Railway transportation stands out as a safe and efficient mode of transport for both freight and passengers. However, failures in train braking systems pose financial and safety risks. In this study, it is proposed to use the recently introduced YOLOv11 (You Only Look Once) models to monitor the mechanical brakes used in wagons. This approach aims to prevent the locking of wheels due to stuck mechanical brakes while the train is in motion, thereby avoiding continuous metal friction and mitigating risks such as Flatted wheels, wheel fractures, rail damage, and fire hazards. Such failures not only cause material damage and operational disruptions but also lead to potential loss of life and costly accidents. Traditional methods of manually inspecting brake cylinders provide limited safety and are inefficient in terms of operational effectiveness. Therefore, the automatic monitoring and fault detection of brake cylinders have become crucial. To achieve this, a dataset consisting of three different classes—braked, empty, and evacuated—was used. Using this dataset, YOLOv11n, YOLOv11s, YOLOv11m, YOLOv11l, and YOLOv11x models were trained. The performance of these trained models was evaluated based on accuracy, precision, recall, and F1 scores. The results indicate that the YOLOv11X model is more suitable for cases where reducing false negatives (FN) is critical. However, when minimizing false positives (FP) is a priority, YOLOv11m or YOLOv11s models are more appropriate. For an overall balanced performance, the YOLOv11X model is preferable for the braked condition, while YOLOv11s or YOLOv11m models are more suitable for the evacuated condition. Ultimately, this study demonstrates that the detection of braking mechanisms in trains with high accuracy using YOLOv11 models can significantly contribute to reducing train accidents, thereby preventing loss of life and costly incidents
Railway transportation stands out as a safe and efficient mode of transport for both freight and passengers. However, failures in train braking systems pose financial and safety risks. In this study, it is proposed to use the recently introduced YOLOv11 (You Only Look Once) models to monitor the mechanical brakes used in wagons. This approach aims to prevent the locking of wheels due to stuck mechanical brakes while the train is in motion, thereby avoiding continuous metal friction and mitigating risks such as Flatted wheels, wheel fractures, rail damage, and fire hazards. Such failures not only cause material damage and operational disruptions but also lead to potential loss of life and costly accidents. Traditional methods of manually inspecting brake cylinders provide limited safety and are inefficient in terms of operational effectiveness. Therefore, the automatic monitoring and fault detection of brake cylinders have become crucial. To achieve this, a dataset consisting of three different classes—braked, empty, and evacuated—was used. Using this dataset, YOLOv11n, YOLOv11s, YOLOv11m, YOLOv11l, and YOLOv11x models were trained. The performance of these trained models was evaluated based on accuracy, precision, recall, and F1 scores. The results indicate that the YOLOv11X model is more suitable for cases where reducing false negatives (FN) is critical. However, when minimizing false positives (FP) is a priority, YOLOv11m or YOLOv11s models are more appropriate. For an overall balanced performance, the YOLOv11X model is preferable for the braked condition, while YOLOv11s or YOLOv11m models are more suitable for the evacuated condition. Ultimately, this study demonstrates that the detection of braking mechanisms in trains with high accuracy using YOLOv11 models can significantly contribute to reducing train accidents, thereby preventing loss of life and costly incidents.
Primary Language | English |
---|---|
Subjects | Deep Learning, Machine Learning (Other), Artificial Intelligence (Other), Electronic Sensors |
Journal Section | Research Articles |
Authors | |
Publication Date | June 26, 2025 |
Submission Date | March 13, 2025 |
Acceptance Date | April 29, 2025 |
Published in Issue | Year 2025 Volume: 6 Issue: 1 |