Research Article
BibTex RIS Cite

Kinetic Modeling of Vitamin C Degradation in Lettuce (Lactuca sativa L) under Room and Cold Temperatures Using Computer Simulation Analysis

Year 2025, Volume: 12 Issue: 2, 65 - 76, 31.05.2025
https://doi.org/10.18596/jotcsa.1385943

Abstract

This study investigates the kinetic modeling of vitamin C degradation in lettuce under room and cold temperatures of 17.5 °C, 19.5 °C, 21 °C and 6.5 °C, 7.5 °C, and 9.5 °C respectively using computer simulation analysis. High-Performance Liquid Chromatography is employed to assess the vitamin C concentrations in the lettuce samples, utilizing an isocratic elution procedure of flow rate of the mobile phase at 1.2cm3 min-1 and an injection volume of 20 µL. The temperature of the analytical column is kept constant at 25 °C coupled with ultraviolet-visible detection set at 245 nm. The lettuce kept at room and cold temperatures for nine days show a reduction in vitamin C with increasing temperature and time. The degradation of vitamin C followed a first-order kinetic model as the average coefficient of determination (R2-value) for room and cold temperatures tending to 1: 0.922843 and 0.940793 respectively. The integrated law method of first order kinetics gave rate constants of 0.855, 0.925, 0.991 and 0.497, 0.51, 0.546 k (min-1) for the room and cold temperatures with corresponding half-lives of 0.8107, 0.7493, 0.6994 and 1.3947, 1.3591, 1.2695 days respectively. A mathematical model is created on the computer and the model's behavior is explored by running the simulation (forecast). The predicted kinetic models formulated gives the best prediction at ln(C) = ln(C0) - 0.497t. The activated energy (EA) yielded values of 10.2220 and 30.4706 kcal/mol for both temperatures respectively. The experimental and computer simulation analysis indicates that lettuce at 6.5 °C retain higher vitamin C concentration.

References

  • 1. Ariahu CC, Abashi DK, Chinma CE. Kinetics of ascorbic acid loss during hot water blanching of fluted pumpkin (Telfairia occidentalis) leaves. J Food Sci Technol [Internet]. 2011 Aug [cited 2025 Mar 29];48(4):454–9. Available from: <URL>
  • 2. Kim MJ, Moon Y, Tou JC, Mou B, Waterland NL. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis [Internet]. 2016 Jun [cited 2025 Mar 29];49:19–34. Available from: <URL>
  • 3. Sadino A, Renggana H, Suwendar S, Apriani R, Nurhandayani Y. HYPNOTIC-SEDATIVE ACTIVITY TEST OF 70% ETHANOL EXTRACT OF LETTUCE (Lactuca sativa L.) IN MALE WHITE MICE SWISS WEBSTER STRAIN. JIFB [Internet]. 2024 Jul 31 [cited 2025 Mar 29];15(2):113– 20. Available from: <URL>
  • 4. Cioroi M. Study on L-ascorbic acid contents from exotic fruits. 2006;
  • 5. Lee HS, Coates GA. Vitamin C in frozen, fresh squeezed, unpasteurized, polyethylene-bottled orange juice: a storage study. Food Chemistry [Internet]. 1999 May [cited 2025 Mar 29];65(2):165–8. Available from: <URL>
  • 6. Johnson Jr, Braddock RJ, Chen CS. Kinetics of Ascorbic Acid Loss and Nonenzymatic Browning in Orange Juice Serum: Experimental Rate Constants. Journal of Food Science [Internet]. 1995 May [cited 2025 Mar 29];60(3):502–5. Available from: <URL>
  • 7. Fellers PJ. Shelf Life and Quality of Freshly Squeezed, Unpasteurized, Polyethylene Bottled Citrus Juice. Journal ‐ of Food Science [Internet]. 1988 Nov [cited 2025 Mar 29];53(6):1699–702. Available from: <URL>
  • 8. Abioye AO, Abioye VF, Ade-Omowaye BI, Adedeji AA. Kinetic modeling of ascorbic acid loss in baobab drink at pasteurization and storage temperatures. IOSR J Environ Sci Toxicol Food Technol. 2013;7(2):17–23.
  • 9. Burdurlu HS, Koca N, Karadeniz F. Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering [Internet]. 2006 May [cited 2025 Mar 29];74(2):211–6. Available from: <URL>
  • 10. Salunkhe DK, Desai BB. Postharvest biotechnology of vegetables. Boca Raton, Fla: CRC Press; 1984. 2 p.
  • 11. Stringer M, Dennis C, editors. Chilled foods: a comprehensive guide. 2. ed. Cambridge: Woodhead [u.a.]; 2000. 486 p. (Woodhead Publishing in food science and technology).
  • 12. Kuljarachanan T, Devahastin S, Chiewchan N. Evolution of antioxidant compounds in lime residues during drying. Food Chemistry [Internet]. 2009 Apr [cited 2025 Mar 29];113(4):944–9. Available from: <URL>
  • 13. Barbosa J, Borges S, Amorim M, Pereira MJ, Oliveira A, Pintado ME, et al. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. Journal of Functional Foods [Internet]. 2015 Aug [cited 2025 Mar 29];17:340–51. Available from: <URL>
  • 14. El-Beltagy A, Gamea GR, Essa AHA. Solar drying characteristics of strawberry. Journal of Food Engineering [Internet]. 2007 Jan [cited 2025 Mar 29];78(2):456–64. Available from: <URL>
  • 15. Santos PHS, Silva MA. Retention of Vitamin C in Drying Processes of Fruits and Vegetables—A Review. Drying Technology [Internet]. 2008 Nov 21 [cited 2025 Mar 29];26(12):1421–37. Available from: <URL>
  • 16. Zhan L, Hu J, Ai Z, Pang L, Li Y, Zhu M. Light exposure during storage preserving soluble sugar and lascorbic acid content of minimally processed romaine lettuce (Lactuca sativa L.var. longifolia). Food Chemistry [Internet]. 2013 Jan [cited 2025 Mar 29];136(1):273–8. Available from: <URL>
  • 17. Martínez-Sánchez A, Tudela JA, Luna C, Allende A, Gil MI. Low oxygen levels and light exposure affect quality of fresh-cut Romaine lettuce. Postharvest Biology and Technology [Internet]. 2011 Jan [cited 2025 Mar 29];59(1):34–42. Available from: <URL>
  • 18. Zhang M, Bhandari B, Fang Z. In: Handbook of Drying of Vegetables and Vegetable Products. 1st ed. Portland: Taylor & Francis Group; 2017. (Advances in Drying Science and Technology).
  • 19. Derossi A, De Pilli T, Fiore AG. Vitamin C kinetic degradation of strawberry juice stored under nonisothermal conditions. LWT - Food Science and Technology [Internet]. 2010 May [cited 2025 Mar 29];43(4):590–5. Available from: <URL>
  • 20. Tadese A, Subramanian P, Woldu A, Pal R. Electrochemical determination and comparison of ascorbic acid in freshly prepared and bottled fruit juices: A cyclic voltammetric study. Journal of Chemical and Pharmaceutical Research. 2014;6(5):880–8. 74 Emenike A, Okoroafor C. JOTCSA. 2025; 12(2):65-76.
  • 21. Gunjan K, Mangla D. Analysis of vitamin C in commercial and natural substances by iodometric titration found in Nimar and Malwa region. J Sci Res Phar. 2012;1(2):8.
  • 22. Iwase H. Use of nucleic acids in the mobile phase for the determination of ascorbic acid in foods by highperformance liquid chromatography with electrochemical detection. Journal of Chromatography A [Internet]. 2000 Jun [cited 2025 Mar 29];881(1–2):327–30. Available from: <URL>
  • 23. Vermeir S, Hertog MLATM, Schenk A, Beullens K, Nicolaï BM, Lammertyn J. Evaluation and optimization of high-throughput enzymatic assays for fast l-ascorbic acid quantification in fruit and vegetables. Analytica Chimica Acta [Internet]. 2008 Jun [cited 2025 Mar 29];618(1):94–101. Available from: <URL>
  • 24. Liao ML, Seib PA. Chemistry of L-ascorbic acid related to foods. Food Chemistry [Internet]. 1988 [cited 2025 Mar 29];30(4):289–312. Available from: <URL>
  • 25. Nwakaudu M, Nkwocha A, Madu I, Enwereji C, Ireaja I. Kinetic modeling of vitamin C (ascorbic acid) degradation in tomato and pawpaw under market storage conditions. International Journal of Current Research. 2015;7(6):16783–8.
  • 26. Awagu E, Ekanem E, Kolo A, Adamu M. Kinetic modeling of vitamin C (ascorbic acid) degradation in blanched commonly consumed salad vegetables using computer simulation analysis. Journal of Applied Chemistry. 2017;10:59–66.
  • 27. Nojavan S, Khalilian F, Kiaie FM, Rahimi A, Arabanian A, Chalavi S. Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. Journal of Food Composition and Analysis [Internet]. 2008 Jun [cited 2025 Mar 29];21(4):300–5. Available from: <URL>
  • 28. Bozan B, Sagdullaev BT, Kozar M, Aripov KhN, Baser KHC. Comparison of ascorbic and citric acid contents inRosa canina L. fruit growing in the Central Asian region. Chem Nat Compd [Internet]. 1998 Nov [cited 2025 Mar 29];34(6):687–9. Available from: <URL>
  • 29. Rahman MS. Food Properties. In: Users’ Handbook. Dhaka: ORC; 2006.
  • 30. Barbara FR, Thomas AR, Brian L. Minitab 17.3.1. Pennsylvania State University; 2017.
  • 31. Silva EM, Da Silva JS, Pena RS, Rogez H. A combined approach to optimize the drying process of flavonoid-rich leaves (Inga edulis) using experimental design and mathematical modelling. Food and Bioproducts Processing [Internet]. 2011 Jan [cited 2025 Mar 29];89(1):39–46. Available from: <URL>
  • 32. Mauri LM, Alzamora SM, Chirife J, Tomio MJ. Review: Kinetic parameters for thiamine degradation in foods and model solutions of high water activity. Int J of Food Sci Tech [Internet]. 1989 Feb [cited 2025 Mar 29];24(1):1– 9. Available from: <URL>
  • 33. Tian J, Chen J, Lv F, Chen S, Chen J, Liu D, et al. Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chemistry [Internet]. 2016 Apr [cited 2025 Mar 29];197:1264–70. Available from: <URL>
Year 2025, Volume: 12 Issue: 2, 65 - 76, 31.05.2025
https://doi.org/10.18596/jotcsa.1385943

Abstract

References

  • 1. Ariahu CC, Abashi DK, Chinma CE. Kinetics of ascorbic acid loss during hot water blanching of fluted pumpkin (Telfairia occidentalis) leaves. J Food Sci Technol [Internet]. 2011 Aug [cited 2025 Mar 29];48(4):454–9. Available from: <URL>
  • 2. Kim MJ, Moon Y, Tou JC, Mou B, Waterland NL. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis [Internet]. 2016 Jun [cited 2025 Mar 29];49:19–34. Available from: <URL>
  • 3. Sadino A, Renggana H, Suwendar S, Apriani R, Nurhandayani Y. HYPNOTIC-SEDATIVE ACTIVITY TEST OF 70% ETHANOL EXTRACT OF LETTUCE (Lactuca sativa L.) IN MALE WHITE MICE SWISS WEBSTER STRAIN. JIFB [Internet]. 2024 Jul 31 [cited 2025 Mar 29];15(2):113– 20. Available from: <URL>
  • 4. Cioroi M. Study on L-ascorbic acid contents from exotic fruits. 2006;
  • 5. Lee HS, Coates GA. Vitamin C in frozen, fresh squeezed, unpasteurized, polyethylene-bottled orange juice: a storage study. Food Chemistry [Internet]. 1999 May [cited 2025 Mar 29];65(2):165–8. Available from: <URL>
  • 6. Johnson Jr, Braddock RJ, Chen CS. Kinetics of Ascorbic Acid Loss and Nonenzymatic Browning in Orange Juice Serum: Experimental Rate Constants. Journal of Food Science [Internet]. 1995 May [cited 2025 Mar 29];60(3):502–5. Available from: <URL>
  • 7. Fellers PJ. Shelf Life and Quality of Freshly Squeezed, Unpasteurized, Polyethylene Bottled Citrus Juice. Journal ‐ of Food Science [Internet]. 1988 Nov [cited 2025 Mar 29];53(6):1699–702. Available from: <URL>
  • 8. Abioye AO, Abioye VF, Ade-Omowaye BI, Adedeji AA. Kinetic modeling of ascorbic acid loss in baobab drink at pasteurization and storage temperatures. IOSR J Environ Sci Toxicol Food Technol. 2013;7(2):17–23.
  • 9. Burdurlu HS, Koca N, Karadeniz F. Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering [Internet]. 2006 May [cited 2025 Mar 29];74(2):211–6. Available from: <URL>
  • 10. Salunkhe DK, Desai BB. Postharvest biotechnology of vegetables. Boca Raton, Fla: CRC Press; 1984. 2 p.
  • 11. Stringer M, Dennis C, editors. Chilled foods: a comprehensive guide. 2. ed. Cambridge: Woodhead [u.a.]; 2000. 486 p. (Woodhead Publishing in food science and technology).
  • 12. Kuljarachanan T, Devahastin S, Chiewchan N. Evolution of antioxidant compounds in lime residues during drying. Food Chemistry [Internet]. 2009 Apr [cited 2025 Mar 29];113(4):944–9. Available from: <URL>
  • 13. Barbosa J, Borges S, Amorim M, Pereira MJ, Oliveira A, Pintado ME, et al. Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. Journal of Functional Foods [Internet]. 2015 Aug [cited 2025 Mar 29];17:340–51. Available from: <URL>
  • 14. El-Beltagy A, Gamea GR, Essa AHA. Solar drying characteristics of strawberry. Journal of Food Engineering [Internet]. 2007 Jan [cited 2025 Mar 29];78(2):456–64. Available from: <URL>
  • 15. Santos PHS, Silva MA. Retention of Vitamin C in Drying Processes of Fruits and Vegetables—A Review. Drying Technology [Internet]. 2008 Nov 21 [cited 2025 Mar 29];26(12):1421–37. Available from: <URL>
  • 16. Zhan L, Hu J, Ai Z, Pang L, Li Y, Zhu M. Light exposure during storage preserving soluble sugar and lascorbic acid content of minimally processed romaine lettuce (Lactuca sativa L.var. longifolia). Food Chemistry [Internet]. 2013 Jan [cited 2025 Mar 29];136(1):273–8. Available from: <URL>
  • 17. Martínez-Sánchez A, Tudela JA, Luna C, Allende A, Gil MI. Low oxygen levels and light exposure affect quality of fresh-cut Romaine lettuce. Postharvest Biology and Technology [Internet]. 2011 Jan [cited 2025 Mar 29];59(1):34–42. Available from: <URL>
  • 18. Zhang M, Bhandari B, Fang Z. In: Handbook of Drying of Vegetables and Vegetable Products. 1st ed. Portland: Taylor & Francis Group; 2017. (Advances in Drying Science and Technology).
  • 19. Derossi A, De Pilli T, Fiore AG. Vitamin C kinetic degradation of strawberry juice stored under nonisothermal conditions. LWT - Food Science and Technology [Internet]. 2010 May [cited 2025 Mar 29];43(4):590–5. Available from: <URL>
  • 20. Tadese A, Subramanian P, Woldu A, Pal R. Electrochemical determination and comparison of ascorbic acid in freshly prepared and bottled fruit juices: A cyclic voltammetric study. Journal of Chemical and Pharmaceutical Research. 2014;6(5):880–8. 74 Emenike A, Okoroafor C. JOTCSA. 2025; 12(2):65-76.
  • 21. Gunjan K, Mangla D. Analysis of vitamin C in commercial and natural substances by iodometric titration found in Nimar and Malwa region. J Sci Res Phar. 2012;1(2):8.
  • 22. Iwase H. Use of nucleic acids in the mobile phase for the determination of ascorbic acid in foods by highperformance liquid chromatography with electrochemical detection. Journal of Chromatography A [Internet]. 2000 Jun [cited 2025 Mar 29];881(1–2):327–30. Available from: <URL>
  • 23. Vermeir S, Hertog MLATM, Schenk A, Beullens K, Nicolaï BM, Lammertyn J. Evaluation and optimization of high-throughput enzymatic assays for fast l-ascorbic acid quantification in fruit and vegetables. Analytica Chimica Acta [Internet]. 2008 Jun [cited 2025 Mar 29];618(1):94–101. Available from: <URL>
  • 24. Liao ML, Seib PA. Chemistry of L-ascorbic acid related to foods. Food Chemistry [Internet]. 1988 [cited 2025 Mar 29];30(4):289–312. Available from: <URL>
  • 25. Nwakaudu M, Nkwocha A, Madu I, Enwereji C, Ireaja I. Kinetic modeling of vitamin C (ascorbic acid) degradation in tomato and pawpaw under market storage conditions. International Journal of Current Research. 2015;7(6):16783–8.
  • 26. Awagu E, Ekanem E, Kolo A, Adamu M. Kinetic modeling of vitamin C (ascorbic acid) degradation in blanched commonly consumed salad vegetables using computer simulation analysis. Journal of Applied Chemistry. 2017;10:59–66.
  • 27. Nojavan S, Khalilian F, Kiaie FM, Rahimi A, Arabanian A, Chalavi S. Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. Journal of Food Composition and Analysis [Internet]. 2008 Jun [cited 2025 Mar 29];21(4):300–5. Available from: <URL>
  • 28. Bozan B, Sagdullaev BT, Kozar M, Aripov KhN, Baser KHC. Comparison of ascorbic and citric acid contents inRosa canina L. fruit growing in the Central Asian region. Chem Nat Compd [Internet]. 1998 Nov [cited 2025 Mar 29];34(6):687–9. Available from: <URL>
  • 29. Rahman MS. Food Properties. In: Users’ Handbook. Dhaka: ORC; 2006.
  • 30. Barbara FR, Thomas AR, Brian L. Minitab 17.3.1. Pennsylvania State University; 2017.
  • 31. Silva EM, Da Silva JS, Pena RS, Rogez H. A combined approach to optimize the drying process of flavonoid-rich leaves (Inga edulis) using experimental design and mathematical modelling. Food and Bioproducts Processing [Internet]. 2011 Jan [cited 2025 Mar 29];89(1):39–46. Available from: <URL>
  • 32. Mauri LM, Alzamora SM, Chirife J, Tomio MJ. Review: Kinetic parameters for thiamine degradation in foods and model solutions of high water activity. Int J of Food Sci Tech [Internet]. 1989 Feb [cited 2025 Mar 29];24(1):1– 9. Available from: <URL>
  • 33. Tian J, Chen J, Lv F, Chen S, Chen J, Liu D, et al. Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes. Food Chemistry [Internet]. 2016 Apr [cited 2025 Mar 29];197:1264–70. Available from: <URL>
There are 33 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other)
Journal Section RESEARCH ARTICLES
Authors

Awagu Emenıke 0000-0003-4107-3751

Chinedu Okoroafor 0000-0001-7333-179X

Publication Date May 31, 2025
Submission Date November 4, 2023
Acceptance Date February 18, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

Vancouver Emenıke A, Okoroafor C. Kinetic Modeling of Vitamin C Degradation in Lettuce (Lactuca sativa L) under Room and Cold Temperatures Using Computer Simulation Analysis. JOTCSA. 2025;12(2):65-76.