Advanced Boric Acid-Based Catalysts for High-Efficiency Hydrogen Generation via Sodium Borohydride Hydrolysis
Year 2025,
Volume: 8 Issue: 2, 163 - 174
Esra Özer Şeker
Tuba Erşen Dudu
,
Duygu Alpaslan
Abstract
This study synthesized environmentally friendly, boric acid-based, metal-free polymeric catalysts via redox polymerization in an emulsion medium without a surfactant. Their hydrogen (H2) production performance from sodium borohydride (NaBH4) hydrolysis was evaluated for the first time. Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used to characterize the structural and physicochemical properties of the p(BoA) polymeric catalysts. FT-IR analysis confirmed the successful synthesis of cross-linked p(BoA) particles through peak shifts, the appearance of new spectra, and intensity changes. SEM images showed that p(BoA) particles possess irregular spherical morphologies with surfaces comprising porous and fractured layers. The effects of various parameters—including reaction temperature, catalyst quantity, and NaBH4 concentration on H₂ generation were systematically investigated. The NaBH4 hydrolysis reaction catalyzed by the boric acid-based particles was found to follow first-order kinetics. The highest hydrogen production rate (HGR) was observed at 50°C, with rates calculated for different quantities of p(BoA) particles: 24.27 mL H2 gcatalys-1 dak-1 for 0.1g, 15.15 mL H2 gcatalys-1 dak-1 for 0.3g, and 16.67 mL H2 gcatalys-1 dak-1 for 0.5g. These findings suggest that boric acid-based, metal-free polymeric catalysts offer significant potential for sustainable hydrogen production.
Supporting Institution
Van Yuzuncu Yıl University BAP
Project Number
FYL-2020-9274
Thanks
This work is supported by the Van Yuzuncu Yıl University BAP with grant # FYL-2020-9274.
References
- Alpaslan, D., Ersen Dudu, T., & Aktas, N. (2022a). Non-Metal polymeric bioparticles based on maleic acid/citric acid as a catalyst for H2 generation from NaBH4. Journal of Polymers and the Environment, 30(9), 3656-3664. DOI: 10.1007/s10924-022-02461-x
- Alpaslan, D., Ersen Dudu, T., & Aktas, N. (2022b). Synthesis of poly(ginger oil) organo particles as a metal free catalysis and their use in hydrogen production from sodium borohydride methanolysis. Journal of Polymers and the Environment, 31, 1191–1201. https://doi.org/10.1007/s10924-022-02636-6
- Aydin, M., Hasimoglu, A., Bayrak, Y., & Ozdemir, O. K. (2015). Kinetic properties of co-reduced co-B/graphene catalyst powder for hydrogen generation of sodium borohydride. Journal of Renewable and Sustainable Energy, 7, 013117. https://doi.org/10.1063/1.4906914
- Balbay, A., & Saka, C. (2018). The effect of the concentration of hydrochloric acid and acetic acid aqueous solution for fast hydrogen production from methanol solution of NaBH4. International Journal of Hydrogen Energy, 43(31), 14265-14272. https://doi.org/10.1016/j.ijhydene.2018.05.131
- Brack, P., Dann, S. E., & Wijayantha, K. G. U. (2015). Heterogeneous and homogenous catalysts for hydrogengeneration by hydrolysis of aqueous sodium borohydride(NaBH4) solutions. Energy Science Engineering, 3(3), 174-188. https://doi.org/10.1002/ese3.67
- Bu, Y., Liu, J., Chu, H., Wei, S., Yin, Q., Kang, L., Luo, X., Sun, L., Xu, F., Huang, P., Rosei, F., Pimerzin, A. A., Seifert, H. J., Du, Y., & Wang, J. (2021). Catalytic hydrogen evolution of NaBH4 hydrolysis by cobalt nanoparticles supported on bagasse-derived porous carbon. Nanomaterials, 11(12), 3259. https://doi.org/10.3390/nano11123259
- Ersen Dudu, T., & Özer Şeker, E. (2023). Green energy source H2 production from NaBH4 hydrolysis using p(Oxalic Acid) based non-metallic catalyst. Journal of Polymers and the Environment, 31, 3445-3453. https://doi.org/10.1007/s10924-023-02826-w
- Ersen Dudu, T., Alpaslan, D., & Aktas, N. (2022). Hydrogen production from methanolysis of sodium borohydride by non-metal p(CO) organo-particles synthesized from castor oil. Journal of Polymers and the Environment, 30, 4562–4570. https://doi.org/10.1007/s10924-022-02521-2
- Huang, W. K., Xu, F. H., & Liu, X. (2021). Superior hydrogen generation from sodium borohydride hydrolysis catalyzed by the bimetallic Co-Ru/C nanocomposite. International Journal of Hydrogen Energy, 46(50), 25376-25384. https://doi.org/10.1016/j.ijhydene.2021.05.083
- Hwang, B., Jo, A., Sin, S., Choi, D., Nam, S., & Park, K. (2013). NaBH4 hydrolysis reaction using Co-P-B catalyst supported on FeCrAlloy. Korean Chemical Engineering Research, 51(1), 35-41. DOI: 10.9713/kcer.2013.51.1.35
- Kayashima, T., & Katayama, T. (2002). Oxalic acid is available as a natural antioxidant in some systems. Biochimica Et Biophysica Acta-General Subjects, 1573(1), 1-3. DOI: 10.1016/s0304-4165(02)00338-0
- Kim, G. J., & Hwang, H. T. (2021). Thermal hydrolysis of solid-state sodium borohydride for noncatalytic hydrogen generation. Chemical Engineering Journal, 424, 130445. https://doi.org/10.1016/j.cej.2021.130445
- Kırbaş, İ. (2021). Improving the structural and physical properties of boric acid-doped rigid polyurethane materials. Composites and Advanced Materials, 30, 1-7. https://doi.org/10.1177/26349833211010819
- Kostova, I. P., Eftimov, T. A., Hristova, K., Nachkova, S., Tsoneva, S., & Peltekov, A. (2024). An effect of boric acid on the structure and luminescence of yttrium orthoborates doped with europium synthesized by two different routines. Crystals, 14(6), 575. DOI:10.20944/preprints202406.0068.v1
- Li, H. Y., Chen, Y. T., Lu, M. T., Lai, Y. H., & Yang, J.T. (2014). Design and testing of a novel catalytic reactor to generate hydrogen. International Journal of Hydrogen Energy, 39(23), 11945-11954. https://doi.org/10.1016/j.ijhydene.2014.05.189
- Li, J. H., Hong, X. Y., Wang, Y. L., Luo, Y. M., Huang, P. R., Li, B., Zhang, K. X., Zou, Y. J., Sun, L. X., Xu, F., Rosei, F., Verevkin, S. P., & Pimerzin, A. A. (2020). Encapsulated cobalt nanoparticles as a recoverable catalyst for the hydrolysis of sodium borohydride. Energy Storage Materials, 27, 187-197. https://doi.org/10.1016/j.ensm.2020.01.011
- Liang, Y., Dai, H. B., Ma, L. P., Wang, P., & Cheng, H. M. (2010). Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst. International Journal of Hydrogen Energy, 35(7), 3023-3028. https://doi.org/10.1016/j.ijhydene.2009.07.008
- Ma, M., Duan, R., Ouyang, L., Zhu, X., Chen, Z., Peng, C., & Zhu, M. (2017). Hydrogen storage and hydrogen generation properties of CaMg2-based alloys. Journal of Alloys and Compounds, 691, 929-935. https://doi.org/10.1016/j.jallcom.2016.08.307
- Mirshafiee, F., & Rezaei, M. (2024). Enhancing hydrogen generation from sodium borohydride hydrolysis and the role of a Co/CuFe₂O₄ nanocatalyst in a continuous flow system. Scientific Reports, 14, 9659. https://doi.org/10.1038/s41598-024-60428-5
- Nath, J., & Chaudhuri, M. K. (2008). Boric acid catalyzed bromination of a variety of organic substrates: an eco-friendly and practical protocol. Green Chemistry Letters and Reviews, 1(4), 223-230. https://doi.org/10.1080/17518250902758887
- Nowotny, J., & Veziroglu, T. N. (2011). Impact of hydrogen on the environment. International Journal of Hydrogen Energy, 36(20), 13218-13224. https://doi.org/10.1016/j.ijhydene.2011.07.071
- Ozdemir, O. K. (2019). Analysis of kinetic properties for the hydrolysis reaction of NaBH4 and environmental effects in the hydrogen production of activated Co-Ti(II)-B alloy catalysts. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), 1586-1594. DOI: 10.17341/gazimmfd.570889
- Peng, Y., Zeng, H., Shi, Y., Xu, J., Xie, L., Chen, J., Zheng, J., & Li, X. (2020). Oxalic Acid promoted hydrolysis of sodium borohydride for transition metal free hydrogen generation. Journal of Wuhan University of Technology-Materials Science Edition, 35(6), 706-710. https://doi.org/10.1007/s11595-020-2349-7
- Quadrado, R. F. N., Gohlke, G., Oliboni, R. S., Smaniotto, A., & Fajardo, A. R. (2019). Hybrid hydrogels containing one-step biosynthesized silver nanoparticles: Preparation, characterization and catalytic application. Journal of Industrial and Engineering Chemistry, 79, 326-337. https://doi.org/10.1016/j.jiec.2019.07.008
- Sahiner, N., & Alpaslan, D. (2014). Metal-Ion-Containing Ionic liquid hydrogels and their application to hydrogen production. Journal of Applied Polymer Science, 131(9), 40183. https://doi.org/10.1002/app.40183
- Santos, F. L., Giroto, A. S., Torres, J. A., Oliveira, A. V., e Santos, V. M., & Nogueira, A. E. (2024). Hydrogen generation via NaBH4 hydrolysis over cobalt-modified niobium oxide catalysts. International Journal of Hydrogen Energy, 92, 113-123. https://doi.org/10.1016/j.ijhydene.2024.10.236
- Su, R. D., Wang, F. D., Ding, J. Z., Li, Q., Zhou, W. Z., Liu, Y. Z., Gao, B. Y., & Yue, Q. Y. (2019). Magnetic hydrogel derived from wheat straw cellulose/feather protein in ionic liquids as copper nanoparticles carrier for catalytic reduction. Carbohydrate Polymers, 220, 202-210. https://doi.org/10.1016/j.carbpol.2019.05.077
- Yu, L., Pellechia, P., & Matthews, M. A. (2014). Kinetic models of concentrated NaBH4 hydrolysis. International Journal of Hydrogen Energy, 39(1), 442-448. https://doi.org/10.1016/j.ijhydene.2013.10.105