Research Article
BibTex RIS Cite
Year 2024, Volume: 28 Issue: 6, 1911 - 1920, 28.06.2025
https://doi.org/10.29228/jrp.864

Abstract

References

  • [1] Schroeder, DC. Thioureas. Chem Rev. 1955; 55 (1): 181-228. https://doi.org/10.1021/cr50001a005
  • [2] Calixto SD, Simao TLBV, Palmeira-Mello MV, Viana GM, Assumpçao PWMC, Rezende MG, Santo CCE, Mussi VO, Rodrigues CR, Lasunskaia, E, Souza AMT, Cabral LM, Muzitano MF. Antimycobacterial and anti inflammatory activities of thiourea derivatives focusing on treatment approaches for severe pulmonary tuberculosis. Bioorg Med Chem. 2022; 53: 116506. https://doi.org/10.1016/j.bmc.2021.116506
  • [3] Ngaini Z, Abd Halim, AN, Rasin F, Wan Zullkiplee, WSH. Synthesis and structure–activity relationship studies of mono-and bis-thiourea derivatives featuring halogenated azo dyes with antimicrobial properties. Phosphorus Sulfur Silicon Relat. Elem. 2022; 197(9): 909-917. https://doi.org/10.1080/10426507.2022.2046577
  • [4] Lafifi I, Khatmi D. Theorical Investigation of the Intramolecular H-Bonding on Tautomerism. Adv Quantum Chem. 2014; 68: 257-268. https://doi.org/10.1016/B978-0-12-800536-1.00013-7
  • [5] Başaran MM, Bacanlı M. Drug induced taste and smell disorders. TJFMPC. 2020; 14(1): 153-162. https://doi.org/10.21763/tjfmpc.616997
  • [6] Ghorab MM, El-Gaby M, Soliman A, Alsaid M, Abdel-Aziz, M, Elaasser M. Synthesis, docking study and biological evaluation of some new thiourea derivates bearing benzenesulfonamide moiety. Chem Cent J. 2017; 11: 42. https://doi.org/10.1186%2Fs13065-017-0271-7
  • [7] McCarthy A, Pirrie L, Hollick J, Ronseaux S, Campbell J, Higgins M, Staples O, Tran F, Slawin A, Lain S, Westwood N. Synthesis and biological characterisation of sirtuin inhibitors based on tenovins. Bioorg Med Chem. 2012; 20: 1779-1793. https://doi.org/10.1016/j.bmc.2012.01.001
  • [8] Limban C, Nuta DC, Missir AV, Roman R, Caproiu MT, Dumitrascu F, Pintilie L, Stefaniu A, Chifiriuc MC, Popa M, Zarafu I, Arsene AL, Pirvu CED, Udeanu DI, Papacocea IR. Synthesis and characterization of new fluoro/trifluoromethyl-substituted acylthiourea derivates with promising activity against planktonic and biofilm embedded microbial cells. Processes. 2020; 8 (5): 503. https://doi.org/10.3390/pr8050503
  • [9] Agili FA Biological applications of thiourea derivatives: detailed review. Chemistry. 2024; 6: 435–468. https://doi.org/10.3390/chemistry6030025
  • [10] Reddy MVB, Srinivasulu D, Peddanna K, Apparao C, Ramesh P. Synthesis and antioxidant activity of new thiazole analogues possessing urea, thiourea, and selenourea functionality. Synth Commun. 2015; 45(22): 2592-2600. http://dx.doi.org/10.1080/00397911.2015.1095929
  • [11] Qiao L, Huang J, Hu W, Zhang Y, Guo J, Cao W, Miao K, Qin B, Song J. Synthesis, characterization, and in vitro evaluation and in silico molecular docking of thiourea derivates incorporating 4- (trifluoromethyl)phenyl moiety. J Mol Struct. 2017; 1139: 149-159. https://doi.org/10.1016/j.molstruc.2017.03.012
  • [12] Javadzade T, Rzayeva I, Demukhamedova S, Akverdieva G, Farzaliyev V, Sujayev A, Chiragov F. Synthesis, structural analysis, DFT study, antioxidant activity of metal complexes of N-substituted thiourea. Polyhedron. 2023; 231: 116274. https://doi.org/10.1016/j.poly.2022.116274
  • [13] Muhammed RA, Abdullah BH, Rahman HS. Synthesis, cytotoxic, antibacterial, antioxidant activities, DFT, and docking of novel complexes of Palladium (II) containing a thiourea derivative and diphosphines. J Mol Struct. 2024; 1295: 136519. https://doi.org/10.1016/j.molstruc.2023.136519
  • [14] Hou Y, Zhu S, Chen Y, Yu M, Liu Y, Li M. Evaluation of antibacterial activity of thiourea derivative TD4 against Methicillin Resistant Staphylococcus aureus via destroying the NAD+/NADH homeostasis. Molecules. 2023; 28: 3219. https://doi.org/10.3390/molecules28073219
  • [15] Türk S, Tok F, Erdoğan Ö, Çevik Ö, Taşkın Tok T, Koçyiğit Kaymakçıoğlu, B, Karakuş S. Synthesis, anticancer evaluation and in silico ADMET studies on urea/thiourea derivates from gabapentin. Phosphorus Sulfur Silicon Relat Elem. 2020; 196(4): 382-388. https://doi.org/10.1080/10426507.2020.1845678
  • [16] Ruswanto R, Nofianti T, Mardianingrum R, Kesuma D, Siswandono. Design, molecular docking, and molecular dynamics of thiourea-iron (III) metal complexes as NUDT5 inhibitors for breast cancer treatment. Heliyon. 2022; 8: 10694. https://doi.org/10.1016/j.heliyon.2022.e10694
  • [17] Taha M, Rahim F, Khan IU, Uddin N, Farooq RK, Wadood A, Rehman AU, Khan KM. Synthesis of thiazole-based thiourea analogs: as anticancer, antiglycation and antioxidant agents, structure activity relationship analysis and docking study. J Biomol Struct Dyn. 2023; 41(21): 12077-12092. https://doi.org/10.1080/07391102.2023.2171134
  • [18] Tatar E, Karakuş S, Küçükgüzel SG, Öktem Okullu S, Ünübol N, Kocagöz T, De Clercq E, Andrei G, Snoeck R, Pannecouque C, Kalaycı S, Şahin F, Sriram D, Yogeeswari P, Küçükgüzel İ. Design, synthesis, and molecular docking studies of a conjugated thiadiazole–thiourea scaffold as antituberculosis agents. Biol Pharm Bull. 2016; 39: 502–515. https://doi.org/10.1248/bpb.b15-00698.
  • [19] Makhakhayi L, Malan F, Senzani S, Tukulula M, Davison C, Mare JA, Nkambule C, Tembu V, Manicum A. Synthesis, characterisation, X-ray diffraction and biological evaluation of new thiourea derivatives against Mycobacterium tuberculosis and cervical cancer. J Mol Struct. 2024; 1314: 138818. https://doi.org/10.1016/j.molstruc.2024.138818
  • [20] Steppeler F, Iwan D, Gaida R, Denel-Bobrowska M, Olejniczak A, Wojaczynska E. Chiral 2-azabicycloalkanes bearing 1,2,3-triazole, thiourea, and ebselen moieties-Synthesis and biological activity. Biomed Pharmacother. 2023; 164: 114908. https://doi.org/10.1016/j.biopha.2023.114908
  • [21] El-Sayed A, Elsayed G, Rizk S, Ismail M. Synthesis, insecticidal activity and DFT study of 1,2,4-triazolidinthione, 1,3,5-oxadiazine and thiourea derivatives. Org Prep Proced Int. 2024; 56(1): 38-51. https://doi.org/10.1080/00304948.2023.2209489
  • [22] Ullah H, Nawaz AR, Nabi M, Nawaz A, Rahim F, Khan F, Hussain A. Design, synthesis, in vitro urease inhibitory potential and in silico molecular docking study of substituted thiazole bearing thiourea hybrid analogues. Chem Data Coll. 2023; 48: 101086. https://doi.org/10.1016/j.cdc.2023.101086
  • [23] Korkmaz N, Obaidi OA, Senturk M, Astley D, Ekinci D, Supuran CT. Synthesis and biological activity of novel thiourea derivatives as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2015; 30(1): 75-80. https://doi.org/10.3109/14756366.2013.879656
  • [24] Saeed A, Ejaz SA, Saeed M, Channar PA, Aziz M, Fayyaz A, Zargar S, Wani T, Alanazi H, Alharbi M, Iqbal J. Synthesis, biochemical characterization, and in-silico investigations of acyl-3-(ciprofloxacinyl)thioureas as inhibitors of carbonic anhydrase-II. Polycylc Aromat Comp. 2023; 43(10): 8946-8964. https://doi.org/10.1080/10406638.2022.2157027
  • [25] Garibov E, Taslimi P, Sujayev A, Bingol Z, Çetinkaya S, Gulçin İ, Beydemir S, Farzaliyev V, Alwasel S, Supuran C. Synthesis of 4, 5-disubstituted-2-thioxo-1, 2, 3, 4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. J Enzyme Inhib Med Chem. 2016; 31(3): 1-9. https://doi.org/10.1080/14756366.2016.1198901
  • [26] Ullah H, Rahim F, Taha M, Khan F, Mehran, Alotaibi B, Zulfat M, Wadood A. Synthesis, in vitro acetylcholinesterase, butyrylcholinesterase activities and in silico molecular docking study of thiazole-thiourea hybrid derivatives. Chem Data Coll. 2023; 45: 101025. https://doi.org/10.1016/j.cdc.2023.101025
  • [27] Küçük İyidoğan A, Sıcak Y, Uysal DB, Taşkın Tok T, Öztürk M, Oruç Emre EE. Chiral thioureas containing naphthalene moiety as selective butyrylcholinesterase inhibitors: design, synthesis, cholinesterase inhibition activity and molecular docking studies. J Mol Struct. 2024; 139933. https://doi.org/10.1016/j.molstruc.2024.139333
  • [28] Ahmed A, Shafique I, Saeed A, Shabir G, Saleem A, Taslimi P, Taskin Tok T, Kirici M, Üç EM, Hashmi MZ. Nimesulide linked acyl thioureas potent carbonic anhydrase I, II and α-glucosidase inhibitors: Design, synthesis and molecular docking studies. Eur J Med Chem Rep. 2022; 6: 100082. https://doi.org/10.1016/j.ejmcr.2022.100082
  • [29] Khan I, Rehman W, Rahim F, Hussain R, Khan S, Rasheed L, Alanazi A, Hefnawy M, Alanazi M, Shah S, Taha M. Synthesis, in vitro biological analysis and molecular docking studies of new thiadiazole-based thiourea derivatives as dual inhibitors of α-amylase and α-glucosidase. Arab J Chem. 2023; 16: 105078. https://doi.org/10.1016/j.arabjc.2023.105078
  • [30] Barati S, Sadeghipour P, Ghaemmaghami Z, Mohebbi B, Baay M, Alemzadeh-Ansari MJ, Hosseini Z, Karimi Y, Malek M, Maleki M, Noohi F, Khalili Y, Alizadehasl A, Naderi N, Arabian M, Pouraliakbar H, Khaleghparast S, Ghadrdoost B, Boudagh S, Bakhshandeh H. Warning signals of elevated prediabetes prevalence in the modern Iranian urban population. Prim Care Diabetes. 2021; 15: 472–479. https://doi.org/10.1016/j.pcd.2021.04.002
  • [31] Antar S, Ashour N, Sharaky M, Khattab M, Ashour N, Zaid R, Roh EJ, Elkamhawy A, Al-Karmalawy A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2023; 168: 115734. https://doi.org/10.1016/j.biopha.2023.115734
  • [32] Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother. 2023; 168: 115544. https://doi.org/10.1016/j.biopha.2023.115544
  • [33] Yang C, Liu H, Xie Z, Yang Q, Du L, Xie C. The protective role of shenqi compound in type 2 diabetes: A comprehensive investigation of pancreatic β-cell function and mass. Biomed Pharmacother. 2023; 166: 115287. https://doi.org/10.1016/j.biopha.2023.115287
  • [34] Ayesha Fauzi A, Thoe ES, Quan TY, Yin ACY. Insights from insulin resistance pathways: Therapeutic approaches against Alzheimer associated diabetes mellitus. J Diabetes Complications. 2023; 37(11): 108629. https://doi.org/10.1016/j.jdiacomp.2023.108629
  • [35] Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother. 2023; 166: 115395. https://doi.org/10.1016/j.biopha.2023.115395
  • [36] Toni Mora T, Roche D, Rodriguez-Sanchez B. Predicting the onset of diabetes-related complications after a diabetes diagnosis with machine learning algorithms. Diabetes Res Clin Pract. 2023; 204: 110910. https://doi.org/10.1016/j.diabres.2023.110910
  • [37] Suh J, Choi Y, Oh JS, Song K, Choi HS, Kwon A, Chae HW, Kim H. Association between early glycemic management and diabetes complications in type 1 diabetes mellitus: A retrospective cohort study. Prim Care Diabetes. 2023; 17(1): 60–67. https://doi.org/10.1016/j.pcd.2022.12.006
  • [38] Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, Sasapu A, Beebe A, Patil N, Musham CK, Lohani GP and Mirza W. Clinical review of antidiabetic drugs: Implications for type 2 Diabetes Mellitus management. Front Endocrinol. 2017; 8:6. https://doi.org/10.3389/fendo.2017.00006
  • [39] Moussa N, Dayoub N. Exploring the role of COX-2 in Alzheimer’s disease: Potential therapeutic implications of COX-2 inhibitors. Saudi Pharm J. 2023; 31(9): 101729. https://doi.org/10.1016%2Fj.jsps.2023.101729
  • [40] Akkaya D, Seyhan G, Sari S, Barut B. In vitro and in silico investigation of FDA-approved drugs to be repurposed against Alzheimer's disease. Drug Dev Res. 2024; 85(3): e22184. https://doi.org/10.1002/ddr.22184
  • [41] Alzheimer’s Association Report 2024. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2024; 20: 3708 3821. https://doi.org/10.1002/alz.13809
  • [42] Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer Disease: An update. J Cent Nerv Syst. 2020; 12: 1-12. https://doi.org/10.1177/1179573520907397
  • [43] Mishra CB, Manral A, Kumari S, Saini V, Tiwari M. Design, synthesis and evaluation of novel indandione derivatives as multifunctional agents with cholinesterase inhibition, anti-β-amyloid aggregation, antioxidant and neuro-protection properties against Alzheimer’s disease. Bioorg Med Chem. 2016; 24(16): 3829–3841. https://doi.org/10.1016/j.bmc.2016.06.027
  • [44] Gonzalez P, Lozano P, Ros G, Solano F, Hyperglycemia and oxidative Stress: An integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci. 2023; 24: 9352. https://doi.org/10.3390/ijms24119352
  • [45] Olufunmilayo, EO, Gerke-Duncan MB, Holsinger RM, Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 2023; 12(2): 517. https://doi.org/10.3390/antiox12020517
  • [46] Kasturi S, Surarapu S, BathojuCC, Uppalanchi S, Dwivedi S, Perumal Y, Sigalapalli DK, Babu BN, Ethiraj K, Anireddy JS. Synthesis, molecular modeling and biological evaluation of aza-flavanones as α-glucosidase inhibitors. Med Chem Comm. 2017; 8: 1618-1630. https://doi.org/10.1039/C7MD00162B
  • [47] Türk S, Tok F, Çelik H, Karakuş S, Nadaroğlu H, Koçyiğit-Kaymakçıoğlu B, Küçükoğlu K. Some N-(5-methyl-1,3,4 thiadiazol-2yl)-4-[(3-substituted)ureido/ thioureido]benzenesulfonamides as carbonic anhydrase I and II ınhibitors. Marmara Pharm J. 2017; 21: 89-95. https://doi.org/10.12991/marupj.259885
  • [48] Karakuş S, Tok F, Türk S, Salva E, Tatar G, Taskın-Tok T, Kocyigit-Kaymakcioglu B. Synthesis, anticancer activity and ADMET studies of N-(5-methyl-1,3,4-thiadiazol-2-yl)-4-[(3-subsituted)ureido/thioureido]benzenesulfonamide derivatives. Phosphorus Sulfur Silicon Relat Elem. 2018; 193(8): 528-534. https://doi.org/10.1080/10426507.2018.1452924
  • [49] Barut EN, Barut B, Engin S, Yıldırım S, Yaşar A, Türkiş S, Özel A, Sezen F. Antioxidant capacity, anti acetylcholinesterase activity and inhibitory effect on lipid peroxidation in mice brain homogenate of Achillea millefolium. Turk J Biochem. 2017; 42: 493–502. https://doi.org/10.1515/tjb-2017-0084
  • [50] Biyiklioglu Z, Bas H, Seyhan G, Barut B. Non-aggregated and water soluble non-peripherally octa substituted Co(II) and Cu(II) phthalocyanines: Synthesis and α-glucosidase inhibitory effects. J Inorg Biochem. 2024; 257: 112581. https://doi.org/10.1016/j.jinorgbio.2024.112581
  • [51] Biyiklioglu Z, Seyhan G, Öztürmen BA, Kolci K, Reis R, Barut B. AChE/BuChE inhibitory, DNA nuclease and cytotoxic properties of axially 5-[6-(benzyloxy)-2H-1,3-benzoxazin-3(4H)-yl]pentanoxy and 5-[6-(hexyloxy)-2H-1,3 benzoxazin-3(4H)-yl]pentanoxy substituted silicon phthalocyanines, J Organomet Chem. 2023; 1003: 122926. https://doi.org/10.1016/j.jorganchem.2023.122926

Synthesis, characterization and biological activity potential of some novel thiourea derivatives

Year 2024, Volume: 28 Issue: 6, 1911 - 1920, 28.06.2025
https://doi.org/10.29228/jrp.864

Abstract

Within the scope of this study, a new series of thiourea derivatives were synthesized by refluxing different anthranilic acid derivatives with various isothiocyanates in dry acetone medium. The synthesized compounds were purified by crystallization and their purity was determined by TLC method. The structures of the obtained compounds were elucidated by using different spectroscopic methods such as IR, 1H-NMR, 13C-NMR, besides elemental analysis. The inhibitory effects of the compounds against DPPH radical scavenging, α-glucosidase and acetylcholinesterase were investigated by using spectrophotometric method. The results showed that the compounds had moderate radical scavenging activity according to gallic acid (92.25 ± 0.14% at 100 µM) which was used as a reference compound. Compound 5 in the presence of trifluoromethyl group demonstrated the highest α-glucosidase inhibitory effect with 52.26 ± 2.35% at 100 µM. On the other hand, the compounds demonstrated low AChE inhibitory effects compared to galantamine (80.33 ± 0.77% at 100 µM) which was used as a reference compound.

References

  • [1] Schroeder, DC. Thioureas. Chem Rev. 1955; 55 (1): 181-228. https://doi.org/10.1021/cr50001a005
  • [2] Calixto SD, Simao TLBV, Palmeira-Mello MV, Viana GM, Assumpçao PWMC, Rezende MG, Santo CCE, Mussi VO, Rodrigues CR, Lasunskaia, E, Souza AMT, Cabral LM, Muzitano MF. Antimycobacterial and anti inflammatory activities of thiourea derivatives focusing on treatment approaches for severe pulmonary tuberculosis. Bioorg Med Chem. 2022; 53: 116506. https://doi.org/10.1016/j.bmc.2021.116506
  • [3] Ngaini Z, Abd Halim, AN, Rasin F, Wan Zullkiplee, WSH. Synthesis and structure–activity relationship studies of mono-and bis-thiourea derivatives featuring halogenated azo dyes with antimicrobial properties. Phosphorus Sulfur Silicon Relat. Elem. 2022; 197(9): 909-917. https://doi.org/10.1080/10426507.2022.2046577
  • [4] Lafifi I, Khatmi D. Theorical Investigation of the Intramolecular H-Bonding on Tautomerism. Adv Quantum Chem. 2014; 68: 257-268. https://doi.org/10.1016/B978-0-12-800536-1.00013-7
  • [5] Başaran MM, Bacanlı M. Drug induced taste and smell disorders. TJFMPC. 2020; 14(1): 153-162. https://doi.org/10.21763/tjfmpc.616997
  • [6] Ghorab MM, El-Gaby M, Soliman A, Alsaid M, Abdel-Aziz, M, Elaasser M. Synthesis, docking study and biological evaluation of some new thiourea derivates bearing benzenesulfonamide moiety. Chem Cent J. 2017; 11: 42. https://doi.org/10.1186%2Fs13065-017-0271-7
  • [7] McCarthy A, Pirrie L, Hollick J, Ronseaux S, Campbell J, Higgins M, Staples O, Tran F, Slawin A, Lain S, Westwood N. Synthesis and biological characterisation of sirtuin inhibitors based on tenovins. Bioorg Med Chem. 2012; 20: 1779-1793. https://doi.org/10.1016/j.bmc.2012.01.001
  • [8] Limban C, Nuta DC, Missir AV, Roman R, Caproiu MT, Dumitrascu F, Pintilie L, Stefaniu A, Chifiriuc MC, Popa M, Zarafu I, Arsene AL, Pirvu CED, Udeanu DI, Papacocea IR. Synthesis and characterization of new fluoro/trifluoromethyl-substituted acylthiourea derivates with promising activity against planktonic and biofilm embedded microbial cells. Processes. 2020; 8 (5): 503. https://doi.org/10.3390/pr8050503
  • [9] Agili FA Biological applications of thiourea derivatives: detailed review. Chemistry. 2024; 6: 435–468. https://doi.org/10.3390/chemistry6030025
  • [10] Reddy MVB, Srinivasulu D, Peddanna K, Apparao C, Ramesh P. Synthesis and antioxidant activity of new thiazole analogues possessing urea, thiourea, and selenourea functionality. Synth Commun. 2015; 45(22): 2592-2600. http://dx.doi.org/10.1080/00397911.2015.1095929
  • [11] Qiao L, Huang J, Hu W, Zhang Y, Guo J, Cao W, Miao K, Qin B, Song J. Synthesis, characterization, and in vitro evaluation and in silico molecular docking of thiourea derivates incorporating 4- (trifluoromethyl)phenyl moiety. J Mol Struct. 2017; 1139: 149-159. https://doi.org/10.1016/j.molstruc.2017.03.012
  • [12] Javadzade T, Rzayeva I, Demukhamedova S, Akverdieva G, Farzaliyev V, Sujayev A, Chiragov F. Synthesis, structural analysis, DFT study, antioxidant activity of metal complexes of N-substituted thiourea. Polyhedron. 2023; 231: 116274. https://doi.org/10.1016/j.poly.2022.116274
  • [13] Muhammed RA, Abdullah BH, Rahman HS. Synthesis, cytotoxic, antibacterial, antioxidant activities, DFT, and docking of novel complexes of Palladium (II) containing a thiourea derivative and diphosphines. J Mol Struct. 2024; 1295: 136519. https://doi.org/10.1016/j.molstruc.2023.136519
  • [14] Hou Y, Zhu S, Chen Y, Yu M, Liu Y, Li M. Evaluation of antibacterial activity of thiourea derivative TD4 against Methicillin Resistant Staphylococcus aureus via destroying the NAD+/NADH homeostasis. Molecules. 2023; 28: 3219. https://doi.org/10.3390/molecules28073219
  • [15] Türk S, Tok F, Erdoğan Ö, Çevik Ö, Taşkın Tok T, Koçyiğit Kaymakçıoğlu, B, Karakuş S. Synthesis, anticancer evaluation and in silico ADMET studies on urea/thiourea derivates from gabapentin. Phosphorus Sulfur Silicon Relat Elem. 2020; 196(4): 382-388. https://doi.org/10.1080/10426507.2020.1845678
  • [16] Ruswanto R, Nofianti T, Mardianingrum R, Kesuma D, Siswandono. Design, molecular docking, and molecular dynamics of thiourea-iron (III) metal complexes as NUDT5 inhibitors for breast cancer treatment. Heliyon. 2022; 8: 10694. https://doi.org/10.1016/j.heliyon.2022.e10694
  • [17] Taha M, Rahim F, Khan IU, Uddin N, Farooq RK, Wadood A, Rehman AU, Khan KM. Synthesis of thiazole-based thiourea analogs: as anticancer, antiglycation and antioxidant agents, structure activity relationship analysis and docking study. J Biomol Struct Dyn. 2023; 41(21): 12077-12092. https://doi.org/10.1080/07391102.2023.2171134
  • [18] Tatar E, Karakuş S, Küçükgüzel SG, Öktem Okullu S, Ünübol N, Kocagöz T, De Clercq E, Andrei G, Snoeck R, Pannecouque C, Kalaycı S, Şahin F, Sriram D, Yogeeswari P, Küçükgüzel İ. Design, synthesis, and molecular docking studies of a conjugated thiadiazole–thiourea scaffold as antituberculosis agents. Biol Pharm Bull. 2016; 39: 502–515. https://doi.org/10.1248/bpb.b15-00698.
  • [19] Makhakhayi L, Malan F, Senzani S, Tukulula M, Davison C, Mare JA, Nkambule C, Tembu V, Manicum A. Synthesis, characterisation, X-ray diffraction and biological evaluation of new thiourea derivatives against Mycobacterium tuberculosis and cervical cancer. J Mol Struct. 2024; 1314: 138818. https://doi.org/10.1016/j.molstruc.2024.138818
  • [20] Steppeler F, Iwan D, Gaida R, Denel-Bobrowska M, Olejniczak A, Wojaczynska E. Chiral 2-azabicycloalkanes bearing 1,2,3-triazole, thiourea, and ebselen moieties-Synthesis and biological activity. Biomed Pharmacother. 2023; 164: 114908. https://doi.org/10.1016/j.biopha.2023.114908
  • [21] El-Sayed A, Elsayed G, Rizk S, Ismail M. Synthesis, insecticidal activity and DFT study of 1,2,4-triazolidinthione, 1,3,5-oxadiazine and thiourea derivatives. Org Prep Proced Int. 2024; 56(1): 38-51. https://doi.org/10.1080/00304948.2023.2209489
  • [22] Ullah H, Nawaz AR, Nabi M, Nawaz A, Rahim F, Khan F, Hussain A. Design, synthesis, in vitro urease inhibitory potential and in silico molecular docking study of substituted thiazole bearing thiourea hybrid analogues. Chem Data Coll. 2023; 48: 101086. https://doi.org/10.1016/j.cdc.2023.101086
  • [23] Korkmaz N, Obaidi OA, Senturk M, Astley D, Ekinci D, Supuran CT. Synthesis and biological activity of novel thiourea derivatives as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2015; 30(1): 75-80. https://doi.org/10.3109/14756366.2013.879656
  • [24] Saeed A, Ejaz SA, Saeed M, Channar PA, Aziz M, Fayyaz A, Zargar S, Wani T, Alanazi H, Alharbi M, Iqbal J. Synthesis, biochemical characterization, and in-silico investigations of acyl-3-(ciprofloxacinyl)thioureas as inhibitors of carbonic anhydrase-II. Polycylc Aromat Comp. 2023; 43(10): 8946-8964. https://doi.org/10.1080/10406638.2022.2157027
  • [25] Garibov E, Taslimi P, Sujayev A, Bingol Z, Çetinkaya S, Gulçin İ, Beydemir S, Farzaliyev V, Alwasel S, Supuran C. Synthesis of 4, 5-disubstituted-2-thioxo-1, 2, 3, 4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. J Enzyme Inhib Med Chem. 2016; 31(3): 1-9. https://doi.org/10.1080/14756366.2016.1198901
  • [26] Ullah H, Rahim F, Taha M, Khan F, Mehran, Alotaibi B, Zulfat M, Wadood A. Synthesis, in vitro acetylcholinesterase, butyrylcholinesterase activities and in silico molecular docking study of thiazole-thiourea hybrid derivatives. Chem Data Coll. 2023; 45: 101025. https://doi.org/10.1016/j.cdc.2023.101025
  • [27] Küçük İyidoğan A, Sıcak Y, Uysal DB, Taşkın Tok T, Öztürk M, Oruç Emre EE. Chiral thioureas containing naphthalene moiety as selective butyrylcholinesterase inhibitors: design, synthesis, cholinesterase inhibition activity and molecular docking studies. J Mol Struct. 2024; 139933. https://doi.org/10.1016/j.molstruc.2024.139333
  • [28] Ahmed A, Shafique I, Saeed A, Shabir G, Saleem A, Taslimi P, Taskin Tok T, Kirici M, Üç EM, Hashmi MZ. Nimesulide linked acyl thioureas potent carbonic anhydrase I, II and α-glucosidase inhibitors: Design, synthesis and molecular docking studies. Eur J Med Chem Rep. 2022; 6: 100082. https://doi.org/10.1016/j.ejmcr.2022.100082
  • [29] Khan I, Rehman W, Rahim F, Hussain R, Khan S, Rasheed L, Alanazi A, Hefnawy M, Alanazi M, Shah S, Taha M. Synthesis, in vitro biological analysis and molecular docking studies of new thiadiazole-based thiourea derivatives as dual inhibitors of α-amylase and α-glucosidase. Arab J Chem. 2023; 16: 105078. https://doi.org/10.1016/j.arabjc.2023.105078
  • [30] Barati S, Sadeghipour P, Ghaemmaghami Z, Mohebbi B, Baay M, Alemzadeh-Ansari MJ, Hosseini Z, Karimi Y, Malek M, Maleki M, Noohi F, Khalili Y, Alizadehasl A, Naderi N, Arabian M, Pouraliakbar H, Khaleghparast S, Ghadrdoost B, Boudagh S, Bakhshandeh H. Warning signals of elevated prediabetes prevalence in the modern Iranian urban population. Prim Care Diabetes. 2021; 15: 472–479. https://doi.org/10.1016/j.pcd.2021.04.002
  • [31] Antar S, Ashour N, Sharaky M, Khattab M, Ashour N, Zaid R, Roh EJ, Elkamhawy A, Al-Karmalawy A. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother. 2023; 168: 115734. https://doi.org/10.1016/j.biopha.2023.115734
  • [32] Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother. 2023; 168: 115544. https://doi.org/10.1016/j.biopha.2023.115544
  • [33] Yang C, Liu H, Xie Z, Yang Q, Du L, Xie C. The protective role of shenqi compound in type 2 diabetes: A comprehensive investigation of pancreatic β-cell function and mass. Biomed Pharmacother. 2023; 166: 115287. https://doi.org/10.1016/j.biopha.2023.115287
  • [34] Ayesha Fauzi A, Thoe ES, Quan TY, Yin ACY. Insights from insulin resistance pathways: Therapeutic approaches against Alzheimer associated diabetes mellitus. J Diabetes Complications. 2023; 37(11): 108629. https://doi.org/10.1016/j.jdiacomp.2023.108629
  • [35] Gao J, Yang T, Song B, Ma X, Ma Y, Lin X, Wang H. Abnormal tryptophan catabolism in diabetes mellitus and its complications: Opportunities and challenges. Biomed Pharmacother. 2023; 166: 115395. https://doi.org/10.1016/j.biopha.2023.115395
  • [36] Toni Mora T, Roche D, Rodriguez-Sanchez B. Predicting the onset of diabetes-related complications after a diabetes diagnosis with machine learning algorithms. Diabetes Res Clin Pract. 2023; 204: 110910. https://doi.org/10.1016/j.diabres.2023.110910
  • [37] Suh J, Choi Y, Oh JS, Song K, Choi HS, Kwon A, Chae HW, Kim H. Association between early glycemic management and diabetes complications in type 1 diabetes mellitus: A retrospective cohort study. Prim Care Diabetes. 2023; 17(1): 60–67. https://doi.org/10.1016/j.pcd.2022.12.006
  • [38] Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, Sasapu A, Beebe A, Patil N, Musham CK, Lohani GP and Mirza W. Clinical review of antidiabetic drugs: Implications for type 2 Diabetes Mellitus management. Front Endocrinol. 2017; 8:6. https://doi.org/10.3389/fendo.2017.00006
  • [39] Moussa N, Dayoub N. Exploring the role of COX-2 in Alzheimer’s disease: Potential therapeutic implications of COX-2 inhibitors. Saudi Pharm J. 2023; 31(9): 101729. https://doi.org/10.1016%2Fj.jsps.2023.101729
  • [40] Akkaya D, Seyhan G, Sari S, Barut B. In vitro and in silico investigation of FDA-approved drugs to be repurposed against Alzheimer's disease. Drug Dev Res. 2024; 85(3): e22184. https://doi.org/10.1002/ddr.22184
  • [41] Alzheimer’s Association Report 2024. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2024; 20: 3708 3821. https://doi.org/10.1002/alz.13809
  • [42] Yiannopoulou KG, Papageorgiou SG. Current and future treatments in Alzheimer Disease: An update. J Cent Nerv Syst. 2020; 12: 1-12. https://doi.org/10.1177/1179573520907397
  • [43] Mishra CB, Manral A, Kumari S, Saini V, Tiwari M. Design, synthesis and evaluation of novel indandione derivatives as multifunctional agents with cholinesterase inhibition, anti-β-amyloid aggregation, antioxidant and neuro-protection properties against Alzheimer’s disease. Bioorg Med Chem. 2016; 24(16): 3829–3841. https://doi.org/10.1016/j.bmc.2016.06.027
  • [44] Gonzalez P, Lozano P, Ros G, Solano F, Hyperglycemia and oxidative Stress: An integral, updated and critical overview of their metabolic interconnections. Int J Mol Sci. 2023; 24: 9352. https://doi.org/10.3390/ijms24119352
  • [45] Olufunmilayo, EO, Gerke-Duncan MB, Holsinger RM, Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 2023; 12(2): 517. https://doi.org/10.3390/antiox12020517
  • [46] Kasturi S, Surarapu S, BathojuCC, Uppalanchi S, Dwivedi S, Perumal Y, Sigalapalli DK, Babu BN, Ethiraj K, Anireddy JS. Synthesis, molecular modeling and biological evaluation of aza-flavanones as α-glucosidase inhibitors. Med Chem Comm. 2017; 8: 1618-1630. https://doi.org/10.1039/C7MD00162B
  • [47] Türk S, Tok F, Çelik H, Karakuş S, Nadaroğlu H, Koçyiğit-Kaymakçıoğlu B, Küçükoğlu K. Some N-(5-methyl-1,3,4 thiadiazol-2yl)-4-[(3-substituted)ureido/ thioureido]benzenesulfonamides as carbonic anhydrase I and II ınhibitors. Marmara Pharm J. 2017; 21: 89-95. https://doi.org/10.12991/marupj.259885
  • [48] Karakuş S, Tok F, Türk S, Salva E, Tatar G, Taskın-Tok T, Kocyigit-Kaymakcioglu B. Synthesis, anticancer activity and ADMET studies of N-(5-methyl-1,3,4-thiadiazol-2-yl)-4-[(3-subsituted)ureido/thioureido]benzenesulfonamide derivatives. Phosphorus Sulfur Silicon Relat Elem. 2018; 193(8): 528-534. https://doi.org/10.1080/10426507.2018.1452924
  • [49] Barut EN, Barut B, Engin S, Yıldırım S, Yaşar A, Türkiş S, Özel A, Sezen F. Antioxidant capacity, anti acetylcholinesterase activity and inhibitory effect on lipid peroxidation in mice brain homogenate of Achillea millefolium. Turk J Biochem. 2017; 42: 493–502. https://doi.org/10.1515/tjb-2017-0084
  • [50] Biyiklioglu Z, Bas H, Seyhan G, Barut B. Non-aggregated and water soluble non-peripherally octa substituted Co(II) and Cu(II) phthalocyanines: Synthesis and α-glucosidase inhibitory effects. J Inorg Biochem. 2024; 257: 112581. https://doi.org/10.1016/j.jinorgbio.2024.112581
  • [51] Biyiklioglu Z, Seyhan G, Öztürmen BA, Kolci K, Reis R, Barut B. AChE/BuChE inhibitory, DNA nuclease and cytotoxic properties of axially 5-[6-(benzyloxy)-2H-1,3-benzoxazin-3(4H)-yl]pentanoxy and 5-[6-(hexyloxy)-2H-1,3 benzoxazin-3(4H)-yl]pentanoxy substituted silicon phthalocyanines, J Organomet Chem. 2023; 1003: 122926. https://doi.org/10.1016/j.jorganchem.2023.122926
There are 51 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Sevda Türk 0000-0002-4567-6739

Didem Akkaya 0000-0002-0711-951X

Burak Kırılmaz 0009-0003-3585-4997

Ezgi Merve Önal 0009-0004-6814-9845

Burak Barut 0000-0002-7441-8771

Publication Date June 28, 2025
Submission Date August 2, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024 Volume: 28 Issue: 6

Cite

APA Türk, S., Akkaya, D., Kırılmaz, B., Önal, E. M., et al. (2025). Synthesis, characterization and biological activity potential of some novel thiourea derivatives. Journal of Research in Pharmacy, 28(6), 1911-1920. https://doi.org/10.29228/jrp.864
AMA Türk S, Akkaya D, Kırılmaz B, Önal EM, Barut B. Synthesis, characterization and biological activity potential of some novel thiourea derivatives. J. Res. Pharm. July 2025;28(6):1911-1920. doi:10.29228/jrp.864
Chicago Türk, Sevda, Didem Akkaya, Burak Kırılmaz, Ezgi Merve Önal, and Burak Barut. “Synthesis, Characterization and Biological Activity Potential of Some Novel Thiourea Derivatives”. Journal of Research in Pharmacy 28, no. 6 (July 2025): 1911-20. https://doi.org/10.29228/jrp.864.
EndNote Türk S, Akkaya D, Kırılmaz B, Önal EM, Barut B (July 1, 2025) Synthesis, characterization and biological activity potential of some novel thiourea derivatives. Journal of Research in Pharmacy 28 6 1911–1920.
IEEE S. Türk, D. Akkaya, B. Kırılmaz, E. M. Önal, and B. Barut, “Synthesis, characterization and biological activity potential of some novel thiourea derivatives”, J. Res. Pharm., vol. 28, no. 6, pp. 1911–1920, 2025, doi: 10.29228/jrp.864.
ISNAD Türk, Sevda et al. “Synthesis, Characterization and Biological Activity Potential of Some Novel Thiourea Derivatives”. Journal of Research in Pharmacy 28/6 (July 2025), 1911-1920. https://doi.org/10.29228/jrp.864.
JAMA Türk S, Akkaya D, Kırılmaz B, Önal EM, Barut B. Synthesis, characterization and biological activity potential of some novel thiourea derivatives. J. Res. Pharm. 2025;28:1911–1920.
MLA Türk, Sevda et al. “Synthesis, Characterization and Biological Activity Potential of Some Novel Thiourea Derivatives”. Journal of Research in Pharmacy, vol. 28, no. 6, 2025, pp. 1911-20, doi:10.29228/jrp.864.
Vancouver Türk S, Akkaya D, Kırılmaz B, Önal EM, Barut B. Synthesis, characterization and biological activity potential of some novel thiourea derivatives. J. Res. Pharm. 2025;28(6):1911-20.