Research Article
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 2, 85 - 98, 31.05.2025
https://doi.org/10.18596/jotcsa.1605601

Abstract

References

  • 1. Nowaczyk G, Kempka M, Wereszczyńska B, Flak D, Gapiński J. Viscoelasticity, morphology, and molecular diffusion in structurally controlled ternary poly(acrylic acid) and nonionic surfactant-based hydrogels. Polym Test [Internet]. 2024 Aug 1;137:108505. Available from: <URL>.
  • 2. AL-Fawares O, Alshweiat A, Abuawad A. Development of chitosan-polyacrylic acid complex systems for enhanced oral delivery of Lactobacillus gasseri and Bifidobacterium bifidum probiotics. Drug Des Devel Ther [Internet]. 2025 Jan 25;Volume 19:585–98. Available from: <URL>.
  • 3. Senol S, Akyol E. Synthesis and characterization of hydrogels based on poly(2-hydroxyethyl methacrylate) for drug delivery under UV irradiation. J Mater Sci [Internet]. 2018 Nov 20;53(21):14953–63. Available from: <URL>.
  • 4. Eslami H, Ansari M, Darvishi A, Pisheh HR, Shami M, Kazemi F. Polyacrylic acid: A biocompatible and biodegradable polymer for controlled drug delivery. Polym Sci Ser A [Internet]. 2023 Dec 25;65(6):702–13. Available from: <URL>.
  • 5. Walker J, Albert J, Liang D, Sun J, Schutzman R, Kumar R, et al. In vitro degradation and erosion behavior of commercial PLGAs used for controlled drug delivery. Drug Deliv Transl Res [Internet]. 2023 Jan 7;13(1):237–51. Available from: <URL>.
  • 6. Guan Y, Yu C, Zang Z, Wan X, Naeem A, Zhang R, et al. Chitosan/xanthan gum-based (Hydroxypropyl methylcellulose-co-2-Acrylamido-2-methylpropane sulfonic acid) interpenetrating hydrogels for controlled release of amorphous solid dispersion of bioactive constituents of Pueraria lobatae. Int J Biol Macromol [Internet]. 2023 Jan 1;224:380–95. Available from: <URL>.
  • 7. Kriangkrai W, Puttipipatkhachorn S, Sriamornsak P, Sungthongjeen S. Design and evaluation of new gel-based floating matrix tablets utilizing the sublimation technique for gastroretentive drug delivery. Gels [Internet]. 2024 Sep 9;10(9):581. Available from: <URL>.
  • 8. Lee YJ, Kim JE. In vitro–In vivo correlation of tianeptine sodium sustained-release dual-layer tablets. Molecules [Internet]. 2022 Apr 29;27(9):2828. Available from: <URL>.
  • 9. Senol S, Akyol E. Preparation and characterization of pH-sensitive hydrogels from photo-crosslinked poly(ethylene glycol) diacrylate incorporating titanium dioxide. Mater Sci [Internet]. 2020 Sep 1;38(3):443–9. Available from: <URL>.
  • 10. Heng PWS. Controlled release drug delivery systems. Pharm Dev Technol [Internet]. 2018 Oct 21;23(9):833. Available from: <URL>.
  • 11. Nanda A, Das S, Sahoo R, Nandi S, Swain R, Pattanaik S, et al. Aspirin-hydrogel ocular film for topical delivery and ophthalmic anti-inflammation. J Serbian Chem Soc [Internet]. 2022 Apr 28;87(7–8):829–43. Available from: <URL>.
  • 12. Şenol Ş, Akyol E. Preparation of photopolymerizable HEMA/PEG-DA based hydrogels filled with low concentrations of nanoparticle titanium dioxide for release of donepezil HCl. El-Cezeri Fen ve Mühendislik Derg [Internet]. 2021 May 4;8(2):887–96. Available from: <URL>.
  • 13. Zhang A, Jung K, Li A, Liu J, Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog Polym Sci [Internet]. 2019 Dec 1;99:101164. Available from: <URL>.
  • 14. Layek B. A comprehensive review of xanthan gum-based oral drug delivery systems. Int J Mol Sci [Internet]. 2024 Sep 21;25(18):10143. Available from: <URL>.
  • 15. Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci [Internet]. 2015 Mar 24;125:75–84. Available from: <URL>.
  • 16. Abou-Yousef H, Dacrory S, Hasanin M, Saber E, Kamel S. Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release. Sustain Chem Pharm [Internet]. 2021 Jun 1;21:100419. Available from: <URL>.
  • 17. Siamidi A, Konstantinou A, Pavlou P, Siamidis I, Vlachou M. Modified release of acetaminophen from matrix tablet formulations: Influence of tablet geometry. Lett Drug Des Discov [Internet]. 2024 Mar 20;21(3):568–74. Available from: <URL>.
  • 18. Sanchez-Ballester NM, Bataille B, Soulairol I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydr Polym [Internet]. 2021 Oct 15;270:118399. Available from: <URL>.
  • 19. Anwar S, Zafar F, Yasmin R, Ali H, Jabeen S, Tahir Y. Formulation development of mouth dissolving lornoxicam tablets by direct compression method. Lat Am J Pharm [Internet]. 2024;43(9):1925–34. Available from: <URL>.
  • 20. Pourmadadi M, Tajiki A, Abdouss M, Beig Mohammadi A, Kharaba Z, Rahdar A, et al. Novel carbon quantum dots incorporated polyacrylic acid/polyethylene glycol pH-sensitive nanoplatform for drug delivery. Inorg Chem Commun [Internet]. 2024 Jan 1;159:111814. Available from: <URL>.
  • 21. Barimani S, Šibanc R, Tomaževič D, Meier R, Kleinebudde P. 100% visual inspection of tablets produced with continuous direct compression and coating. Int J Pharm [Internet]. 2022 Feb 25;614:121465. Available from: <URL>.
  • 22. Khan A, Khan A, Nazir S, Khan NR, Ullah M, Shahbaz N, et al. An evaluation of the effect of aging on the quality attributes of orodispersible tablets prepared by the direct compression technique. Drug Dev Ind Pharm [Internet]. 2025 Apr 3;51(4):309–18. Available from: <URL>.
  • 23. Kokott M, Lura A, Breitkreutz J, Wiedey R. Evaluation of two novel co-processed excipients for direct compression of orodispersible tablets and mini-tablets. Eur J Pharm Biopharm [Internet]. 2021 Nov 1;168:122–30. Available from: <URL>.
  • 24. Piponski M, Bakovska Stoimenova T, Topkoska M, Stefov S, Piponska M, Trendovska Serafimovska G. Development and validation of a fast and simple RP-HPLC method for the determination of diosmin and hesperidin in combined tablet dosage form. Maced J Chem Chem Eng [Internet]. 2018 Nov 7;37(2):127–34. Available from: <URL>.
  • 25. Langer R, Peppas N. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: A review. J Macromol Sci Part C [Internet]. 1983 Jan 19;23(1):61–126. Available from: <URL>.
  • 26. Şenol Ş, Akyol E. Study on the preparation and drug release property of modified PEG-DA based hydrogels. J Turkish Chem Soc Sect A Chem [Internet]. 2019 May 15;6(1):1–14. Available from: <URL>.
  • 27. Langer R. Invited review polymeric delivery systems for controlled drug release. Chem Eng Commun [Internet]. 1980 Jan 30;6(1–3):1–48. Available from: <URL>.
  • 28. van der Merwe J, Steenekamp J, Steyn D, Hamman J. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics [Internet]. 2020 Apr 25;12(5):393. Available from: <URL>.
  • 29. Ambarish S, Shirsand S, Anandkumar Y, Shirsand S. To study the effect of HPMC and carbopol in mucoadhesive buccal tablets of meclizine hydrochloride using central composite design: In-vitro characterization. Ger J Pharm Biomater [Internet]. 2024;3(1):3–18. Available from: <URL>.
  • 30. Al-Dubai ASAE, Akyol E. Polyacrylic acid and polyacrylic acid sodium salt as ınhibitors of calcium oxalate crystal formation. Bulg Chem Commun [Internet]. 2023;55(3):278–82. Available from: <URL>.
  • 31. Lin HR, Sung K. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Control Release [Internet]. 2000 Dec 3;69(3):379–88. Available from: <URL>.
  • 32. Rashid TU, Sharmeen S, Biswas S, Ahmed T, Mallik AK, Shahruzzaman M, et al. Gelatin-based hydrogels. In: Cellulose-Based Superabsorbent Hydrogels [Internet]. Springer Cham; 2018. p. 1–41. Available from: <URL>.
  • 33. Paarakh MP, Jose PA, Setty C, Peter Christoper GV. Release kinetics – concepts and applications. Int J Pharm Res Technol [Internet]. 2019 Jan 1;8(1):12–20. Available from: <URL>.
  • 34. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm [Internet]. 1983 May 1;15(1):25–35. Available from: <URL>.
  • 35. Liu J, Ran Q, Miao C, Zhou D. Synthesis and characterization of comb-like copolymer dispersant with methoxy poly (Ethylene oxide) side chains. Polym Plast Technol Eng [Internet]. 2011 Jan 6;50(1):59–66. Available from: <URL>.
  • 36. Prabhakar R, Kumar D. Investigation on poly(acrylate-co-acrylamide)/polyaniline conducting hydrogel. Am J Polym Sci Eng [Internet]. 2014;3:201400534. Available from: <URL>.
  • 37. Trivedi M, Patil S, Shettigar H, Bairwa K, Jana S. Effect of biofield treatment on spectral properties of paracetamol and piroxicam. Chem Sci J [Internet]. 2015;6(3):3. Available from: <URL>.
  • 38. Jain D, Carvalho E, Banthia AK, Banerjee R. Development of polyvinyl alcohol–gelatin membranes for antibiotic delivery in the eye. Drug Dev Ind Pharm [Internet]. 2011 Feb 12;37(2):167–77. Available from: <URL>.
  • 39. Obeidat WM, Nokhodchi A, Alkhatib H. Evaluation of matrix tablets based on Eudragit®E100/Carbopol®971P combinations for controlled release and improved compaction properties of water soluble model drug paracetamol. AAPS PharmSciTech [Internet]. 2015 Oct 28;16(5):1169–79. Available from: <URL>.
  • 40. Didacus Nnamani N, Okhuelegbe Eraga S. Evaluation of the compression properties of co-processed paracetamol, gelatin and microcrystalline cellulose formulation prepared via melt-in agglomeration. Trends Pharm Sci [Internet]. 2022 Dec 1;8(4):243–52. Available from: <URL>.
  • 41. Tarawneh OA, Madi AM, Hamed R, Qirem R, Qerem W, Alhusban A, et al. In vitro characterization and evaluation of commercialized paracetamol products in Jordan. Dissolution Technol [Internet]. 2019;26(1):36–44. Available from: <URL>.
  • 42. Jain V, Singh R. Design and characterization of colon-specific drug delivery system containing paracetamol microsponges. Arch Pharm Res [Internet]. 2011 May 9;34(5):733–40. Available from: <URL>.
  • 43. United States Pharmacopeia (USP) <61>, Microbiological examination of non-sterile products & microbial enumeration tests & USP <62>, Microbiological examination of non-sterile products: Tests for specified microorganisms, (United States Pharmacopeial Convention. 2016; Available from: <URL>.
  • 44. European Pharmacopeia (EP) <2.6.12> Microbiological examination of non-sterile products: Microbial enumeration tests, (European Directorate for the Quality of Medicines and Healthcare). 2017; Available from: <URL>.
  • 45. Mutlu H, Akyol E. Development of transdermal cellulose-based patches for Alzheimer’s treatment and investigation of penetration behavior. Bulg Chem Commun [Internet]. 2024;56(3):342–7. Available from: <URL>.
  • 46. Rezk AI, Obiweluozor FO, Choukrani G, Park CH, Kim CS. Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: Towards cancer chemotherapy. Int J Biol Macromol [Internet]. 2019 Dec 1;141:388–400. Available from: <URL>.
  • 47. Senol S, Akyol E. In-vitro evaluation of co-excipients for release of donepezil hydrochloride from Carbopol 974P based tablets. Rev Roum Chim [Internet]. 2022 Oct 23;67(10–12):515–23. Available from: <URL>.

Evaluation of Different Types of Paracetamol Active Pharmaceutical Ingredients' Effect on the Release System

Year 2025, Volume: 12 Issue: 2, 85 - 98, 31.05.2025
https://doi.org/10.18596/jotcsa.1605601

Abstract

The primary purpose of this study was to investigate the effect of active pharmaceutical ingredients (APIs) with varying particle sizes and properties on drug release and to develop matrix-type tablets based on poly(acrylic acid sodium salt) (PAANa) with different gelatin ratios for enhanced paracetamol release. Micronized, superfine, and purified paracetamol APIs were selected as model drugs to assess the impact of these APIs on drug release. Paracetamol is a frequently used medication in healthcare, so it is crucial to select the API with the optimal release rate and an economical, environmentally friendly production method. The direct compression method was employed in the preparation of the tablets due to its simplicity and ease of integration on an industrial scale. The release studies, release kinetics, scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), physical properties, and microbial analyses (Escherichia coli, total mold, yeast) were investigated. The release studies at pH 1.2 and pH 7.4 revealed that the type of active pharmaceutical ingredient, especially micronized paracetamol API and superfine API, affects the paracetamol release ratio. Microbial analyses showed that produced tablets were convenient for health. In addition, prepared tablets with added gelatine can be used to deliver paracetamol with the desired release profile.

Ethical Statement

The author of the manuscript has no conflict of interest to declare.

Supporting Institution

-

Thanks

The author is also thankful to Assoc. Prof. Dr. Emel Akyol and Merve Gülter Ak for their kind support. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • 1. Nowaczyk G, Kempka M, Wereszczyńska B, Flak D, Gapiński J. Viscoelasticity, morphology, and molecular diffusion in structurally controlled ternary poly(acrylic acid) and nonionic surfactant-based hydrogels. Polym Test [Internet]. 2024 Aug 1;137:108505. Available from: <URL>.
  • 2. AL-Fawares O, Alshweiat A, Abuawad A. Development of chitosan-polyacrylic acid complex systems for enhanced oral delivery of Lactobacillus gasseri and Bifidobacterium bifidum probiotics. Drug Des Devel Ther [Internet]. 2025 Jan 25;Volume 19:585–98. Available from: <URL>.
  • 3. Senol S, Akyol E. Synthesis and characterization of hydrogels based on poly(2-hydroxyethyl methacrylate) for drug delivery under UV irradiation. J Mater Sci [Internet]. 2018 Nov 20;53(21):14953–63. Available from: <URL>.
  • 4. Eslami H, Ansari M, Darvishi A, Pisheh HR, Shami M, Kazemi F. Polyacrylic acid: A biocompatible and biodegradable polymer for controlled drug delivery. Polym Sci Ser A [Internet]. 2023 Dec 25;65(6):702–13. Available from: <URL>.
  • 5. Walker J, Albert J, Liang D, Sun J, Schutzman R, Kumar R, et al. In vitro degradation and erosion behavior of commercial PLGAs used for controlled drug delivery. Drug Deliv Transl Res [Internet]. 2023 Jan 7;13(1):237–51. Available from: <URL>.
  • 6. Guan Y, Yu C, Zang Z, Wan X, Naeem A, Zhang R, et al. Chitosan/xanthan gum-based (Hydroxypropyl methylcellulose-co-2-Acrylamido-2-methylpropane sulfonic acid) interpenetrating hydrogels for controlled release of amorphous solid dispersion of bioactive constituents of Pueraria lobatae. Int J Biol Macromol [Internet]. 2023 Jan 1;224:380–95. Available from: <URL>.
  • 7. Kriangkrai W, Puttipipatkhachorn S, Sriamornsak P, Sungthongjeen S. Design and evaluation of new gel-based floating matrix tablets utilizing the sublimation technique for gastroretentive drug delivery. Gels [Internet]. 2024 Sep 9;10(9):581. Available from: <URL>.
  • 8. Lee YJ, Kim JE. In vitro–In vivo correlation of tianeptine sodium sustained-release dual-layer tablets. Molecules [Internet]. 2022 Apr 29;27(9):2828. Available from: <URL>.
  • 9. Senol S, Akyol E. Preparation and characterization of pH-sensitive hydrogels from photo-crosslinked poly(ethylene glycol) diacrylate incorporating titanium dioxide. Mater Sci [Internet]. 2020 Sep 1;38(3):443–9. Available from: <URL>.
  • 10. Heng PWS. Controlled release drug delivery systems. Pharm Dev Technol [Internet]. 2018 Oct 21;23(9):833. Available from: <URL>.
  • 11. Nanda A, Das S, Sahoo R, Nandi S, Swain R, Pattanaik S, et al. Aspirin-hydrogel ocular film for topical delivery and ophthalmic anti-inflammation. J Serbian Chem Soc [Internet]. 2022 Apr 28;87(7–8):829–43. Available from: <URL>.
  • 12. Şenol Ş, Akyol E. Preparation of photopolymerizable HEMA/PEG-DA based hydrogels filled with low concentrations of nanoparticle titanium dioxide for release of donepezil HCl. El-Cezeri Fen ve Mühendislik Derg [Internet]. 2021 May 4;8(2):887–96. Available from: <URL>.
  • 13. Zhang A, Jung K, Li A, Liu J, Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog Polym Sci [Internet]. 2019 Dec 1;99:101164. Available from: <URL>.
  • 14. Layek B. A comprehensive review of xanthan gum-based oral drug delivery systems. Int J Mol Sci [Internet]. 2024 Sep 21;25(18):10143. Available from: <URL>.
  • 15. Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci [Internet]. 2015 Mar 24;125:75–84. Available from: <URL>.
  • 16. Abou-Yousef H, Dacrory S, Hasanin M, Saber E, Kamel S. Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release. Sustain Chem Pharm [Internet]. 2021 Jun 1;21:100419. Available from: <URL>.
  • 17. Siamidi A, Konstantinou A, Pavlou P, Siamidis I, Vlachou M. Modified release of acetaminophen from matrix tablet formulations: Influence of tablet geometry. Lett Drug Des Discov [Internet]. 2024 Mar 20;21(3):568–74. Available from: <URL>.
  • 18. Sanchez-Ballester NM, Bataille B, Soulairol I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydr Polym [Internet]. 2021 Oct 15;270:118399. Available from: <URL>.
  • 19. Anwar S, Zafar F, Yasmin R, Ali H, Jabeen S, Tahir Y. Formulation development of mouth dissolving lornoxicam tablets by direct compression method. Lat Am J Pharm [Internet]. 2024;43(9):1925–34. Available from: <URL>.
  • 20. Pourmadadi M, Tajiki A, Abdouss M, Beig Mohammadi A, Kharaba Z, Rahdar A, et al. Novel carbon quantum dots incorporated polyacrylic acid/polyethylene glycol pH-sensitive nanoplatform for drug delivery. Inorg Chem Commun [Internet]. 2024 Jan 1;159:111814. Available from: <URL>.
  • 21. Barimani S, Šibanc R, Tomaževič D, Meier R, Kleinebudde P. 100% visual inspection of tablets produced with continuous direct compression and coating. Int J Pharm [Internet]. 2022 Feb 25;614:121465. Available from: <URL>.
  • 22. Khan A, Khan A, Nazir S, Khan NR, Ullah M, Shahbaz N, et al. An evaluation of the effect of aging on the quality attributes of orodispersible tablets prepared by the direct compression technique. Drug Dev Ind Pharm [Internet]. 2025 Apr 3;51(4):309–18. Available from: <URL>.
  • 23. Kokott M, Lura A, Breitkreutz J, Wiedey R. Evaluation of two novel co-processed excipients for direct compression of orodispersible tablets and mini-tablets. Eur J Pharm Biopharm [Internet]. 2021 Nov 1;168:122–30. Available from: <URL>.
  • 24. Piponski M, Bakovska Stoimenova T, Topkoska M, Stefov S, Piponska M, Trendovska Serafimovska G. Development and validation of a fast and simple RP-HPLC method for the determination of diosmin and hesperidin in combined tablet dosage form. Maced J Chem Chem Eng [Internet]. 2018 Nov 7;37(2):127–34. Available from: <URL>.
  • 25. Langer R, Peppas N. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: A review. J Macromol Sci Part C [Internet]. 1983 Jan 19;23(1):61–126. Available from: <URL>.
  • 26. Şenol Ş, Akyol E. Study on the preparation and drug release property of modified PEG-DA based hydrogels. J Turkish Chem Soc Sect A Chem [Internet]. 2019 May 15;6(1):1–14. Available from: <URL>.
  • 27. Langer R. Invited review polymeric delivery systems for controlled drug release. Chem Eng Commun [Internet]. 1980 Jan 30;6(1–3):1–48. Available from: <URL>.
  • 28. van der Merwe J, Steenekamp J, Steyn D, Hamman J. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics [Internet]. 2020 Apr 25;12(5):393. Available from: <URL>.
  • 29. Ambarish S, Shirsand S, Anandkumar Y, Shirsand S. To study the effect of HPMC and carbopol in mucoadhesive buccal tablets of meclizine hydrochloride using central composite design: In-vitro characterization. Ger J Pharm Biomater [Internet]. 2024;3(1):3–18. Available from: <URL>.
  • 30. Al-Dubai ASAE, Akyol E. Polyacrylic acid and polyacrylic acid sodium salt as ınhibitors of calcium oxalate crystal formation. Bulg Chem Commun [Internet]. 2023;55(3):278–82. Available from: <URL>.
  • 31. Lin HR, Sung K. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Control Release [Internet]. 2000 Dec 3;69(3):379–88. Available from: <URL>.
  • 32. Rashid TU, Sharmeen S, Biswas S, Ahmed T, Mallik AK, Shahruzzaman M, et al. Gelatin-based hydrogels. In: Cellulose-Based Superabsorbent Hydrogels [Internet]. Springer Cham; 2018. p. 1–41. Available from: <URL>.
  • 33. Paarakh MP, Jose PA, Setty C, Peter Christoper GV. Release kinetics – concepts and applications. Int J Pharm Res Technol [Internet]. 2019 Jan 1;8(1):12–20. Available from: <URL>.
  • 34. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm [Internet]. 1983 May 1;15(1):25–35. Available from: <URL>.
  • 35. Liu J, Ran Q, Miao C, Zhou D. Synthesis and characterization of comb-like copolymer dispersant with methoxy poly (Ethylene oxide) side chains. Polym Plast Technol Eng [Internet]. 2011 Jan 6;50(1):59–66. Available from: <URL>.
  • 36. Prabhakar R, Kumar D. Investigation on poly(acrylate-co-acrylamide)/polyaniline conducting hydrogel. Am J Polym Sci Eng [Internet]. 2014;3:201400534. Available from: <URL>.
  • 37. Trivedi M, Patil S, Shettigar H, Bairwa K, Jana S. Effect of biofield treatment on spectral properties of paracetamol and piroxicam. Chem Sci J [Internet]. 2015;6(3):3. Available from: <URL>.
  • 38. Jain D, Carvalho E, Banthia AK, Banerjee R. Development of polyvinyl alcohol–gelatin membranes for antibiotic delivery in the eye. Drug Dev Ind Pharm [Internet]. 2011 Feb 12;37(2):167–77. Available from: <URL>.
  • 39. Obeidat WM, Nokhodchi A, Alkhatib H. Evaluation of matrix tablets based on Eudragit®E100/Carbopol®971P combinations for controlled release and improved compaction properties of water soluble model drug paracetamol. AAPS PharmSciTech [Internet]. 2015 Oct 28;16(5):1169–79. Available from: <URL>.
  • 40. Didacus Nnamani N, Okhuelegbe Eraga S. Evaluation of the compression properties of co-processed paracetamol, gelatin and microcrystalline cellulose formulation prepared via melt-in agglomeration. Trends Pharm Sci [Internet]. 2022 Dec 1;8(4):243–52. Available from: <URL>.
  • 41. Tarawneh OA, Madi AM, Hamed R, Qirem R, Qerem W, Alhusban A, et al. In vitro characterization and evaluation of commercialized paracetamol products in Jordan. Dissolution Technol [Internet]. 2019;26(1):36–44. Available from: <URL>.
  • 42. Jain V, Singh R. Design and characterization of colon-specific drug delivery system containing paracetamol microsponges. Arch Pharm Res [Internet]. 2011 May 9;34(5):733–40. Available from: <URL>.
  • 43. United States Pharmacopeia (USP) <61>, Microbiological examination of non-sterile products & microbial enumeration tests & USP <62>, Microbiological examination of non-sterile products: Tests for specified microorganisms, (United States Pharmacopeial Convention. 2016; Available from: <URL>.
  • 44. European Pharmacopeia (EP) <2.6.12> Microbiological examination of non-sterile products: Microbial enumeration tests, (European Directorate for the Quality of Medicines and Healthcare). 2017; Available from: <URL>.
  • 45. Mutlu H, Akyol E. Development of transdermal cellulose-based patches for Alzheimer’s treatment and investigation of penetration behavior. Bulg Chem Commun [Internet]. 2024;56(3):342–7. Available from: <URL>.
  • 46. Rezk AI, Obiweluozor FO, Choukrani G, Park CH, Kim CS. Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: Towards cancer chemotherapy. Int J Biol Macromol [Internet]. 2019 Dec 1;141:388–400. Available from: <URL>.
  • 47. Senol S, Akyol E. In-vitro evaluation of co-excipients for release of donepezil hydrochloride from Carbopol 974P based tablets. Rev Roum Chim [Internet]. 2022 Oct 23;67(10–12):515–23. Available from: <URL>.
There are 47 citations in total.

Details

Primary Language English
Subjects Reaction Kinetics and Dynamics
Journal Section RESEARCH ARTICLES
Authors

Şebnem Şenol 0000-0002-6420-995X

Publication Date May 31, 2025
Submission Date December 22, 2024
Acceptance Date March 24, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

Vancouver Şenol Ş. Evaluation of Different Types of Paracetamol Active Pharmaceutical Ingredients’ Effect on the Release System. JOTCSA. 2025;12(2):85-98.