Research Article
BibTex RIS Cite
Year 2024, Volume: 28 Issue: 6, 1892 - 1900, 28.06.2025
https://doi.org/10.29228/jrp.862

Abstract

References

  • [1] Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther. 2022;7(1):216. https://doi.org/10.1038/s41392-022-01073-0
  • [2] Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. Erratum in: Diabetes Res Clin Pract. 2023;204:110945. https://doi.org/10.1016/j.diabres.2021.109119
  • [3] El-Shafey M, El-Agawy MSE, Eldosoky M, Ebrahim HA, Elsherbini DMA, El-Sherbiny M, Asseri SM, Elsherbiny NM. Role of Dapagliflozin and Liraglutide on Diabetes-Induced Cardiomyopathy in Rats: Implication of Oxidative Stress, Inflammation, and Apoptosis. Mar;13:862394.https://doi.org/10.3389/fendo.2022.862394 Front Endocrinol (Lausanne). 2022
  • [4] Guan H, Tian J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Yin R, Tong X. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: a comprehensive review. Eur J Med Res. 2024;29(1):152. https://doi.org/10.1186/s40001-024-01739-1
  • [5] Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective factors and the pathogenesis of complications in diabetes. Endocr Rev. 2024;45(2):227-252. https://doi.org/10.1210/endrev/bnad030
  • [6] Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc Diabetol. 2013;12:142. https://doi.org/10.1186/1475-2840-12-142
  • [7] Knapp M, Tu X, Wu R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin. 2019;40(1):1-8. https://doi.org/10.1038/s41401-018-0042-6
  • [8] Arslan S, Ozcan O, Gurel-Gokmen B, Cevikelli-Yakut ZA, Saygı HI, Sen A, Goger F, Erkanli-Senturk G, Sener G, Tunali-Akbay T. Myrtle improves renovascular hypertension-induced oxidative damage in heart, kidney, and aortic tissue. Biologia. 2022;77(7):1877-1888. https://doi.org/10.1007/s11756-022-01039-1
  • [9] Shrivastav D, Singh DD. Emerging roles of microRNAs as diagnostics and potential therapeutic interest in type 2 diabetes mellitus. World J Clin Cases. 2024;12(3):525-537. https://doi.org/10.12998/wjcc.v12.i3.525
  • [10] Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in cardiac and pulmonary diseases. Int J Mol Sci. 2020;21(12):4370. https://doi.org/10.3390/ijms21124370
  • [11] Shen Y, Cheng L, Xu M, Wang W, Wan Z, Xiong H, Guo W, Cai M, Xu F. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism. 2023;146:155657. https://doi.org/10.1016/j.metabol.2023.155657
  • [12] Dyck JRB, Sossalla S, Hamdani N, Coronel R, Weber NC, Light PE, Zuurbier CJ. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol. 2022;167:17-31. https://doi.org/10.1016/j.yjmcc.2022.03.005
  • [13] Hazar-Yavuz AN, Yildiz S, Keles Kaya R, Çam ME, Kabasakal L. Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. J Res Pharm. 2022;26(2):298-310. https://doi.org/10.29228/jrp.128
  • [14] Furtado RHM, Bonaca MP, Raz I, Zelniker TA, Mosenzon O, Cahn A, Kuder J, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Nicolau JC, Gause-Nilsson IAM, Fredriksson M, Langkilde AM, Sabatine MS, Wiviott SD. Dapagliflozin and cardiovascular outcomes in patients with type 2 Diabetes Mellitus and previous myocardial infarction. Circulation. 2019;139(22):2516-2527. https://doi.org/10.1161/circulationaha.119.039996.
  • [15] Reid J, Rana K, Niman S, Sheikh-Ali M, Lewis T, Choksi RR, Goldfaden RF. Sodium-Glucose Cotransporter-2 (SGLT-2) Inhibitors for Cardiovascular Disease Prevention. Am J Cardiovasc Drugs. 2020;20(5):419-429. https://doi.org/10.1007/s40256-020-00397-y [16] Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
  • [17] Alsereidi FR, Khashim Z, Marzook H, Gupta A, Al-Rawi AM, Ramadan MM, Saleh MA. Targeting inflammatory signaling pathways with SGLT2 inhibitors: Insights into cardiovascular health and cardiac cell improvement. Curr Probl Cardiol. 2024;49(5):102524. https://doi.org/10.1016/j.cpcardiol.2024.102524
  • [18] da Purificação NRC, Garcia VB, Frez FCV, Sehaber CC, Lima KRA, de Oliveira Lima MF, de Carvalho Vasconcelos R, de Araujo AA, de Araújo Júnior RF, Lacchini S, de Oliveira F, Perles JVCM, Zanoni JN, de Sousa Lopes MLD, Clebis NK. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats. Biomed Pharmacother. 2022;151:113131. https://doi.org/10.1016/j.biopha.2022.113131
  • [19] Banerjee M, Vats P. Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus. Redox Biol. 2014;2:170-177. https://doi.org/10.1016/j.redox.2013.12.001
  • [20] Verma S, Sagar N, Vats P, Shukla K, Abbas M, Banerjee M. Antioxidant enzyme levels as markers for type 2 diabetes mellitus. Int J Bioassays. 2013;2(4):685-690.
  • [21] Al Thani NA, Hasan M, Yalcin HC. Use of animal models for investigating cardioprotective roles of SGLT2 inhibitors. J Cardiovasc Transl Res. 2023;16(5):975-986. https://doi.org/10.1007/s12265-023-10379-5
  • [22] Ertik O, Tunali S, Acar ET, Bal-Demirci T, Ülküseven B, Yanardag R. Antioxidant activity and protective effects of an oxovanadium (IV) complex on heart and aorta injury of STZ-diabetic rats. Biol Trace Elem Res. 2024;202(5):2085 2099. https://doi.org/10.1007/s12011-023-03802-0
  • [23] Ndrepepa G. Myeloperoxidase - A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019;493:36-51. https://doi.org/10.1016/j.cca.2019.02.022
  • [24] Osawa T. Development and application of oxidative stress biomarkers. Biosci Biotechnol Biochem. 2018;82(4):564 572. https://doi.org/10.1080/09168451.2017.1398068
  • [25] Calmarza P, Lapresta C, Martínez M, Lahoz R, Povar J. Utility of myeloperoxidase in the differential diagnosis of acute coronary syndrome. Arch Cardiol Mex 2018;88(5):391-396. https://doi.org/10.1016/j.acmx.2017.11.003
  • [26] Nicholls SJ, Hazen SL. The role of myeloperoxidase in the pathogenesis of coronary artery disease. Jpn J Infect Dis. 2004;57(5):S21-22.
  • [27] Kesavulu MM, Rao BK, Giri R, Vijaya J, Subramanyam G, Apparao C. Lipid peroxidation and antioxidant enzyme status in Type 2 diabetics with coronary heart disease. Diabetes Res Clin Pract. 2001;53(1):33-39. https://doi.org/10.1016/S0168-8227(01)00238-8
  • [28] Xiao Y, Zhao J, Tuazon JP, Borlongan CV, Yu G. MicroRNA-133a and myocardial infarction. Cell Transplant. 2019;28(7):831-838. https://doi.org/10.1177/0963689719843806
  • [29] Sang H-Q, Jiang Z-M, Zhao Q-P, Xin F. MicroRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomed Pharmacother. 2015;71:185-189. https://doi.org/10.1016/j.biopha.2015.02.030
  • [30] Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW, Chakrabarti S. Cardiac miR‐133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med. 2014;18(3):415-421. https://doi.org/10.1111/jcmm.12218
  • [31] Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev. 2010;26(1):40-49. https://doi.org/10.1002/dmrr.1054
  • [32] Ha M, Pang M, Agarwal V, Chen ZJ. Interspecies regulation of microRNAs and their targets. Biochim Biophys Acta. 2008;1779(11):735-742. https://doi.org/10.1016/j.bbagrm.2008.03.004
  • [33] Li T-R, Jia Y-J, Wang Q, Shao X-Q, Zhang P, Lv R-J. Correlation between tumor necrosis factor alpha mRNA and microRNA-155 expression in rat models and patients with temporal lobe epilepsy. Brain Res. 2018;1700:56-65. https://doi.org/10.1016/j.brainres.2018.07.013

The study evaluating the effect of empagliflozin and dapagliflozin on miR-133a expression and oxidative stress in the rat heart induced by streptozotocin/nicotinamide

Year 2024, Volume: 28 Issue: 6, 1892 - 1900, 28.06.2025
https://doi.org/10.29228/jrp.862

Abstract

Empagliflozin and dapagliflozin exert their effects by inhibiting sodium glucose cotransporter 2 (SGLT2), which inhibits glucose absorption from renal tubules. This class of drugs has also been demonstrated in studies to be protective against cardiovascular complications associated with type 2 diabetes mellitus (T2DM). Even in cases without T2DM, they have clinical utility due to their cardioprotective effects. The effects of empagliflozin and dapagliflozin on cardiovascular disorders remain incompletely understood. MicroRNAs (miRNAs) represent a class of small, non-coding RNA molecules that have been implicated in the pathogenesis of cardiovascular damage. miRNA expressions increase or decrease due to hyperglycemia and oxidative stress that occur in T2DM. This study intended to explore the SGLT2 inhibitor effects on miR-133a expressions in diabetic heart tissue by establishing a streptozotocin (STZ)/nicotinamide (NA)-induced diabetic rat model. Also, antioxidant activities were investigated in the heart and aorta tissue. Male-female Sprague-Dawley rats were injected with NA (100 mg/kg) and STZ (55 mg/kg) intraperitoneally (i.p.) respectively. One week after induction T2DM, treatments were carried out for four weeks. At the and of the treatment, the heart and thoracic aortic tissues of rats were removed. In the heart tissue glutathione (GSH), lipid peroxides (LPO), and myeloperoxidase (MPO) levels, and in the aorta tissue GSH and LPO levels were determined by fluorences method. miR-133a expression changes were assessed in the heart tissue by RT-PCR analyses. According to our results, dapagliflozin showed an antioxidant effect by increasing GSH levels in the heart (p<0.01) and aorta tissue more than empagliflozin. miR-133a expressions increased in the T2DM group and decreased in the EMPA (p<0.05) and DAPA groups (p<0.01). Studies on miR-133a expressions in different diabetes models are needed.

References

  • [1] Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther. 2022;7(1):216. https://doi.org/10.1038/s41392-022-01073-0
  • [2] Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: 10.1016/j.diabres.2021.109119. Erratum in: Diabetes Res Clin Pract. 2023;204:110945. https://doi.org/10.1016/j.diabres.2021.109119
  • [3] El-Shafey M, El-Agawy MSE, Eldosoky M, Ebrahim HA, Elsherbini DMA, El-Sherbiny M, Asseri SM, Elsherbiny NM. Role of Dapagliflozin and Liraglutide on Diabetes-Induced Cardiomyopathy in Rats: Implication of Oxidative Stress, Inflammation, and Apoptosis. Mar;13:862394.https://doi.org/10.3389/fendo.2022.862394 Front Endocrinol (Lausanne). 2022
  • [4] Guan H, Tian J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Yin R, Tong X. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: a comprehensive review. Eur J Med Res. 2024;29(1):152. https://doi.org/10.1186/s40001-024-01739-1
  • [5] Yu MG, Gordin D, Fu J, Park K, Li Q, King GL. Protective factors and the pathogenesis of complications in diabetes. Endocr Rev. 2024;45(2):227-252. https://doi.org/10.1210/endrev/bnad030
  • [6] Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovasc Diabetol. 2013;12:142. https://doi.org/10.1186/1475-2840-12-142
  • [7] Knapp M, Tu X, Wu R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin. 2019;40(1):1-8. https://doi.org/10.1038/s41401-018-0042-6
  • [8] Arslan S, Ozcan O, Gurel-Gokmen B, Cevikelli-Yakut ZA, Saygı HI, Sen A, Goger F, Erkanli-Senturk G, Sener G, Tunali-Akbay T. Myrtle improves renovascular hypertension-induced oxidative damage in heart, kidney, and aortic tissue. Biologia. 2022;77(7):1877-1888. https://doi.org/10.1007/s11756-022-01039-1
  • [9] Shrivastav D, Singh DD. Emerging roles of microRNAs as diagnostics and potential therapeutic interest in type 2 diabetes mellitus. World J Clin Cases. 2024;12(3):525-537. https://doi.org/10.12998/wjcc.v12.i3.525
  • [10] Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in cardiac and pulmonary diseases. Int J Mol Sci. 2020;21(12):4370. https://doi.org/10.3390/ijms21124370
  • [11] Shen Y, Cheng L, Xu M, Wang W, Wan Z, Xiong H, Guo W, Cai M, Xu F. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism. 2023;146:155657. https://doi.org/10.1016/j.metabol.2023.155657
  • [12] Dyck JRB, Sossalla S, Hamdani N, Coronel R, Weber NC, Light PE, Zuurbier CJ. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J Mol Cell Cardiol. 2022;167:17-31. https://doi.org/10.1016/j.yjmcc.2022.03.005
  • [13] Hazar-Yavuz AN, Yildiz S, Keles Kaya R, Çam ME, Kabasakal L. Sodium-glucose co-transporter inhibitor dapagliflozin attenuates cognitive deficits in sporadic Alzheimer’s rat model. J Res Pharm. 2022;26(2):298-310. https://doi.org/10.29228/jrp.128
  • [14] Furtado RHM, Bonaca MP, Raz I, Zelniker TA, Mosenzon O, Cahn A, Kuder J, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Nicolau JC, Gause-Nilsson IAM, Fredriksson M, Langkilde AM, Sabatine MS, Wiviott SD. Dapagliflozin and cardiovascular outcomes in patients with type 2 Diabetes Mellitus and previous myocardial infarction. Circulation. 2019;139(22):2516-2527. https://doi.org/10.1161/circulationaha.119.039996.
  • [15] Reid J, Rana K, Niman S, Sheikh-Ali M, Lewis T, Choksi RR, Goldfaden RF. Sodium-Glucose Cotransporter-2 (SGLT-2) Inhibitors for Cardiovascular Disease Prevention. Am J Cardiovasc Drugs. 2020;20(5):419-429. https://doi.org/10.1007/s40256-020-00397-y [16] Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
  • [17] Alsereidi FR, Khashim Z, Marzook H, Gupta A, Al-Rawi AM, Ramadan MM, Saleh MA. Targeting inflammatory signaling pathways with SGLT2 inhibitors: Insights into cardiovascular health and cardiac cell improvement. Curr Probl Cardiol. 2024;49(5):102524. https://doi.org/10.1016/j.cpcardiol.2024.102524
  • [18] da Purificação NRC, Garcia VB, Frez FCV, Sehaber CC, Lima KRA, de Oliveira Lima MF, de Carvalho Vasconcelos R, de Araujo AA, de Araújo Júnior RF, Lacchini S, de Oliveira F, Perles JVCM, Zanoni JN, de Sousa Lopes MLD, Clebis NK. Combined use of systemic quercetin, glutamine and alpha-tocopherol attenuates myocardial fibrosis in diabetic rats. Biomed Pharmacother. 2022;151:113131. https://doi.org/10.1016/j.biopha.2022.113131
  • [19] Banerjee M, Vats P. Reactive metabolites and antioxidant gene polymorphisms in Type 2 diabetes mellitus. Redox Biol. 2014;2:170-177. https://doi.org/10.1016/j.redox.2013.12.001
  • [20] Verma S, Sagar N, Vats P, Shukla K, Abbas M, Banerjee M. Antioxidant enzyme levels as markers for type 2 diabetes mellitus. Int J Bioassays. 2013;2(4):685-690.
  • [21] Al Thani NA, Hasan M, Yalcin HC. Use of animal models for investigating cardioprotective roles of SGLT2 inhibitors. J Cardiovasc Transl Res. 2023;16(5):975-986. https://doi.org/10.1007/s12265-023-10379-5
  • [22] Ertik O, Tunali S, Acar ET, Bal-Demirci T, Ülküseven B, Yanardag R. Antioxidant activity and protective effects of an oxovanadium (IV) complex on heart and aorta injury of STZ-diabetic rats. Biol Trace Elem Res. 2024;202(5):2085 2099. https://doi.org/10.1007/s12011-023-03802-0
  • [23] Ndrepepa G. Myeloperoxidase - A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019;493:36-51. https://doi.org/10.1016/j.cca.2019.02.022
  • [24] Osawa T. Development and application of oxidative stress biomarkers. Biosci Biotechnol Biochem. 2018;82(4):564 572. https://doi.org/10.1080/09168451.2017.1398068
  • [25] Calmarza P, Lapresta C, Martínez M, Lahoz R, Povar J. Utility of myeloperoxidase in the differential diagnosis of acute coronary syndrome. Arch Cardiol Mex 2018;88(5):391-396. https://doi.org/10.1016/j.acmx.2017.11.003
  • [26] Nicholls SJ, Hazen SL. The role of myeloperoxidase in the pathogenesis of coronary artery disease. Jpn J Infect Dis. 2004;57(5):S21-22.
  • [27] Kesavulu MM, Rao BK, Giri R, Vijaya J, Subramanyam G, Apparao C. Lipid peroxidation and antioxidant enzyme status in Type 2 diabetics with coronary heart disease. Diabetes Res Clin Pract. 2001;53(1):33-39. https://doi.org/10.1016/S0168-8227(01)00238-8
  • [28] Xiao Y, Zhao J, Tuazon JP, Borlongan CV, Yu G. MicroRNA-133a and myocardial infarction. Cell Transplant. 2019;28(7):831-838. https://doi.org/10.1177/0963689719843806
  • [29] Sang H-Q, Jiang Z-M, Zhao Q-P, Xin F. MicroRNA-133a improves the cardiac function and fibrosis through inhibiting Akt in heart failure rats. Biomed Pharmacother. 2015;71:185-189. https://doi.org/10.1016/j.biopha.2015.02.030
  • [30] Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW, Chakrabarti S. Cardiac miR‐133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med. 2014;18(3):415-421. https://doi.org/10.1111/jcmm.12218
  • [31] Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev. 2010;26(1):40-49. https://doi.org/10.1002/dmrr.1054
  • [32] Ha M, Pang M, Agarwal V, Chen ZJ. Interspecies regulation of microRNAs and their targets. Biochim Biophys Acta. 2008;1779(11):735-742. https://doi.org/10.1016/j.bbagrm.2008.03.004
  • [33] Li T-R, Jia Y-J, Wang Q, Shao X-Q, Zhang P, Lv R-J. Correlation between tumor necrosis factor alpha mRNA and microRNA-155 expression in rat models and patients with temporal lobe epilepsy. Brain Res. 2018;1700:56-65. https://doi.org/10.1016/j.brainres.2018.07.013
There are 32 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Articles
Authors

Humeysa Kiyak-kirmaci 0000-0003-2574-4762

Ayşe Nur Hazar-yavuz 0000-0003-0784-8779

Elif Beyzanur Polat 0000-0002-3093-3595

Hani Alsaadoni 0000-0001-9943-3364

Hanife Şerife Aktaş 0000-0002-0784-7146

Kübra Elçioğlu 0000-0002-3312-3029

Publication Date June 28, 2025
Submission Date April 26, 2024
Acceptance Date May 21, 2024
Published in Issue Year 2024 Volume: 28 Issue: 6

Cite

APA Kiyak-kirmaci, H., Hazar-yavuz, A. N., Polat, E. B., Alsaadoni, H., et al. (2025). The study evaluating the effect of empagliflozin and dapagliflozin on miR-133a expression and oxidative stress in the rat heart induced by streptozotocin/nicotinamide. Journal of Research in Pharmacy, 28(6), 1892-1900. https://doi.org/10.29228/jrp.862
AMA Kiyak-kirmaci H, Hazar-yavuz AN, Polat EB, Alsaadoni H, Aktaş HŞ, Elçioğlu K. The study evaluating the effect of empagliflozin and dapagliflozin on miR-133a expression and oxidative stress in the rat heart induced by streptozotocin/nicotinamide. J. Res. Pharm. July 2025;28(6):1892-1900. doi:10.29228/jrp.862
Chicago Kiyak-kirmaci, Humeysa, Ayşe Nur Hazar-yavuz, Elif Beyzanur Polat, Hani Alsaadoni, Hanife Şerife Aktaş, and Kübra Elçioğlu. “The Study Evaluating the Effect of Empagliflozin and Dapagliflozin on MiR-133a Expression and Oxidative Stress in the Rat Heart Induced by streptozotocin/Nicotinamide”. Journal of Research in Pharmacy 28, no. 6 (July 2025): 1892-1900. https://doi.org/10.29228/jrp.862.
EndNote Kiyak-kirmaci H, Hazar-yavuz AN, Polat EB, Alsaadoni H, Aktaş HŞ, Elçioğlu K (July 1, 2025) The study evaluating the effect of empagliflozin and dapagliflozin on miR-133a expression and oxidative stress in the rat heart induced by streptozotocin/nicotinamide. Journal of Research in Pharmacy 28 6 1892–1900.
IEEE H. Kiyak-kirmaci, A. N. Hazar-yavuz, E. B. Polat, H. Alsaadoni, H. Ş. Aktaş, and K. Elçioğlu, “The study evaluating the effect of empagliflozin and dapagliflozin on miR-133a expression and oxidative stress in the rat heart induced by streptozotocin/nicotinamide”, J. Res. Pharm., vol. 28, no. 6, pp. 1892–1900, 2025, doi: 10.29228/jrp.862.
ISNAD Kiyak-kirmaci, Humeysa et al. “The Study Evaluating the Effect of Empagliflozin and Dapagliflozin on MiR-133a Expression and Oxidative Stress in the Rat Heart Induced by streptozotocin/Nicotinamide”. Journal of Research in Pharmacy 28/6 (July 2025), 1892-1900. https://doi.org/10.29228/jrp.862.
JAMA Kiyak-kirmaci H, Hazar-yavuz AN, Polat EB, Alsaadoni H, Aktaş HŞ, Elçioğlu K. The study evaluating the effect of empagliflozin and dapagliflozin on miR-133a expression and oxidative stress in the rat heart induced by streptozotocin/nicotinamide. J. Res. Pharm. 2025;28:1892–1900.
MLA Kiyak-kirmaci, Humeysa et al. “The Study Evaluating the Effect of Empagliflozin and Dapagliflozin on MiR-133a Expression and Oxidative Stress in the Rat Heart Induced by streptozotocin/Nicotinamide”. Journal of Research in Pharmacy, vol. 28, no. 6, 2025, pp. 1892-00, doi:10.29228/jrp.862.
Vancouver Kiyak-kirmaci H, Hazar-yavuz AN, Polat EB, Alsaadoni H, Aktaş HŞ, Elçioğlu K. The study evaluating the effect of empagliflozin and dapagliflozin on miR-133a expression and oxidative stress in the rat heart induced by streptozotocin/nicotinamide. J. Res. Pharm. 2025;28(6):1892-900.