.1256
  • Aslani, M and Souri, M.K. (2018). Growth and quality of green bean (Phaseolus vulgaris L.) under foliar application of organic-chelate fertilizers. Open Agriculture, 3, 146 - 154. https://doi.org/10.1515/opag-2018-0015
  • Cox, J., Hue, N.V., Ahmad, A.A and Kobayashi, K.D. (2021). Surface-applied or incorporated biochar and compost combination improves soil fertility, Chinese cabbage and papaya biomass. Biochar, 3(2), 213-227. https://doi.org/10.1007/s42773-020-00081-z
  • Derrick, O. (2009). Foliar fertilization: Mechanisms and magnitude of nutrient uptake. In Proceedings of the fluid forum (pp. 15-17).
  • Zhang, J., Akyol, Ç and Meers, E. (2023). Nutrient recovery and recycling from fishery waste and by-products. Journal of Environmental Management, 348, 119266. https://doi.org/10.1016/j.jenvman.2023.119266
  • Ziogas, V., Michailidis, M., Karagiannis, E., Tanou, G and Molassiotis, A. (2020). Manipulating fruit quality through foliar nutrition. In Fruit crops (pp. 401-417). https://doi.org/10.1016/B978-0-12-818732-6.00029-0
  • Zhang, J., Pang, H., Tian, J., Liu, M., Ji, Q and Yao, Y. (2017). Effects of apple fruit fermentation (AFF) solution on growth and fruit quality of apple trees. Brazilian Journal of Botany, 41, 11 - 19. https://doi.org/10.1007/s40415-017-0418-8
  • Urjintseren, P and Byambaa, J. (2024). Determination of egg shell structure and mineral composition using SEM - EDS and identification the possibility to produce fertilizer. Journal of Materials Science and Chemical Engineering. 12(3), 21-30. https://doi.org/10.4236/msce.2024.123003
  • Alzamel, N.M., Taha, E.M., Bakr, A.A and Loutfy, N.M. (2022). Effect of organic and inorganic fertilizers on soil properties, growth yield, and physiochemical properties of sunflower seeds and oils. Sustainability. 14(19), 12928. https://doi.org/10.3390/su141912928
  • Gulzar, O., Shoqer, L.M., Bahaa, L.F and Mahmood, Y.M. (2024). Utilization of eggshell-derived calcium carbonate as an eco-friendly fertilizer enhancing growth of Rosa abientina, Rosa, and Fragaria × ananassa, and soil health. British Journal of Environmental Studies. 4(1), 29-34. https://doi.org/10.32996/bjes.2024.4.1.4
  • Blackshaw, R.E., Semach, G and Janzen, H.H. (2002). Fertilizer application method affects nitrogen uptake in weeds and wheat. Weed Science, 50(5), 634-641. https://doi.org/10.1614/0043-1745(2002)050[0634:FAMANU]2.0.CO;2
  • Dao, V.T and Kim, J. (2011). Scaled-up bioconversion of fish waste to liquid fertilizer using a 5 L ribbon-type reactor. Journal of Environmental Management, 92 10, 2441-6. https://doi.org/10.1016/j.jenvman.2011.05.003
  • de Hita, D., Fuentes, M., Fernández, V., Zamarreño, Á.M., Olaetxea, M and García-Mina, J.M. (2020). Discriminating the short-term action of root and foliar application of humic acids on plant growth: emerging role of jasmonic acid. Frontiers in Plant Science, 11, 493. https://doi.org/10.3389/fpls.2020.00493
  • Dong, C., Zhou, J.M., Fan, X.H., Wang, H.Y., Duan, Z and Tang, C. (2005). Application methods of calcium supplements affect nutrient levels and calcium forms in mature tomato fruits. Journal of Plant Nutrition, 27, 1443 - 1455. https://doi.org/10.1081/PLN-200025861
  • Benjamin, Y.N., Edith, K.N., Marie-Michel, C.A., Jules, S.K and Kablan, T. (2020). Comparative study of the effects of two types of organic fertilizers (R1 and R4) and a chemical fertilizer (NPK) on some physico-chemical and biochemical parameters of lettuce (Latuca sativa L.). Journal of Food Science and Nutrition Research, 3(3), 181-194. https://doi.org/10.26502/jfsnr.2642-11000048
  • Dabiré, C., Sérémé, A., Parkouda, C., Somda, M.K and Traoré, A.S. (2016). Influence of organic and mineral fertilizers on chemical and biochemical compounds content in tomato (Solanum lycopersicum) var. Mongal F1. Journal of Experimental Biology and Agricultural Sciences, 4, 631-636. https://doi.org/10.18006/2016.4(Issue6).631.636
  • Sharma, A. (2017). A Review on the effect of organic and chemical fertilizers on plants. International Journal for Research in Applied Science and Engineering Technology, 677-680. https://doi.org/10.22214/ijraset.2017.2103
  • Ebel, R and Kissmann, S. (2019). Fermented leaf fertilizers-principles and preparation. Organic Farming, 5(1), 14-22. https://doi.org/10.12924/of2019.05010014
  • Kannan, S.V. (2010). Foliar Fertilization for Sustainable Crop Production. Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming, 371-402. https://doi.org/10.1007/978-90-481-8741-6_13
  • Gayathri, K and Krishnaveni, K. (2015). Effect of organic manures and inorganic fertilizers on certain quality parameters of okra [Abelmoschus esculentus (L). Moench] cv. Arka Anamika. Advance Research Journal of Crop improvement, 6, 116-118. https://doi.org/10.15740/HAS/ARJCI/6.2/116-118
  • Nithiya, T. (2015). Effect of organic and inorganic fertilizer on growth, phenolic compounds and antioxidant activity of Solanum nigrum L. World Journal of Pharmacy and Pharmaceutical Sciences, 4(5), 808-822.
There are 49 citations in total.

Details

Primary Language English
Subjects Sustainable Agricultural Development
Journal Section Research Articles
Authors

Albino Taer 0000-0002-2958-4682

Erma Taer 0000-0002-5728-3377

Siony Cordova 0000-0002-7494-0578

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date December 4, 2024
Acceptance Date April 14, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Taer, A., Taer, E., & Cordova, S. (2025). Optimization of Fermented Bio-Regulators Applied to Soil and Leaves for Sustainable Okra (Abelmoschus esculentus) Production. Journal of Agricultural Biotechnology, 6(1), 1-13. https://doi.org/10.58728/joinabt.1595917