Research Article
BibTex RIS Cite

Determination of The Reaction of Violet Plant (Saintpaulia ionantha L.) to Salinity

Year 2025, Volume: 22 Issue: 2, 483 - 495
https://doi.org/10.33462/jotaf.1559211

Abstract

Salinity causes significant crop loss every year. Excessive salinity has different effects on plant nutrition and metabolism. In this experiment, violet plants (Saintpaulia ionantha L.) were used and the experiment was set up in 1.5 kg pots. Plants were grown under laboratory conditions. Water containing different salt concentrations prepared from sodium chloride (S1=control=0 dS m-1, S2=2 dS m-1, S3= 4 dS m-1, S4=6 dS m-1, S5=8 dS m-1 and S6=10 dS m-1) were used. After 2 months, in order to investigate the plant development, leaf area, root fresh-dry weights and leaf fresh-dry weights were measured. In addition, P, K, Ca, Na, Fe, Cu, Zn and Mn contents in the roots and leaves of violet plants were also determined. Considering the obtained data, salt doses did not have a significant effect on leaf area, leaf fresh-dry weights and P, K and Ca values in roots. It was determined that fresh-dry weights of Saintpaulia ionantha L. plant roots and Na, Fe, Cu, Zn and Mn contents in roots changed significantly (P<0.01) with salt applications. It was found that salt applications decreased root fresh-dry weights. Na contents in plant roots were highest in 4 and 10 dS m-1 salt applications. Mn, Zn and Fe contents in roots increased up to 8 dS m-1 application, and Cu contents up to 10 dS m-1 application. When the nutrient elements in the leaves were examined, it was determined that Ca and Na contents increased significantly (P<0.01) and K contents increased but were not significant. It was found that micro elements (Mn, Zn, Cu and Fe) in plant leaves increased significantly (P<0.01) with salt applications. The microelements increases were determined up to 10 dS m-1 application in Zn, up to 8 dS m-1 application in Mn and Fe, and up to 4 dS m-1 application in Cu contents. According to the results obtained, it was determined that the violet plant is tolerant to salt applications up to a certain level.

Ethical Statement

There is no need to obtain permission from the ethics committee for this study.

References

  • Acosta-Motos, J. R., Ortuño, M. F., Álvarez, S., López-Climent, M. F., Gómez-Cadenas, A. and Sánchez-Blanco, M. J. (2016). Changes in growth, physiological parameters and the hormonal status of Myrtus communis L. plants irrigated with water with different chemical compositions. Journal of Plant Physiology, 191: 12–21.
  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J. and Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1): 18.
  • Ahsan, M., Zulfiqar, H., Farooq, M. A., Ali, S., Tufail, A., Kanwal, S., Shaheen M.R., Sajid M., Gul H., Jamal A., Saeed M.F., Mancinelli R. and Radicetti, E. (2022). Strigolactone (GR24) Application positively regulates photosynthetic attributes, stress-related metabolites and antioxidant enzymatic activities of ornamental sunflower (Helianthus annuus cv. Vincent’s Choice) under salinity stress. Agriculture, 13(1): 50.
  • Akcal, A. and Kaynas, K. (2021). The effects of salinity stress on plant growth performance and flowering characteristics of cyclamen (Cyclamen hederifolium Aiton.). Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 2(4): 109-116 (In Turkish).
  • Alarcon, J., Sanchez-Blanco, M. J., Bolarin, M. C. and Torrecillas, A. (1993). Water relations and osmotic adjustment in Lycopersicon esculentum and L. pennellii during short term salt exposure and recovery. Physiologia Plantarum, 89: 441-447.
  • Altuner, F., Oral, E. and Baran, İ. (2022). Determination of the effects of salt (NaCl) stress on germination in some barley (Hordeum vulgare L.) varieties. Journal of Tekirdag Agricultural Faculty, 19(1): 39-50.
  • Álvarez, S. and Sánchez-Blanco, M. J. (2014). Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biology, 6: 757–764.
  • Anonymous (2004). https://scholar.google.com/scholar? hl=tr&as_sdt=0%2C5&q=Saintpaulia+ionantha+Wendl.+african+violet+salt+stress &btnG=https://scholar.google.com/scholar? hl=tr&as_sdt=0%2C5&q=VIOLET+PLANT+%28Saintpaulia+ionantha+L.%29+TO+SALINITY&btnG= (Acsessed Date: 03.07.2024).
  • Atal, H. L., Srilakshmi, D., Debbarma, K., Jena, L. and Ichancha, M. (2022). A Review on breeding in ornamental crops for abiotic stress tolerance. International Journal of Plant & Soil Science, 34(20): 134-138.
  • Bayat, H., Alirezaie, M. and Neamati, H. (2012). Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L.) under salinity stress. Journal of Stress Physiology & Biochemistry, 8(1): 258-267.
  • Beyaz, R. and Kazankaya, A. (2024). Effect of NaCl-induced salt stress on germination and initial seedling growth of Lotus corniculatus L. cv.'Leo'. Journal of Tekirdag Agricultural Faculty, 21(1): 24-34.
  • Bicer, A. (2016). Effects of putrescine on growth and some physiological parameters of maize plant grown at saline conditions. (MSc. Thesis). Harran University, Institute of Science, Şanlıurfa, Türkiye (In Turkish).
  • Bischoff, J. and Werner, H. (1999). Salt/Salinity Tolerance of Common Horticultural Crops in South Dakota: Garden and Vegetable/Woody Fruit Crops. South Dakota State University, SDSU Extension, p. 84.
  • Blum A. (1986). Salinity Resistance, In: Plant Breeding for Stress Environments, 1163- 1169, CRC Press, Boca Raton.
  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soil. Agronomy Journal, 43: 434-437.
  • Boydak, E., Demirkıran, A. R. and Aslan, S. (2025). Effect of different doses of orange biochar material on relieving NaCl salt stress: Peanut (Arachis hypogaea L.) applications, Turkish Journal of Agricultural and Natural Sciences, 12(1), 62-73.
  • Cabrera, R. I., Solís-Pérez, A. R. and Sloan, J. J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience, 44(7): 2000-2008.
  • Carter, C. T. and Grieve, C. M. (2008). Mineral nutrition, growth, and germination of Antirrhinum majus L. (Snapdragon) when produced under increasingly saline conditions. HortScience, 43: 710–718.
  • Cassaniti, C., Leonardi, C. and Flowers, T. J. (2009a). The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae, 122: 586–593. doi: 10.1016/j. scienta.2009.06.032.
  • Cassaniti, C., Li Rosi, A. and Romano, D. (2009b). Salt tolerance of ornamental shrubs mainly used in the Mediterranean landscape. In International Symposium on Strategies towards Sustainability of Protected Cultivation in Mild Winter Climate. ISHS Acta Horticulturae 807, p. 675-680.
  • Cassaniti, C., Romano, D. and Flowers, T. J. (2012). The Response of Ornamental Plants to Saline Irrigation Water (Chapter 8). Book: Irrigation: Water Management, Pollution and Alternative Strategies, p. 131, 158.
  • Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M. and De Pascale, S. (2016). Effects of high salinity and the exogenous application of an osmolyte on growth, photosynthesis, and mineral composition in two ornamental shrubs. The Journal of Horticultural Science and Biotechnology, 91: 14–22. doi: 10.1080/14620316.2015.1110988.
  • Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M. I. and De Pascale, S. (2016). Effects of high salinity and the exogenous of an osmolyte on growth, phosynthesis and mineral composition in two ornamental shrubs. The Journal of Horticultural Science and Biotechnology, 91: 14–22.
  • De Herralde, F., Biel, C., Save, R., Morales, M. A., Torrecillas, A., Alarcon, J. J. and Sánchez-Blanco, M. J. (1998). Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science, 139(1): 9-17.
  • Demirkiran, A. R. and Sohrabi, M. (2024). The Application of Nanotechnology on Plant Nutrition and Agriculture: A Review. Journal of Agriculture, 7(1), 100-112.
  • Dhakar, S., Soni, A. and Kumari, P. (2017). Breeding for abiotic stress tolerance in ornamental crops: a review. Chemical Science Review and Letters, 6(23): 1549-1554.
  • Dodd, I. C. (2005). Root-to-shoot signalling: Assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant Soil, 74: 257–275.
  • El-Serafy, R. S., El-Sheshtawy, A. N. A., Atteya, A. K., Al-Hashimi, A., Abbasi, A. M. and Al-Ashkar, I. (2021). Seed priming with silicon as a potential to increase salt stress tolerance in Lathyrus odoratus. Plants, 10(10): 2140.
  • Eom, S. H., Setter, T. L., DiTommaso, A. and Weston, L. A. (2007). Differential growth response to salt stress among selected ornamentals. Journal of Plant Nutrition, 30(7): 1109-1126.
  • FAO (1990). Micronutrient. Assessment at the country level: an international study. FAO soil bulletin by Mikko Sillanpaa. Rome, Italy.
  • Farooq, M., Uzma, J. and Mamidala, P. (2024). Salicylic acid induced salt tolerance in Gerbera jamesonii, an ornamental plant. Vegetos, 1: 1-8.
  • Ferrante, A., Trivellini, A., Malorgio, F., Carmassi, G., Vernieri, P. and Serra, G. (2011). Effect of seawater aerosol on leaves of six plant species potentially useful for ornamental purposes in coastal areas. Scientia Horticulturae, 128(3): 332-341.
  • García-Caparrós, P., Llanderal, A. and Lao, M. T. (2017). Effects of salinity on growth, water-use efficiency, and nutrient leaching of three containerized ornamental plants. Communications in Soil Science and Plant Analysis, 48(10): 1221-1230.
  • García-Caparrós, P., Llanderal, A., Pestana, M., Correia, P. J. and Lao, M. T. (2016). Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Scientia Horticulturae, 201: 84-91.
  • Grieve, C. M., Poss, J.A. and Amrhein, C. (2006). Response of Matthiola incana to irrigation with saline wastewaters. Hortscience, 41: 119–123.
  • Hawrylak-Nowak, B., Rubinowska, K., Molas, J., Woch, W., Matraszek-Gawron, R. and Szczurowska, A. (2019). Selenium-induced improvements in the ornamental value and salt stress resistance of (Plectranthus scutellarioides L. R. Br. Folia). Horticulturae, 31(1): 213-221.
  • Henschke, M. (2017). Response of ornamental grasses cultivated under salinity stress. Acta Scientiarum Polonorum Hortorum Cultus, 16(1):95-103.
  • Honfi, P., Eisa, E. A., Tilly-Mándy, A., Kohut, I., Ecseri, K. and Mosonyi, I. D. (2023). Salt tolerance of Limonium gmelinii subsp. hungaricum as a potential ornamental plant for secondary salinized soils. Plants, 12(9): 1807.
  • Hooks, T. and Niu, G. (2019). Relative salt tolerance of four herbaceous perennial ornamentals. Horticulturae, 5(2): 36.
  • Hu, Y. and Schmidhalter, U. (1997). Interactive effects of salinity and macronutrient level on wheat. II. Composition. Journal of Plant Nutrition, 20(9): 1169-1182.
  • Hu, Y. and Schmidhalter, U. (2001). Effects of salinity and macronutrient levels on micronutrients in wheat. Journal of Plant Nutrition, 24: 273–28.
  • Hu, Y., von Tucher, S. and Schmidhalter, U. (2000). Spatial distributions and net deposition rates of Fe, Mn and Zn in the elongating leaves of wheat under saline soil conditions. Australian Journal of Plant Physiology, 27: 53–59.
  • Kacar, B. (1972). Bitki ve Toprağın Kimyasal Analizleri II. Bitki Analizleri. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 453 pp. (In Turkish).
  • Karagoz, F. P. and Dursun, A. (2021). Calcium nitrate on growth and ornamental traits at salt-stressed condition in ornamental kale (Brassica oleracea L. var. Acephala). Ornamental Horticulture, 27: 196-203.
  • Karakas, S., Bolat, I. and Dikilitas, M. (2021). The use of halophytic companion plant (Portulaca oleracea L.) on some growth, fruit, and biochemical parameters of strawberry plants under salt stress. Horticulturae, 7(4): 63.
  • Karimian, Z., Samiei, L. and Nabati, J. (2019). Alleviating the salt stress effects in Salvia splendens by humic acid application. Acta Scientiarum Polonorum Hortorum Cultus, 18(5): 73-82.
  • Koksal, N., Alkan-Torun, A., Kulahlioglu, I., Ertargin, E. and Karalar, E. (2016). Ion uptake of marigold under saline growth conditions. Springerplus, 5: 1–12. doi: 10.1186/s40064-016-1815-3.
  • Koksal, N., Kulahlioglu, I., Ertargin, E. and Torun, A. A. (2014). Relationship between salinity stress and ion uptake of hyacinth (Hyacinthus orientalis). Turkish Journal of Agricultural and Natural Science, 1: 578–583.
  • Kolehmainen, J. (2008). Ecology, population genetics and conservation of the African violet (Saintpaulia, Gesneriaceae). PhD. Thesis, University of Helsinki, Finland.
  • Kozminska, A., Al Hassan, M., Kumar, D., Oprica, L., Martinelli, F., Grigore, M. N., Vicente, O. and Boscaiu, M. (2017). Characterizing the effects of salt stress in Calendula officinalis L. Journal of Applied Botany and Food Quality, 90: 323-329.
  • Lewitt J. (1980). Responses of Plants to Environmental Stresses. Vol. II, 2nd ed. Academic Press, New York, pp.607.
  • Li, X., Wan, S., Kang, Y., Chen, X. and Chu, L. 2016. Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents. Agricultural Water Management, 163: 180-189.
  • Liu, Q., Sun, Y., Niu, G., Altland, J., Chen, L. and Jiang, L. (2017). Morphological and physiological responses of ten ornamental taxa to saline water irrigation. HortScience, 52(12): 1816-1822.
  • Malkoc, M. and Aydin, A. (2003). Effect of different salt sources on Zea mays and phaseolus growth and mineral content. Research in Agricultural Sciences. 34(3): 211-216 (In Turkish).
  • Mandhania, S., Madan, S., Sawhney, V. and Haryana, C. C. S. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 50(2): 227-231.
  • Marosz, A. (2004). Effect of soil salinity on nutrient uptake, growth, and decorative value of four ground cover shrubs. Journal of Plant Nutrition, 27(6): 977-989.
  • Marosz, A. and Nowak, J. S. (2008). Effect of salinity stress on growth and macro elements uptake of four tree species. Dendrobiology, 59: 23-29.
  • Mircea, D. M., Li, R., Blasco Giménez, L., Vicente, O., Sestras, A. F., Sestras, R. E., Sestras R.E., Boscaiu M. and Mir, R. (2023). Salt and water stress tolerance in Ipomoea purpurea and Ipomoea tricolor, two ornamentals with invasive potential. Agronomy, 13(9): 2198.
  • Navarro, A., Bañón, S., Conejero, W. and Sánchez-Blanco, M. J. (2008). Ornamental characters, ion accumulation and water status in Arbutus unedo seedlings irrigated with saline water and subsequent relief and transplanting. Environmental and Experimental Botany, 62: 364–370.
  • Navarro, A., Elia, A., Conversa, G., Campi, P. and Mastrorilli, M. (2012). Potted mycorrhizal carnation plant sand saline stress: growth, quality and nutritional plant responses. Scientia Horticulturae, 140: 131–139.
  • Nelson, D. W. and Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 - Chemical and Microbiological Properties, 9: 539-579.
  • Niu, G. and Rodriguez, D. S. (2008). Responses of growth and ion uptake of four rose rootstocks to chloride- or sulfate-dominated salinity. Journal of American Society for Horticultural Science, 133: 663–669.
  • Niu, G., Starman, T. and Byrne, D. (2013). Responses of growth and mineral nutrition of garden roses to saline water irrigation. Hortscience, 48: 756–761.
  • Ntatsi, G., Aliferis, K. A., Rouphael, Y., Napolitano, F., Makris, K., Kalala, G., Katopodis, G. and Savvas, D. (2017). Salinity source alters mineral composition and metabolism of Cichorium spinosum. Environmental and Experimental Botany, 141: 113–123.
  • Olsen, S. R. V., Cole, F. S., Watanable, L. and Dean, A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dep. of Agr. Cir. 939, Washington D.C., U.S.A.
  • Parida, A. and Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60: 324-349.
  • Plaza, B. M., Jiménez, S. and Lao, M. T. (2012a). Influence of salt stress on the nutritional state of Cordyline fruticosa var. Red Edge: chloride, nitrogen and phosphorus. Communications in Soil Science and Plant Analysis, 43: 226–233.
  • Plaza, B. M., Jiménez, S. and Lao, M. T. (2012b). Influence of salt stress on the nutritional state of Cordyline fruticosa var. Red Edge 2: sodium, potassium, calcium and magnesium. Communications in Soil Science and Plant Analysis, 43: 234–242.
  • Pratt, P. F. (1965). Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Ed. C. A. Black. Amer. Soc. Agr. Inc. Pub. Agron. Series No: 9, Madison, Wisconsin, USA.
  • Rahi, T. and Singh, B. (2011). Salinity tolerance in Chrysanthemum morifolium. Journal of Applied Horticulture, 13: 30–36. https://doi.org/10.37855/jah.2011.v13i01.07
  • Richards, L.A. (1954). Diagnosis and improvement of saline and alkaline soils (moisture retention curve), Dept. of Agri. Handbook, 60 pp. USDA.
  • Sabra, A., Daayf, F. and Renault, S. (2012). Differential physiological and biochemical responses of three Echinacea species to salinity stress. Scientia Horticulturae. 135: 23–31. doi: 10.1016/j.scienta.2011.11.024.
  • Salachna, P. and Piechocki, R. (2016). Effects of sodium chloride on growth and mineral nutrition of purpletop vervain. Journal of Ecological Engineering, 17: 148–152.
  • Salachna, P., Zawadzinska, A. and Podsiadlo, C. (2016). Response of Ornithogalum saundersiae Bak. to salinity stress. Acta Scientiarum Polonorum Hortorum Cultus, 15(1): 123-134.
  • Sayyed, A., Gul, H., Ullah, Z. and Hamayun, M. (2014). Effect of salt stress on growth of Tagetes erecta L. Pakhtunkhwa. Journal of Life Science, 2(3-4): 96-106.
  • Shannon M. C. and Grieve, C. M. (1999). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78: 5-38.
  • Simón, M. D., Nieves-Cordones, M. and Nieves, M. (2010). Differences in growth and ornamental parameters between young Chamaerops humilis L. and Washingtonia robusta H. Wendl palm trees in response to salinity. The Journal of Horticultural Science and Biotechnology, 85: 7–11.
  • Soundararajan, P., Sivanesan, I., Jo, E. H. and Jeong, B. R. (2013). Silicon promotes shoot proliferation and shoot growth of Salvia splendens under salt stress in vitro. Horticulture, Environment, and Biotechnology, 54: 311-318.
  • Toscano, S., Ferrante, A., Romano, D. and Tribulato, A. (2021). Interactive effects of drought and saline aerosol stress on morphological and physiological characteristics of two ornamental shrub species. Horticulturae, 7(12): 517.
  • Turkogullari. N., Ayyildiz. L. and Gulser, F. (2013). The effect of salinity on plant growth in seasonal flowers. Iğdır University Journal of Institute of Science and Technology, 3(4): 15-19 (In Turkish).
  • U.S. Salinity Laboratory (1954). Diagnosis improvement of saline and alkaline soils. Agri. Handbook, No: 60, USDA.
  • Valdés, R., Franco, J. A., Sánchez-Blanco, M. J. and Bañón, S. (2015). Relationships among electrical conductivity measurements during saline irrigation of potted Osteospermum and their effects on plant growth. The Journal of Horticultural Science and Biotechnology, 90, 571–577.
  • Valdez-Aguilar, L. A., Grieve, C. M., Razak-Mahar, A., McGiffen, M. M. and Merhaut, D. J. (2011). Growth and ion distribution is affected by irrigation with saline water in selected landscape species grown in two consecutive growing seasons: Spring-summer and fall-winter. Hortscience, 46: 632–642.
  • Veatch-Blohm, M. E., Sawch, D., Elia, N. and Pinciotti, D. (2014). Salinity tolerance of three commonly planted narcissus cultivars. HortScience, 49: 1158–1164. doi: 10.21273/HORTSCI.49.9.115.
  • Wild A. (1988). Russell’s soil conditions and plant growth. 11th edn. Harlow, Longman.
  • Wu, S., Sun, Y. and Niu, G. (2016). Morphological and physiological responses of nine ornamental species to saline irrigation water. HortScience, 51(3): 285-290.
  • Yasemin, S., Koksal, N., Ozkaya, A. and Yener, M. (2017). Growth and physiological responses of ‘Chrysanthemum paludosum’ under salinity stress. Journal of Biological and Environmental Sciences, 11(32): 59-66.
  • Yu, X., Her, Y., Chang, A., Song, J. H., Campoverde, E. V. and Schaffer, B. (2021). Assessing the effects of irrigation water salinity on two ornamental crops by remote spectral imaging. Agronomy, 11(2): 375.
  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2): 66-71.

Menekşe Bitkisinin (Saintpaulia ionantha L.) Tuza Reaksiyonunun Belirlenmesi

Year 2025, Volume: 22 Issue: 2, 483 - 495
https://doi.org/10.33462/jotaf.1559211

Abstract

Tuzluluk her yıl önemli miktarda ürün kaybına neden olmaktadır. Aşırı tuzluluğun bitkinin beslenmesi ve metabolizması üzerinde farklı etkileri vardır. Bu denemede menekşe bitkileri (Saintpaulia ionantha L.) kullanılmış olup, deneme 1,5 kg’lık saksılarda kurulmuştur. Bitkiler laboratuvar şartlarında yetiştirilmiştir. Sodyum klorürden hazırlanan farklı tuz konsantrasyonlarını içeren su (S1=kontrol=0 dS m-1), S2=2 dS m-1, S3= 4 dS m-1, S4=6 dS m-1, S5=8 dS m-1 ve S6=10 dS m-1) kullanılmış olup, 2 ay sonra bitkinin gelişimini incelemek amacıyla, yaprak alanı, kök taze-kuru ağırlıkları ile yaprak taze-kuru ağırlıkları ölçülmüştür. Ayrıca, menekşe bitkisinin köklerinde ve yapraklarındaki P, K, Ca, Na, Fe, Cu, Zn ve Mn içerikleri de belirlenmiştir. Elde edilen veriler dikkate alındığında, yaprak alanı, yaprak taze-kuru ağırlıkları ile kökteki P, K ve Ca değerleri üzerine tuz dozları önemli bir etkide bulunmamıştır. Menekşe köklerinin taze-kuru ağırlıkları ile köklerdeki Na, Fe, Cu, Zn ve Mn içeriklerinin tuz uygulamalarıyla önemli düzeyde (P<0.01) değiştiği belirlenmiştir. Tuz uygulamanın kök taze-kuru ağırlıklarını düşürdüğü tespit dilmiştir. Tuzun 4 dS m-1 ve 10 dS m-1 uygulamalarında bitki köklerindeki Na içerikleri en yüksek çıkmıştır. Köklerdeki Mn, Zn ve Fe içerikleri 8 dS m-1 uygulamasına kadar, Cu içerikleri ise 10 dS.m-1 uygulamasına kadar artmıştır. Yapraktaki besin elementleri incelendiğinde, Ca ve Na içeriklerinin önemli düzeyde (P<0.01) arttığı, K içeriklerinin de arttığı, fakat bu artışın önemli olmadığı belirlenmiştir. Tuz uygulamalarıyla bitki yapraklarındaki mikro elementlerin (Mn, Zn, Cu ve Fe) önemli düzeyde (P<0.01) arttığı tespit edilmiştir. Mikro elementlerdeki bu artışların, çinkoda 10 dS m-1 uygulamasına kadar, mangan ve demirde 8 dS m-1 uygulamasına kadar, bakırda 4 dS m-1 uygulamasına kadar olduğu tespit edilmiştir. Elde edilen sonuçlara göre, menekşe bitkisinin belirli bir düzeye kadar tuz uygulamalarına toleransı olduğu belirlenmiştir.

Ethical Statement

Bu çalışma için etik kuruldan izin alınmasına gerek yoktur.

References

  • Acosta-Motos, J. R., Ortuño, M. F., Álvarez, S., López-Climent, M. F., Gómez-Cadenas, A. and Sánchez-Blanco, M. J. (2016). Changes in growth, physiological parameters and the hormonal status of Myrtus communis L. plants irrigated with water with different chemical compositions. Journal of Plant Physiology, 191: 12–21.
  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J. and Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1): 18.
  • Ahsan, M., Zulfiqar, H., Farooq, M. A., Ali, S., Tufail, A., Kanwal, S., Shaheen M.R., Sajid M., Gul H., Jamal A., Saeed M.F., Mancinelli R. and Radicetti, E. (2022). Strigolactone (GR24) Application positively regulates photosynthetic attributes, stress-related metabolites and antioxidant enzymatic activities of ornamental sunflower (Helianthus annuus cv. Vincent’s Choice) under salinity stress. Agriculture, 13(1): 50.
  • Akcal, A. and Kaynas, K. (2021). The effects of salinity stress on plant growth performance and flowering characteristics of cyclamen (Cyclamen hederifolium Aiton.). Lapseki Meslek Yüksekokulu Uygulamalı Araştırmalar Dergisi, 2(4): 109-116 (In Turkish).
  • Alarcon, J., Sanchez-Blanco, M. J., Bolarin, M. C. and Torrecillas, A. (1993). Water relations and osmotic adjustment in Lycopersicon esculentum and L. pennellii during short term salt exposure and recovery. Physiologia Plantarum, 89: 441-447.
  • Altuner, F., Oral, E. and Baran, İ. (2022). Determination of the effects of salt (NaCl) stress on germination in some barley (Hordeum vulgare L.) varieties. Journal of Tekirdag Agricultural Faculty, 19(1): 39-50.
  • Álvarez, S. and Sánchez-Blanco, M. J. (2014). Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biology, 6: 757–764.
  • Anonymous (2004). https://scholar.google.com/scholar? hl=tr&as_sdt=0%2C5&q=Saintpaulia+ionantha+Wendl.+african+violet+salt+stress &btnG=https://scholar.google.com/scholar? hl=tr&as_sdt=0%2C5&q=VIOLET+PLANT+%28Saintpaulia+ionantha+L.%29+TO+SALINITY&btnG= (Acsessed Date: 03.07.2024).
  • Atal, H. L., Srilakshmi, D., Debbarma, K., Jena, L. and Ichancha, M. (2022). A Review on breeding in ornamental crops for abiotic stress tolerance. International Journal of Plant & Soil Science, 34(20): 134-138.
  • Bayat, H., Alirezaie, M. and Neamati, H. (2012). Impact of exogenous salicylic acid on growth and ornamental characteristics of calendula (Calendula officinalis L.) under salinity stress. Journal of Stress Physiology & Biochemistry, 8(1): 258-267.
  • Beyaz, R. and Kazankaya, A. (2024). Effect of NaCl-induced salt stress on germination and initial seedling growth of Lotus corniculatus L. cv.'Leo'. Journal of Tekirdag Agricultural Faculty, 21(1): 24-34.
  • Bicer, A. (2016). Effects of putrescine on growth and some physiological parameters of maize plant grown at saline conditions. (MSc. Thesis). Harran University, Institute of Science, Şanlıurfa, Türkiye (In Turkish).
  • Bischoff, J. and Werner, H. (1999). Salt/Salinity Tolerance of Common Horticultural Crops in South Dakota: Garden and Vegetable/Woody Fruit Crops. South Dakota State University, SDSU Extension, p. 84.
  • Blum A. (1986). Salinity Resistance, In: Plant Breeding for Stress Environments, 1163- 1169, CRC Press, Boca Raton.
  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soil. Agronomy Journal, 43: 434-437.
  • Boydak, E., Demirkıran, A. R. and Aslan, S. (2025). Effect of different doses of orange biochar material on relieving NaCl salt stress: Peanut (Arachis hypogaea L.) applications, Turkish Journal of Agricultural and Natural Sciences, 12(1), 62-73.
  • Cabrera, R. I., Solís-Pérez, A. R. and Sloan, J. J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience, 44(7): 2000-2008.
  • Carter, C. T. and Grieve, C. M. (2008). Mineral nutrition, growth, and germination of Antirrhinum majus L. (Snapdragon) when produced under increasingly saline conditions. HortScience, 43: 710–718.
  • Cassaniti, C., Leonardi, C. and Flowers, T. J. (2009a). The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae, 122: 586–593. doi: 10.1016/j. scienta.2009.06.032.
  • Cassaniti, C., Li Rosi, A. and Romano, D. (2009b). Salt tolerance of ornamental shrubs mainly used in the Mediterranean landscape. In International Symposium on Strategies towards Sustainability of Protected Cultivation in Mild Winter Climate. ISHS Acta Horticulturae 807, p. 675-680.
  • Cassaniti, C., Romano, D. and Flowers, T. J. (2012). The Response of Ornamental Plants to Saline Irrigation Water (Chapter 8). Book: Irrigation: Water Management, Pollution and Alternative Strategies, p. 131, 158.
  • Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M. and De Pascale, S. (2016). Effects of high salinity and the exogenous application of an osmolyte on growth, photosynthesis, and mineral composition in two ornamental shrubs. The Journal of Horticultural Science and Biotechnology, 91: 14–22. doi: 10.1080/14620316.2015.1110988.
  • Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M. I. and De Pascale, S. (2016). Effects of high salinity and the exogenous of an osmolyte on growth, phosynthesis and mineral composition in two ornamental shrubs. The Journal of Horticultural Science and Biotechnology, 91: 14–22.
  • De Herralde, F., Biel, C., Save, R., Morales, M. A., Torrecillas, A., Alarcon, J. J. and Sánchez-Blanco, M. J. (1998). Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science, 139(1): 9-17.
  • Demirkiran, A. R. and Sohrabi, M. (2024). The Application of Nanotechnology on Plant Nutrition and Agriculture: A Review. Journal of Agriculture, 7(1), 100-112.
  • Dhakar, S., Soni, A. and Kumari, P. (2017). Breeding for abiotic stress tolerance in ornamental crops: a review. Chemical Science Review and Letters, 6(23): 1549-1554.
  • Dodd, I. C. (2005). Root-to-shoot signalling: Assessing the roles of ‘up’ in the up and down world of long-distance signalling in planta. Plant Soil, 74: 257–275.
  • El-Serafy, R. S., El-Sheshtawy, A. N. A., Atteya, A. K., Al-Hashimi, A., Abbasi, A. M. and Al-Ashkar, I. (2021). Seed priming with silicon as a potential to increase salt stress tolerance in Lathyrus odoratus. Plants, 10(10): 2140.
  • Eom, S. H., Setter, T. L., DiTommaso, A. and Weston, L. A. (2007). Differential growth response to salt stress among selected ornamentals. Journal of Plant Nutrition, 30(7): 1109-1126.
  • FAO (1990). Micronutrient. Assessment at the country level: an international study. FAO soil bulletin by Mikko Sillanpaa. Rome, Italy.
  • Farooq, M., Uzma, J. and Mamidala, P. (2024). Salicylic acid induced salt tolerance in Gerbera jamesonii, an ornamental plant. Vegetos, 1: 1-8.
  • Ferrante, A., Trivellini, A., Malorgio, F., Carmassi, G., Vernieri, P. and Serra, G. (2011). Effect of seawater aerosol on leaves of six plant species potentially useful for ornamental purposes in coastal areas. Scientia Horticulturae, 128(3): 332-341.
  • García-Caparrós, P., Llanderal, A. and Lao, M. T. (2017). Effects of salinity on growth, water-use efficiency, and nutrient leaching of three containerized ornamental plants. Communications in Soil Science and Plant Analysis, 48(10): 1221-1230.
  • García-Caparrós, P., Llanderal, A., Pestana, M., Correia, P. J. and Lao, M. T. (2016). Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Scientia Horticulturae, 201: 84-91.
  • Grieve, C. M., Poss, J.A. and Amrhein, C. (2006). Response of Matthiola incana to irrigation with saline wastewaters. Hortscience, 41: 119–123.
  • Hawrylak-Nowak, B., Rubinowska, K., Molas, J., Woch, W., Matraszek-Gawron, R. and Szczurowska, A. (2019). Selenium-induced improvements in the ornamental value and salt stress resistance of (Plectranthus scutellarioides L. R. Br. Folia). Horticulturae, 31(1): 213-221.
  • Henschke, M. (2017). Response of ornamental grasses cultivated under salinity stress. Acta Scientiarum Polonorum Hortorum Cultus, 16(1):95-103.
  • Honfi, P., Eisa, E. A., Tilly-Mándy, A., Kohut, I., Ecseri, K. and Mosonyi, I. D. (2023). Salt tolerance of Limonium gmelinii subsp. hungaricum as a potential ornamental plant for secondary salinized soils. Plants, 12(9): 1807.
  • Hooks, T. and Niu, G. (2019). Relative salt tolerance of four herbaceous perennial ornamentals. Horticulturae, 5(2): 36.
  • Hu, Y. and Schmidhalter, U. (1997). Interactive effects of salinity and macronutrient level on wheat. II. Composition. Journal of Plant Nutrition, 20(9): 1169-1182.
  • Hu, Y. and Schmidhalter, U. (2001). Effects of salinity and macronutrient levels on micronutrients in wheat. Journal of Plant Nutrition, 24: 273–28.
  • Hu, Y., von Tucher, S. and Schmidhalter, U. (2000). Spatial distributions and net deposition rates of Fe, Mn and Zn in the elongating leaves of wheat under saline soil conditions. Australian Journal of Plant Physiology, 27: 53–59.
  • Kacar, B. (1972). Bitki ve Toprağın Kimyasal Analizleri II. Bitki Analizleri. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 453 pp. (In Turkish).
  • Karagoz, F. P. and Dursun, A. (2021). Calcium nitrate on growth and ornamental traits at salt-stressed condition in ornamental kale (Brassica oleracea L. var. Acephala). Ornamental Horticulture, 27: 196-203.
  • Karakas, S., Bolat, I. and Dikilitas, M. (2021). The use of halophytic companion plant (Portulaca oleracea L.) on some growth, fruit, and biochemical parameters of strawberry plants under salt stress. Horticulturae, 7(4): 63.
  • Karimian, Z., Samiei, L. and Nabati, J. (2019). Alleviating the salt stress effects in Salvia splendens by humic acid application. Acta Scientiarum Polonorum Hortorum Cultus, 18(5): 73-82.
  • Koksal, N., Alkan-Torun, A., Kulahlioglu, I., Ertargin, E. and Karalar, E. (2016). Ion uptake of marigold under saline growth conditions. Springerplus, 5: 1–12. doi: 10.1186/s40064-016-1815-3.
  • Koksal, N., Kulahlioglu, I., Ertargin, E. and Torun, A. A. (2014). Relationship between salinity stress and ion uptake of hyacinth (Hyacinthus orientalis). Turkish Journal of Agricultural and Natural Science, 1: 578–583.
  • Kolehmainen, J. (2008). Ecology, population genetics and conservation of the African violet (Saintpaulia, Gesneriaceae). PhD. Thesis, University of Helsinki, Finland.
  • Kozminska, A., Al Hassan, M., Kumar, D., Oprica, L., Martinelli, F., Grigore, M. N., Vicente, O. and Boscaiu, M. (2017). Characterizing the effects of salt stress in Calendula officinalis L. Journal of Applied Botany and Food Quality, 90: 323-329.
  • Lewitt J. (1980). Responses of Plants to Environmental Stresses. Vol. II, 2nd ed. Academic Press, New York, pp.607.
  • Li, X., Wan, S., Kang, Y., Chen, X. and Chu, L. 2016. Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents. Agricultural Water Management, 163: 180-189.
  • Liu, Q., Sun, Y., Niu, G., Altland, J., Chen, L. and Jiang, L. (2017). Morphological and physiological responses of ten ornamental taxa to saline water irrigation. HortScience, 52(12): 1816-1822.
  • Malkoc, M. and Aydin, A. (2003). Effect of different salt sources on Zea mays and phaseolus growth and mineral content. Research in Agricultural Sciences. 34(3): 211-216 (In Turkish).
  • Mandhania, S., Madan, S., Sawhney, V. and Haryana, C. C. S. (2006). Antioxidant defense mechanism under salt stress in wheat seedlings. Biologia Plantarum, 50(2): 227-231.
  • Marosz, A. (2004). Effect of soil salinity on nutrient uptake, growth, and decorative value of four ground cover shrubs. Journal of Plant Nutrition, 27(6): 977-989.
  • Marosz, A. and Nowak, J. S. (2008). Effect of salinity stress on growth and macro elements uptake of four tree species. Dendrobiology, 59: 23-29.
  • Mircea, D. M., Li, R., Blasco Giménez, L., Vicente, O., Sestras, A. F., Sestras, R. E., Sestras R.E., Boscaiu M. and Mir, R. (2023). Salt and water stress tolerance in Ipomoea purpurea and Ipomoea tricolor, two ornamentals with invasive potential. Agronomy, 13(9): 2198.
  • Navarro, A., Bañón, S., Conejero, W. and Sánchez-Blanco, M. J. (2008). Ornamental characters, ion accumulation and water status in Arbutus unedo seedlings irrigated with saline water and subsequent relief and transplanting. Environmental and Experimental Botany, 62: 364–370.
  • Navarro, A., Elia, A., Conversa, G., Campi, P. and Mastrorilli, M. (2012). Potted mycorrhizal carnation plant sand saline stress: growth, quality and nutritional plant responses. Scientia Horticulturae, 140: 131–139.
  • Nelson, D. W. and Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 - Chemical and Microbiological Properties, 9: 539-579.
  • Niu, G. and Rodriguez, D. S. (2008). Responses of growth and ion uptake of four rose rootstocks to chloride- or sulfate-dominated salinity. Journal of American Society for Horticultural Science, 133: 663–669.
  • Niu, G., Starman, T. and Byrne, D. (2013). Responses of growth and mineral nutrition of garden roses to saline water irrigation. Hortscience, 48: 756–761.
  • Ntatsi, G., Aliferis, K. A., Rouphael, Y., Napolitano, F., Makris, K., Kalala, G., Katopodis, G. and Savvas, D. (2017). Salinity source alters mineral composition and metabolism of Cichorium spinosum. Environmental and Experimental Botany, 141: 113–123.
  • Olsen, S. R. V., Cole, F. S., Watanable, L. and Dean, A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dep. of Agr. Cir. 939, Washington D.C., U.S.A.
  • Parida, A. and Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60: 324-349.
  • Plaza, B. M., Jiménez, S. and Lao, M. T. (2012a). Influence of salt stress on the nutritional state of Cordyline fruticosa var. Red Edge: chloride, nitrogen and phosphorus. Communications in Soil Science and Plant Analysis, 43: 226–233.
  • Plaza, B. M., Jiménez, S. and Lao, M. T. (2012b). Influence of salt stress on the nutritional state of Cordyline fruticosa var. Red Edge 2: sodium, potassium, calcium and magnesium. Communications in Soil Science and Plant Analysis, 43: 234–242.
  • Pratt, P. F. (1965). Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Ed. C. A. Black. Amer. Soc. Agr. Inc. Pub. Agron. Series No: 9, Madison, Wisconsin, USA.
  • Rahi, T. and Singh, B. (2011). Salinity tolerance in Chrysanthemum morifolium. Journal of Applied Horticulture, 13: 30–36. https://doi.org/10.37855/jah.2011.v13i01.07
  • Richards, L.A. (1954). Diagnosis and improvement of saline and alkaline soils (moisture retention curve), Dept. of Agri. Handbook, 60 pp. USDA.
  • Sabra, A., Daayf, F. and Renault, S. (2012). Differential physiological and biochemical responses of three Echinacea species to salinity stress. Scientia Horticulturae. 135: 23–31. doi: 10.1016/j.scienta.2011.11.024.
  • Salachna, P. and Piechocki, R. (2016). Effects of sodium chloride on growth and mineral nutrition of purpletop vervain. Journal of Ecological Engineering, 17: 148–152.
  • Salachna, P., Zawadzinska, A. and Podsiadlo, C. (2016). Response of Ornithogalum saundersiae Bak. to salinity stress. Acta Scientiarum Polonorum Hortorum Cultus, 15(1): 123-134.
  • Sayyed, A., Gul, H., Ullah, Z. and Hamayun, M. (2014). Effect of salt stress on growth of Tagetes erecta L. Pakhtunkhwa. Journal of Life Science, 2(3-4): 96-106.
  • Shannon M. C. and Grieve, C. M. (1999). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78: 5-38.
  • Simón, M. D., Nieves-Cordones, M. and Nieves, M. (2010). Differences in growth and ornamental parameters between young Chamaerops humilis L. and Washingtonia robusta H. Wendl palm trees in response to salinity. The Journal of Horticultural Science and Biotechnology, 85: 7–11.
  • Soundararajan, P., Sivanesan, I., Jo, E. H. and Jeong, B. R. (2013). Silicon promotes shoot proliferation and shoot growth of Salvia splendens under salt stress in vitro. Horticulture, Environment, and Biotechnology, 54: 311-318.
  • Toscano, S., Ferrante, A., Romano, D. and Tribulato, A. (2021). Interactive effects of drought and saline aerosol stress on morphological and physiological characteristics of two ornamental shrub species. Horticulturae, 7(12): 517.
  • Turkogullari. N., Ayyildiz. L. and Gulser, F. (2013). The effect of salinity on plant growth in seasonal flowers. Iğdır University Journal of Institute of Science and Technology, 3(4): 15-19 (In Turkish).
  • U.S. Salinity Laboratory (1954). Diagnosis improvement of saline and alkaline soils. Agri. Handbook, No: 60, USDA.
  • Valdés, R., Franco, J. A., Sánchez-Blanco, M. J. and Bañón, S. (2015). Relationships among electrical conductivity measurements during saline irrigation of potted Osteospermum and their effects on plant growth. The Journal of Horticultural Science and Biotechnology, 90, 571–577.
  • Valdez-Aguilar, L. A., Grieve, C. M., Razak-Mahar, A., McGiffen, M. M. and Merhaut, D. J. (2011). Growth and ion distribution is affected by irrigation with saline water in selected landscape species grown in two consecutive growing seasons: Spring-summer and fall-winter. Hortscience, 46: 632–642.
  • Veatch-Blohm, M. E., Sawch, D., Elia, N. and Pinciotti, D. (2014). Salinity tolerance of three commonly planted narcissus cultivars. HortScience, 49: 1158–1164. doi: 10.21273/HORTSCI.49.9.115.
  • Wild A. (1988). Russell’s soil conditions and plant growth. 11th edn. Harlow, Longman.
  • Wu, S., Sun, Y. and Niu, G. (2016). Morphological and physiological responses of nine ornamental species to saline irrigation water. HortScience, 51(3): 285-290.
  • Yasemin, S., Koksal, N., Ozkaya, A. and Yener, M. (2017). Growth and physiological responses of ‘Chrysanthemum paludosum’ under salinity stress. Journal of Biological and Environmental Sciences, 11(32): 59-66.
  • Yu, X., Her, Y., Chang, A., Song, J. H., Campoverde, E. V. and Schaffer, B. (2021). Assessing the effects of irrigation water salinity on two ornamental crops by remote spectral imaging. Agronomy, 11(2): 375.
  • Zhu, J. K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2): 66-71.
There are 89 citations in total.

Details

Primary Language English
Subjects Horticultural Production (Other), Plant Nutrition and Soil Fertility
Journal Section Articles
Authors

Ali Rıza Demirkıran 0000-0002-0086-0137

Gülcan Demir Polat 0009-0008-5889-5667

Early Pub Date May 8, 2025
Publication Date
Submission Date October 2, 2024
Acceptance Date April 11, 2025
Published in Issue Year 2025 Volume: 22 Issue: 2

Cite

APA Demirkıran, A. R., & Demir Polat, G. (2025). Determination of The Reaction of Violet Plant (Saintpaulia ionantha L.) to Salinity. Tekirdağ Ziraat Fakültesi Dergisi, 22(2), 483-495. https://doi.org/10.33462/jotaf.1559211
AMA Demirkıran AR, Demir Polat G. Determination of The Reaction of Violet Plant (Saintpaulia ionantha L.) to Salinity. JOTAF. May 2025;22(2):483-495. doi:10.33462/jotaf.1559211
Chicago Demirkıran, Ali Rıza, and Gülcan Demir Polat. “Determination of The Reaction of Violet Plant (Saintpaulia Ionantha L.) to Salinity”. Tekirdağ Ziraat Fakültesi Dergisi 22, no. 2 (May 2025): 483-95. https://doi.org/10.33462/jotaf.1559211.
EndNote Demirkıran AR, Demir Polat G (May 1, 2025) Determination of The Reaction of Violet Plant (Saintpaulia ionantha L.) to Salinity. Tekirdağ Ziraat Fakültesi Dergisi 22 2 483–495.
IEEE A. R. Demirkıran and G. Demir Polat, “Determination of The Reaction of Violet Plant (Saintpaulia ionantha L.) to Salinity”, JOTAF, vol. 22, no. 2, pp. 483–495, 2025, doi: 10.33462/jotaf.1559211.
ISNAD Demirkıran, Ali Rıza - Demir Polat, Gülcan. “Determination of The Reaction of Violet Plant (Saintpaulia Ionantha L.) to Salinity”. Tekirdağ Ziraat Fakültesi Dergisi 22/2 (May 2025), 483-495. https://doi.org/10.33462/jotaf.1559211.
JAMA Demirkıran AR, Demir Polat G. Determination of The Reaction of Violet Plant (Saintpaulia ionantha L.) to Salinity. JOTAF. 2025;22:483–495.
MLA Demirkıran, Ali Rıza and Gülcan Demir Polat. “Determination of The Reaction of Violet Plant (Saintpaulia Ionantha L.) to Salinity”. Tekirdağ Ziraat Fakültesi Dergisi, vol. 22, no. 2, 2025, pp. 483-95, doi:10.33462/jotaf.1559211.
Vancouver Demirkıran AR, Demir Polat G. Determination of The Reaction of Violet Plant (Saintpaulia ionantha L.) to Salinity. JOTAF. 2025;22(2):483-95.