Review
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 4, 1379 - 1418, 05.07.2025
https://doi.org/10.12991/jrespharm.1653671

Abstract

References

  • [1] Rawat S. Food Spoilage: Microorganisms and their prevention. Asian J Plant Sci Res. 2015; 5(4): 47-56.
  • [2] Sahu M, Bala S. Food processing, food spoilage and their prevention: An overview. Int J Life-Sci Sci Res. 2017; 3(1): 753-759. https://doi.org/10.21276/ijlssr.2017.3.1.1
  • [3] Sherawat M, Rahi RK, Gupta V, Neelam D, Sain D. Prevention and control of food spoilage: an overview. Int J Pharm Biol Sci. 2021; 11(1): 124-130. https://doi.org/10.21276/ijpbs.2021.11.1.1
  • [4] Silva MM, Lidon F. Food preservatives–An overview on applications and side effects. Emirates J Food Agric. 2016: 366-373. https://doi.org/10.9755/ejfa.2016-04-351
  • [5] Anand S, Sati N. Artificial preservatives and their harmful effects: looking toward nature for safer alternatives. Int J Pharm Sci Res. 2013; 4(7): 2496-2501. https://doi.org/10.13040/IJPSR.0975-8232.4(7).24960-01
  • [6] Sharma S. Food preservatives and their harmful effects. Int J Sci Res Pub. 2015; 5(4): 1-2.
  • [7] Kumari PK, Akhila S, Rao YS, Devi BR. Alternative to artificial preservatives. Syst Rev Pharm. 2019; 10: 99-102. https://doi.org/10.5530/srp.2019.1.17
  • [8] Mihai AL, Popa ME. Essential oils utilization in food industry-a literature review. Sci Bull Ser F.2013; 17: 187-192.
  • [9] Salanță LC, Cropotova J. An update on effectiveness and practicability of plant essential oils in the food industry. Plants. 2022; 11(19): 2488. https://doi.org/10.3390/plants11192488
  • [10] Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crop Prod. 2014; 62: 250-264. https://doi.org/10.1016/j.indcrop.2014.05.055
  • [11] Wojtunik-Kulesza KA. Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules. 2022; 27(5): 1716. https://doi.org/10.3390/molecules27051716
  • [12] Loying R, Gogoi R, Sarma N, Borah A, Munda S, Pandey SK, Lal M. Chemical compositions, in-vitro antioxidant, anti-microbial, anti-inflammatory and cytotoxic activities of essential oil of Acorus calamus L. rhizome from North-East India. J Essent Oil Bear Plants. 2019; 22(5): 1299-1312. https://doi.org/10.1080/0972060X.2019.1696236
  • [13] Shukla R, Singh P, Prakash B, Dubey NK. Efficacy of A corus calamus L. essential oil as a safe plant‐based antioxidant, A flatoxin B 1 suppressor and broad spectrum antimicrobial against food‐infesting fungi. Int J Food Sci Technol. 2013; 48(1): 128-135. https://doi.org/10.1111/j.1365-2621.2012.03168.x
  • [14] Kouame BKFP, Toure D, Kablan L, Bedi G, Tea I, Robins R, Chalchat JC, Tonzibo F. Chemical constituents and antibacterial activity of essential oils from flowers and stems of Ageratum conyzoides from Ivory Coast. Rec Nat Prod. 2018; 12(2):160-168. http://doi.org/10.25135/rnp.22.17.06.040
  • [15] Chahal R, Nanda A, Akkol EK, Sobarzo-Sánchez E, Arya A, Kaushik D, Dutt R, Bhardwaj R, Rahman MH, Mittal V. Ageratum conyzoides L. and its secondary metabolites in the management of different fungal pathogens. Molecules. 2021; 26(10): 2933. https://doi.org/10.3390/molecules26102933
  • [16] Satyal P, Craft JD, Dosoky NS, Setzer WN. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods. 2017; 6(8): 63. https://doi.org/10.3390/foods6080063
  • [17] Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012; 3: 12. https://doi.org/10.3389/fmicb.2012.00012
  • [18] Zhou C, Li C, Siva S, Cui H, Lin L. Chemical composition, antibacterial activity and study of the interaction mechanisms of the main compounds present in the Alpinia galanga rhizomes essential oil. Ind Crop Prod. 2021; 165: 113441. https://doi.org/10.1016/j.indcrop.2021.113441
  • [19] Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. The role of essential oils and their main compounds in the management of cardiovascular disease risk factors. Molecules. 2021; 26(12): 3506. https://doi.org/10.3390/molecules26123506
  • [20] Kerdudo A, Ellong EN, Burger P, Gonnot V, Boyer L, Chandre F, Adenet S, Rochefort K, Michel T, Fernandez X. Chemical composition, antimicrobial and insecticidal activities of flowers essential oils of Alpinia zerumbet (Pers.) BL Burtt & RM Sm. from Martinique Island. Chem Biodivers. 2017; 14(4): e1600344. https://doi.org/10.1002/cbdv.201600344
  • [21] Be Tu PT, Tawata S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules. 2015; 20(9): 16723-16740. https://doi.org/10.3390/molecules200916723
  • [22] Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils—present status and future perspectives. Medicines. 2017; 4(3): 58. https://doi.org/10.3390/medicines4030058
  • [23] Altameme HJ, Hameed IH, Hamza LF. Anethum graveolens: Physicochemical properties, medicinal uses, antimicrobial effects, antioxidant effect, anti-inflammatory and analgesic effects: A review. Int J Pharm Qual Assur. 2017; 8(3): 88-91. https://doi.org/10.25258/ijpqa.v8i03.9569
  • [24] Bailen M, Julio LF, Diaz CE, Sanz J, Martínez-Díaz RA, Cabrera R, Burillo J, Gonzalez-Coloma A. Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Ind Crop Prod. 2013; 49: 102-107. https://doi.org/10.1016/j.indcrop.2013.04.055
  • [25] Pandey AK, Kumar P, Singh P, Tripathi NN, Bajpai VK. Essential oils: Sources of antimicrobials and food preservatives. Front Microbiol. 2017; 7: 2161. https://doi.org/10.3389/fmicb.2016.02161
  • [26] Al Jahid A, Essabaq S, Elamrani A, Blaghen M, Jamal Eddine J. Chemical composition, antimicrobial and antioxidant activities of the essential oil and the hydro-alcoholic extract of Artemisia campestris L. leaves from southeastern Morocco. J Biol Act Prod Nat. 2016; 6(5-6): 393-405. https://doi.org/10.1080/22311866.2016.1268068
  • [27] Houicher A, Hechachna H, Özogul F. In vitro determination of the antifungal activity of Artemisia campestris essential oil from Algeria. Int J Food Prop. 2016; 19(8): 1749-1756. https://doi.org/10.1080/10942912.2015.1107734
  • [28] Bertella A, Benlahcen K, Abouamama S, Pinto DC, Maamar K, Kihal M, Silva AM. Artemisia herba-alba Asso. essential oil antibacterial activity and acute toxicity. Ind Crop Prod. 2018; 116: 137-143. https://doi.org/10.1016/j.indcrop.2018.02.064
  • [29] DeCarlo A, Agieb S, Johnson S, Satyal P, Setzer WN. Inter-tree variation in the chemical composition of Boswellia papyrifera oleo-gum-resin. Nat Prod Commun. 2022; 17(7): 1934578X221117411. https://doi.org/10.1177/1934578X221117411
  • [30] Abdelsamad A, Ahmed K, Al-magboul A, Fadul E. Antimicrobial activity of essential oils and extracts of oleo-gum resins from Boswellia papyrifera (Tarak tarak) grown in some parts of the Sudan. Arab J Med Arom Plant. 2020; 6(1): 22-35. https://doi.org/10.48347/IMIST.PRSM/ajmap-v6i1.20370
  • [31] Shahsavari N, Barzegar M, Sahari MA, Naghdibadi H. Antioxidant activity and chemical characterization of essential oil of Bunium persicum. Plant Food Hum Nutr. 2008; 63: 183-188. https://doi.org/10.1007/s11130-008-0091-y
  • [32] Moghtader M, Mansori AI, Salari H, Farahmand A. Chemical composition and antimicrobial activity of the essential oil of Bunium persicum Boiss. seed. Iran J Med Arom Plant. 2009; 25(1): 20-28.
  • [33] Ak G, Zengin G, Ceylan R, Fawzi Mahomoodally M, Jugreet S, Mollica A, Stefanucci A. Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragr J. 2021; 36(5): 554-563. https://doi.org/10.1002/ffj.3661
  • [34] Hajlaoui H, Arraouadi S, Noumi E, Aouadi K, Adnan M, Khan MA, Kadri A, Snoussi M. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules. 2021; 26(12): 3625. https://doi.org/10.3390/molecules26123625
  • [35] Lasram S, Zemni H, Hamdi Z, Chenenaoui S, Houissa H, Tounsi MS, Ghorbel A. Antifungal and antiaflatoxinogenic activities of Carum carvi L., Coriandrum sativum L. seed essential oils and their major terpene component against Aspergillus flavus. Ind Crop Prod. 2019; 134: 11-18. https://doi.org/10.1016/j.indcrop.2019.03.037
  • [36] Zeng WC, Zhang Z, Gao H, Jia LR, He Q. Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J Food Sci. 2012; 77(7): C824-C829. https://doi.org/10.1111/j.1750-3841.2012.02767.x
  • [37] Degenhardt RT, Farias IV, Grassi LT, Franchi Jr GC, Nowill AE, Bittencourt CMdS, Wagner TM, Souza MMd, Cruz AB, Malheiros A. Characterization and evaluation of the cytotoxic potential of the essential oil of Chenopodium ambrosioides. Rev Brasil Farmacogn. 2016; 26: 56-61. https://doi.org/10.1016/j.bjp.2015.08.012
  • [38] Chekem MSG, Lunga PK, Tamokou JDD, Kuiate JR, Tane P, Vilarem G, Cerny M. Antifungal properties of Chenopodium ambrosioides essential oil against Candida species. Pharmaceuticals. 2010; 3(9): 2900-2909. https://doi.org/10.3390/ph3092900
  • [39] Poudel DK, Rokaya A, Ojha PK, Timsina S, Satyal R, Dosoky NS, Satyal P, Setzer WN. The chemical profiling of essential oils from different tissues of Cinnamomum camphora L. and their antimicrobial activities. Molecules. 2021; 26(17): 5132. https://doi.org/10.3390/molecules26175132
  • [40] Chang C-T, Chang W-L, Hsu J-C, Shih Y, Chou S-T. Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil. Bot Stud. 2013; 54(1): 1-7. https://doi.org/10.1186/1999-3110-54-10
  • [41] Kačániová M, Galovičová L, Valková V, Tvrdá E, Terentjeva M, Žiarovská J, Kunová S, Savitskaya T, Grinshpan D, Štefániková J. Antimicrobial and antioxidant activities of Cinnamomum cassia essential oil and its application in food preservation. Open Chem. 2021; 19(1): 214-227. https://doi.org/10.1515/chem-2021-0191
  • [42] Singh A, Deepika, Chaudhari AK, Das S, Prasad J, Dwivedy AK, Dubey NK. Efficacy of Cinnamomum cassia essential oil against food-borne molds and aflatoxin B1 contamination. Plant Biosyst. 2021; 155(4): 899-907. https://doi.org/10.1080/11263504.2020.1810804
  • [43] Lin L-Y, Chuang C-H, Chen H-C, Yang K-M. Lime (Citrus aurantifolia (Christm.) Swingle) essential oils: Volatile compounds, antioxidant capacity, and hypolipidemic effect. Foods. 2019; 8(9): 398. https://doi.org/10.3390/foods8090398
  • [44] Lemes RS, Alves CC, Estevam EB, Santiago MB, Martins CH, Santos TCD, Crotti AE, Miranda ML. Chemical composition and antibacterial activity of essential oils from Citrus aurantifolia leaves and fruit peel against oral pathogenic bacteria. An Acad Brasil Ciên. 2018; 90: 1285-1292. https://doi.org/10.1590/0001-3765201820170847
  • [45] Sarma R, Adhikari K, Mahanta S, Khanikor B. Insecticidal activities of Citrus aurantifolia essential oil against Aedes aegypti (Diptera: Culicidae). Toxicol Rep. 2019; 6: 1091-1096. https://doi.org/10.1016/j.toxrep.2019.10.009
  • [46] Ammar AH, Bouajila J, Lebrihi A, Mathieu F, Romdhane M, Zagrouba F. Chemical composition and in vitro antimicrobial and antioxidant activities of Citrus aurantium L. flowers essential oil (Neroli oil). Pakistan J Biol Sci. 2012; 15(21): 1034-1040. https://doi.org/10.3923/pjbs.2012.1034.104
  • [47] Bhandari DP, Poudel DK, Satyal P, Khadayat K, Dhami S, Aryal D, Chaudhary P, Ghimire A, Parajuli N. Volatile compounds and antioxidant and antimicrobial activities of selected citrus essential oils originated from Nepal. Molecules. 2021; 26(21): 6683. https://doi.org/10.3390/molecules26216683
  • [48] Van Hung P, Chi PTL, Phi NTL. Comparison of antifungal activities of Vietnamese citrus essential oils. Nat Prod Res. 2013; 27(4-5): 506-508. https://doi.org/10.1080/14786419.2012.706293
  • [49] Othman HIA, Alkatib HH, Zaid A, Sasidharan S, Rahiman SSF, Lee TP, Dimitrovski G, Althakafy JT, Wong YF. Phytochemical composition, antioxidant and antiproliferative activities of Citrus hystrix, Citrus limon, Citrus pyriformis, and Citrus microcarpa leaf essential oils against human cervical cancer cell line. Plants. 2022; 12(1): 134. https://doi.org/10.3390/plants12010134
  • [50] Sreepian A, Sreepian P, Chanthong C, Mingkhwancheep T, Prathit P. Antibacterial activity of essential oil extracted from Citrus hystrix (kaffir lime) peels: an in vitro study. Trop Biomed. 2019; 36(2): 531-541.
  • [51] Tao N, Jia L, Zhou H. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chem. 2014; 153: 265-271. https://doi.org/10.1016/j.foodchem.2013.12.070
  • [52] Velázquez-Nuñez MJ, Avila-Sosa R, Palou E, López-Malo A. Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control. 2013; 31(1): 1-4. https://doi.org/10.1016/j.foodcont.2012.09.029
  • [53] Ben Miri Y, Arino A, Djenane D. Study of antifungal, anti-aflatoxigenic, antioxidant activity and phytotoxicity of Algerian Citrus limon var. Eureka and Citrus sinensis var. Valencia essential oils. J Essent Oil Bear Plant. 2018; 21(2): 345-361. https://doi.org/10.1080/0972060X.2018.1456363
  • [54] Guo S-S, Wang Y, Chen Z-Y, Zhang Z, Cao J-Q, Pang X, Geng Z-F, Du S-S. Essential oils from Clausena species in China: Santalene Sesquiterpenes resource and toxicity against Liposcelis bostrychophila. J Chem. 2018; 2018: 1-8. https://doi.org/10.1155/2018/7813675
  • [55] He X, Zhang L, Chen J, Sui J, Yi G, Wu J, Ma Y. Correlation between chemical composition and antifungal activity of Clausena lansium essential oil against Candida spp. Molecules. 2019; 24(7): 1394. https://doi.org/10.3390/molecules24071394
  • [56] Dosoky NS, Pokharel SK, Setzer WN. Leaf essential oil composition, antimicrobial; and cytotoxic activities of Cleistocalyx operculatus from Hetauda, Nepal. Am J Essent Oils Nat Prod. 2015; 2(5): 34-37.
  • [57] Minh TTL, Kieu LTB, Mai STT, Ngoc DLB, Thuy LTB, Quyen NT, Anh TT, Huy LV, Phong NV, Duyen CTM. Addition of Mentha arvensis in infusions of Cleistocalyx operculatus improves the hedonic score and retains the high antioxidant and anti lipid-peroxidation effects. Appl Sci. 2023; 13(5): 2873. https://doi.org/10.3390/app13052873
  • [58] Soares BV, Morais SM, dos Santos Fontenelle RO, Queiroz VA, Vila-Nova NS, Pereira CM, Brito ES, Neto MA, Brito EH, Cavalcante CS. Antifungal activity, toxicity and chemical composition of the essential oil of Coriandrum sativum L. fruits. Molecules. 2012; 17(7): 8439-8448. https://doi.org/10.3390/molecules17078439
  • [59] Neri T, Silva K, Maior L, Oliveira-Silva S, Azevedo P, Gomes D, Souza M, Pavão J, Costa J, Cunha A. Phytochemical characterization, antioxidant potential and antibacterial activity of the Croton argyrophylloides Muell. Arg.(Euphorbiaceae). Brazil J Biol. 2021; 83. https://doi.org/10.1590/1519-6984.236649
  • [60] Fontenelle R, Morais S, Brito E, Brilhante R, Cordeiro R, Nascimento N, Kerntopf M, Sidrim J, Rocha M. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J Appl Microbiol. 2008; 104(5): 1383-1390. https://doi.org/10.1111/j.1365-2672.2007.03707.x
  • [61] Andrade TC, Lima SG, Freitas RM, Rocha MS, Islam T, Silva TG, Militao GC. Isolation, characterization and evaluation of antimicrobial and cytotoxic activity of estragole, obtained from the essential oil of Croton zehntneri (Euphorbiaceae). An Acad Brasil Ciên. 2015; 87: 173-182. https://doi.org/10.1590/0001-3765201520140111
  • [62] Kedia A, Prakash B, Mishra PK, Dubey N. Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities. Int J Food Microbiol. 2014; 168: 1-7. https://doi.org/10.1016/j.ijfoodmicro.2013.10.008
  • [63] Kumar A, Agarwal K, Singh M, Saxena A, Yadav P, Maurya AK, Yadav A, Tandon S, Chanda D, Bawankule DU. Essential oil from waste leaves of Curcuma longa L. alleviates skin inflammation. Inflammopharmacology. 2018; 26(5): 1245-1255. https://doi.org/10.1007/s10787-018-0447-3
  • [64] Dosoky NS, Setzer WN. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients. 2018; 10(9): 1196. https://doi.org/10.3390/nu10091196
  • [65] Majewska E, Kozlowska M, Gruszczynska-Sekowska E, Kowalska D, Tarnowska K. Lemongrass (Cymbopogon citratus) essential oil: extraction, composition, bioactivity and uses for food preservation-a review. Pol J Food Nutr Sci. 2019; 69(4):327-341. http://dx.doi.org/10.31883/pjfns/113152
  • [66] Sawadogo I, Paré A, Kaboré D, Montet D, Durand N, Bouajila J, Zida EP, Sawadogo-Lingani H, Nikiéma PA, Nebié RHC. Antifungal and antiaflatoxinogenic effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus essential oils alone and in combination. J Fungi. 2022; 8(2): 117. https://doi.org/10.3390/jof8020117
  • [67] Alitonou GA, Avlessi F, Tchobo F, Noudogbessi J-P, Tonouhewa A, Yehouenou B, Menut C, Sohounhloue DK. Chemical composition and biological activities of essential oils from the leaves of Cymbopogon giganteus Chiov. and Cymbopogon schoenanthus (L.) Spreng (Poaceae) from Benin. Int J Biol Chem Sci. 2012; 6(4): 1819-1827. https://doi.org/10.4314/ijbcs.v6i4.37
  • [68] Ayenew KD, Sewale Y, Amare YE, Ayalew A. Acute and subacute toxicity study of essential oil of Cymbopogon martini in mice. J Toxicol. 2022;2022:1995578. https://doi.org/10.1155/2022/1995578
  • [69] Prasad CS, Shukla R, Kumar A, Dubey N. In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses. 2010; 53(2): 123-129. https://doi.org/10.1111/j.1439-0507.2008.01676.x
  • [70] Lawrence K, Lawrence R, Parihar D, Srivastava R, Charan A. Antioxidant activity of Palmarosa essential oil (Cymbopogon martini) grown in north Indian plains. Asian Pac J Trop Biomed. 2012; 2(2): S888-S891. https://doi.org/10.1016/S2221-1691(12)60330-X
  • [71] Gemeda N, Tadele A, Lemma H, Girma B, Addis G, Tesfaye B, Abebe A, Gemechu W, Yirsaw K, Teka F, Haile C, Amano A, Woldkidan S, Geleta B, Debella A. Development, characterization, and evaluation of novel broad-spectrum antimicrobial topical formulations from Cymbopogon martini (Roxb.) W. Watson essential oil. Evid Based Complement Alternat Med. 2018;2018:9812093. https://doi.org/10.1155/2018/9812093
  • [72] Hellali N, Mahammed MH, Ramdane F, Talli A. Antimicrobial and antioxidant activities of Cymbopogon schoenanthus (L.) spreng. essential oil, growing in Illizi-Algeria. J Med Plant Res. 2016; 10(14): 188-194. https://doi.org/10.5897/JMPR2015.5985
  • [73] Shrestha D, Sharma P, Pandey A, Dhakal K, Baral RP, Adhikari A. Chemical characterization, antioxidant and antibacterial activity of essential oil of Cymbopogon winterianus jowitt (Citronella) from western Nepal. Curr Biotechnol. 2022; 11(1): 86-91. https://doi.org/10.2174/2211550111666220405133558
  • [74] Simic A, Rančic A, Sokovic MD, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD. Essential Oil Composition of Cymbopogon winterianus. and Carum carvi. and their antimicrobial activities. Pharm Biol. 2008; 46(6): 437-441. https://doi.org/10.1080/13880200802055917
  • [75] Ghannadi A, Rabbani M, Ghaemmaghami L, Malekian N. Phytochemical screening and essential oil analysis of one of the Persian sedges; Cyperus rotundus L. Int J Pharm Sci Res. 2012; 3(2): 424.
  • [76] Ksouri A, Dob T, Belkebir A, Krimat S, Chelghoum C. Chemical composition and antioxidant activity of the essential oil and the methanol extract of Algerian wild carrot Daucus carota L. ssp. carota.(L.) Thell. J Mater Environ Sci. 2015; 6(3): 784-791.
  • [77] Rokbeni N, M'rabet Y, Dziri S, Chaabane H, Jemli M, Fernandez X, Boulila A. Variation of the chemical composition and antimicrobial activity of the essential oils of natural populations of Tunisian Daucus carota L.(Apiaceae). Chem Biodivers. 2013; 10(12): 2278-2290. https://doi.org/10.1002/cbdv.201300137
  • [78] Sabo VA, Knezevic P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind Crop Prod. 2019; 132: 413-429. https://doi.org/10.1016/j.indcrop.2019.02.051
  • [79] Gakuubi MM, Maina AW, Wagacha JM. Antifungal activity of essential oil of Eucalyptus camaldulensis Dehnh. against selected Fusarium spp. Int J Microbiol. 2017; 2017. https://doi.org/10.1155/2017/8761610
  • [80] Harkat-Madouri L, Asma B, Madani K, Said ZB-OS, Rigou P, Grenier D, Allalou H, Remini H, Adjaoud A, Boulekbache-Makhlouf L. Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Ind Crop Prod. 2015; 78: 148-153. https://doi.org/10.1016/j.indcrop.2015.10.015
  • [81] Ferreira OO, da Silva SHM, de Oliveira MS, Andrade EHdA. Chemical composition and antifungal activity of Myrcia multiflora and Eugenia florida essential oils. Molecules. 2021; 26(23): 7259. https://doi.org/10.3390/molecules26237259
  • [82] Ferreira OO, Franco CdJP, Varela ELP, Silva SG, Cascaes MM, Percário S, de Oliveira MS, Andrade EHdA. Chemical Composition and Antioxidant activity of essential oils from leaves of two specimens of Eugenia florida DC. Molecules. 2021; 26(19): 5848. https://doi.org/10.3390/molecules26195848
  • [83] Ahluwalia V, Sisodia R, Walia S, Sati OP, Kumar J, Kundu A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J Pest Sci. 2014; 87: 341-349. https://doi.org/10.1007/s10340-013-0542-6
  • [84] de França-Neto A, Cardoso-Teixeira AC, Medeiros TC, do Socorro Quinto-Farias M, de Souza Sampaio CM, Coelho-de-Souza AN, Lahlou S, Leal-Cardoso JH. Essential oil of Croton argyrophylloides: toxicological aspects and vasorelaxant activity in rats. Nat Prod Commun. 2012; 7(10): 1934578X1200701040. https://doi.org/10.1177/1934578X1200701040.
  • [85] Kavoosi G, Rowshan V. Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assafoetida oleo-gum-resin: effect of collection time. Food Chem. 2013; 138(4): 2180-2187. https://doi.org/10.1016/j.foodchem.2012.11.131
  • [86] Mahmoudvand H, Yadegari JG, Khalaf AK, Hashemi MJ, Dastyarhaghighi S, Salimikia I. Chemical composition, antileishmanial, and cytotoxic effects Ferula macrecolea essential oil against Leishmania tropica. Parasite Epidemiol Control. 2022; 19: e00270. https://doi.org/10.1016/j.parepi.2022.e00270
  • [87] Roby MHH, Sarhan MA, Selim KA-H, Khalel KI. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind Crop Prod. 2013; 44: 437-445. https://doi.org/10.1016/j.indcrop.2012.10.012
  • [88] Kumar A, Singh PP, Prakash B. Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil. Carbohydr Polym. 2020; 236: 116050. https://doi.org/10.1016/j.carbpol.2020.116050
  • [89] Zeng W-C, Zhang W-C, Zhang W-H, He Q, Shi B. The antioxidant activity and active component of Gnaphalium affine extract. Food Chem Toxicol. 2013; 58: 311-317. https://doi.org/10.1016/j.fct.2013.05.004
  • [90] Rawat A, Prakash O, Kumar R, Arya S, Srivastava R. Hedychium spicatum Sm.: Chemical composition with biological activities of methanolic and ethylacetate oleoresins from rhizomes. J Biol Act Prod Nat. 2021; 11(3): 269-288. https://doi.org/10.1080/22311866.2021.1923572
  • [91] Matejic JS, Dzamic AM, Mihajilov-Krstev T, Ristic MS, Randelovic VN, Krivošej ZÐ, Marin PD. Chemical composition, antioxidant and antimicrobial properties of essential oil and extracts from Heracleum sphondylium L. J Essent Oil Bear Plant. 2016; 19(4): 944-953. https://doi.org/10.1080/0972060X.2014.986538
  • [92] Noudogbessi J-P, Agbangnan P, Yehouenou B, Adjalian E, Nonviho G, Osseni MA, Wotto V, Figueredo G, Chalchat J-C, Sohounhloue D. Physico-chemical properties of Hyptis suaveolens essential oil. Int J Med Arom Plants. 2013; 3: 191-199.
  • [93] Xu D-H, Huang Y-S, Jiang D-Q, Yuan K. The essential oils chemical compositions and antimicrobial, antioxidant activities and toxicity of three Hyptis species. Pharm Biol. 2013; 51(9): 1125-1130. https://doi.org/10.3109/13880209.2013.781195
  • [94] Moreira ACP, Carmo ES, Wanderley PA, da Souza EL, da Oliveira Lima E. Inhibitory effect of the essential oil from Hyptis suaveolens (l.) Poit on the growth and aflatoxins synthesis of Aspergillus flavus. J Life Sci. 2013; 7(3): 276.
  • [95] Höferl M, Stoilova I, Schmidt E, Wanner J, Jirovetz L, Trifonova D, Krastev L, Krastanov A. Chemical composition and antioxidant properties of Juniper berry (Juniperus communis L.) essential oil. Action of the essential oil on the antioxidant protection of Saccharomyces cerevisiae model organism. Antioxidants. 2014; 3(1): 81-98.
  • [96] Cabral C, Francisco V, Cavaleiro C, Gonçalves M, Cruz M, Sales F, Batista M, Salgueiro L. Essential oil of Juniperus communis subsp. alpina (Suter) Čelak needles: Chemical composition, antifungal activity and cytotoxicity. Phytother Res. 2012; 26(9): 1352-1357. https://doi.org/10.1002/ptr.3730
  • [97] Sela F, Karapandzova M, Stefkov G, Cvetkovikj I, Trajkovska-Dokik E, Kaftandzieva A, Kulevanova S. Chemical composition and antimicrobial activity of leaves essential oil of Juniperus communis (Cupressaceae) grown in Republic of Macedonia. Maced Pharm Bull. 2013; 59(1-2): 23-32.
  • [98] Mekonnen A, Tesfaye S, Christos SG, Dires K, Zenebe T, Zegeye N, Shiferaw Y, Lulekal E. Evaluation of skin irritation and acute and subacute oral toxicity of Lavandula angustifolia essential oils in rabbit and mice. J Toxicol. 2019; 2019: 5979546. https://doi.org/10.1155/2019/5979546
  • [99] de Rapper S, Kamatou G, Viljoen A, van Vuuren S. The In Vitro Antimicrobial Activity of Lavandula angustifolia Essential Oil in Combination with Other Aroma-Therapeutic Oils. Evid-Based Complement Altern Med. 2013; 2013: 852049. https://doi.org/10.1155/2013/852049
  • [100] Franco CdS, Ribeiro AF, Carvalho NC, Monteiro OS, da Silva JKR, Andrade EHA, Maia JGS. Composition and antioxidant and antifungal activities of the essential oil from Lippia gracilis Schauer. Afr J Biotechnol. 2014; 13(30). https://doi.org/10.5897/AJB2012.2941
  • [101] Oliveira T, Silva‐Filho C, Malveira E, Aguiar T, Santos H, Albuquerque C, Morais M, Teixeira E, Vasconcelos M. Antifungal and antibiofilm activities of the essential oil of leaves from Lippia gracilis Schauer against phytopathogenic fungi. J Appl Microbiol. 2021; 130(4): 1117-1129. https://doi.org/10.1111/jam.14857
  • [102] Andrade VA, Almeida AC, Souza DS, Colen KG, Macêdo AA, Martins ER, Fonseca FS, Santos RL. Antimicrobial activity and acute and chronic toxicity of the essential oil of Lippia origanoides. Pesquisa Vet Brasil. 2014; 34: 1153-1161. https://doi.org/10.1590/S0100-736X2014001200002
  • [103] Stashenko E, Ruiz C, Muñoz A, Castañeda M, Martínez J. Composition and antioxidant activity of essential oils of Lippia origanoides HBK grown in Colombia. Nat Prod Commun. 2008; 3(4): 1934578X0800300417. https://doi.org/10.1177/1934578X0800300417
  • [104] Wong M-H, Lim L-F, bin Ahmad F, bin Assim Z. Antioxidant and antimicrobial properties of Litsea elliptica Blume and Litsea resinosa Blume (Lauraceae). Asian Pac J Trop Biomed. 2014; 4(5): 386-392. https://doi.org/10.12980/APJTB.4.2014C1129
  • [105] Pillai M, Hj Yakop F, Metussin N, Hamid M, Yasin H, Majid H, Young D. Phytochemical characterization of essential oils from shoots, mature leaves and branchlets of Litsea elliptica (Lauraceae) collected in Brunei Darussalam. Scientia Bruneiana. 2019; 17. https://doi.org/10.46537/scibru.v17i2.77
  • [106] Stanojevic LP, Marjanovic-Balaban ZR, Kalaba VD, Stanojevic JS, Cvetkovic DJ. Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.). J Essent Oil Bear Plant. 2016; 19(8): 2017-2028. https://doi.org/10.1080/0972060X.2016.1224689
  • [107] Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential oils as antimicrobial agents-myth or real alternative? Molecules. 2019; 24(11): 2130. https://doi.org/10.3390/molecules24112130
  • [108] Nikolić MM, Jovanović KK, Marković TL, Marković DL, Gligorijević NN, Radulović SS, Kostić M, Glamočlija JM, Soković MD. Antimicrobial synergism and cytotoxic properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel essential oils. J Pharm Pharmacol. 2017; 69(11): 1606-1614. https://doi.org/10.1111/jphp.12792
  • [109] Siddique S, Parveen Z, Mazhar S. Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three Melaleuca species of Pakistani flora. Arab J Chem. 2020; 13(1): 67-74. https://doi.org/10.1016/j.arabjc.2017.01.018
  • [110] Abdellatif F, Boudjella H, Zitouni A, Hassani A. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L. EXCLI J. 2014; 13: 772. https://doi.org/10.1080/0972060x.2008.10643602
  • [111] Skotti E, Sotiropoulou NS, Lappa I, Kaiafa M, Tsitsigiannis D, Tarantilis P. Screening of lemon balm extracts for anti-aflatoxigenic, antioxidant and other biological activities. Preprints (www.preprints.org); 2019. https://doi.org/10.20944/preprints201907.0005.v1
  • [112] Bai X, Aimila A, Aidarhan N, Duan X, Maiwulanjiang M. Chemical constituents and biological activities of essential oil from Mentha longifolia: Effects of different extraction methods. Int J Food Prop. 2020; 23(1): 1951-1960. https://doi.org/10.1080/10942912.2020.1833035
  • [113] Dehghanpour-Farashah S, Taheri P. Antifungal and antiaflatoxigenic effects of Mentha longifolia essential oil against Aspergillus flavus. Int J New Technol Res. 2016; 2(9): 263437.
  • [114] Arman M, Yousefzadi M, Khademi SZ. Antimicrobial activity and composition of the essential oil from Mentha mozaffarianii. J Essent Oil Bear Plant. 2011; 14(1): 131-135. https://doi.org/10.1080/0972060X.2011.10643912
  • [115] Moghaddam M, Pourbaige M, Tabar HK, Farhadi N, Hosseini SMA. Composition and antifungal activity of peppermint (Mentha piperita) essential oil from Iran. J Essent Oil Bear Plant. 2013; 16(4): 506-512. https://doi.org/10.1080/0972060X.2013.813265
  • [116] Abd El-Hack ME, Kamal M, Altaie HA, Youssef IM, Algarni EH, Almohmadi NH, Abukhalil MH, Khafaga AF, Alqhtani AH, Swelum AA. Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon. 2023; 234: 107309. https://doi.org/10.1016/j.toxicon.2023.107309
  • [117] Teixeira B, Marques A, Ramos C, Batista I, Serrano C, Matos O, Neng NR, Nogueira JM, Saraiva JA, Nunes ML. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Industrial Crops and Products. 2012; 36(1): 81-87.
  • [118] Wani AR, Yadav K. Chemical Characterization, antimicrobial, antiproliferative and antioxidant activities of the essential oil of Monarda citriodora growing in Kashmir. Int J Pharm Investig. 2021; 11(2): 170-175. https://doi.org/10.5530/ijpi.2021.2.31
  • [119] Deepika, Singh A, Chaudhari AK, Das S, Dubey NK. Nanoencapsulated Monarda citriodora Cerv. ex Lag. essential oil as potential antifungal and antiaflatoxigenic agent against deterioration of stored functional foods. J Food Sci Technol. 2020; 57: 2863-2876. https://doi.org/10.1007/s13197-020-04318-4
  • [120] Okechukwu QN, Ugwuona FU, Ofoedu CE, Juchniewicz S, Okpala COR. Chemical composition, antibacterial efficacy, and antioxidant capacity of essential oil and oleoresin from Monodora myristica and Tetrapleura tetraptera in Southeast Nigeria. Sci Rep. 2022; 12(1): 19861. https://doi.org/10.1038/s41598-022-23161-5
  • [121] Aleksic V, Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol Res. 2014; 169(4): 240-254. https://doi.org/10.1016/j.micres.2013.10.003
  • [122] Majeed A, Guleria S, Sharma N, Salaria KH, Aiman F, Singh B, Gupta VK. Antioxidant capacity and combinatorial antimicrobial effects of Nardostachys jatamansi essential oil with conventional antibiotics against some drug resistant bacteria. Curr Res Biotechnol. 2023; 5: 100118. https://doi.org/10.1016/j.crbiot.2022.100118
  • [123] Jianu C, Moleriu R, Stoin D, Cocan I, Bujancă G, Pop G, Lukinich-Gruia AT, Muntean D, Rusu L-C, Horhat DI. Antioxidant and antibacterial activity of Nepeta faassenii bergmans ex stearn essential oil. Appl Sci. 2021; 11(1): 442. https://doi.org/10.3390/app11010442
  • [124] Shakeri A, Khakdan F, Soheili V, Sahebkar A, Shaddel R, Asili J. Volatile composition, antimicrobial, cytotoxic and antioxidant evaluation of the essential oil from Nepeta sintenisii Bornm. Ind Crop Prod. 2016; 84: 224-229. https://doi.org/10.1016/j.indcrop.2015.12.030
  • [125] Alimi D, Hajri A, Jallouli S, Sebai H. Acaricidal and anthelmintic efficacy of Ocimum basilicum essential oil and its major constituents estragole and linalool, with insights on acetylcholinesterase inhibition. Vet Parasitol. 2022; 309: 109743. https://doi.org/10.1016/j.vetpar.2022.109743
  • [126] Beatovic D, Krstic-Milosevic D, Trifunovic S, Siljegovic J, Glamoclija J, Ristic M, Jelacic S. Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec Nat Prod. 2015; 9(1): 62-75.
  • [127] Mohr F, Lermen C, Gazim Z, Gonçalves J, Alberton O. Antifungal activity, yield, and composition of Ocimum gratissimum essential oil. Genet Mol Res. 2017; 16(1): 1-10. http://dx.doi.org/10.4238/gmr16019542
  • [128] Matasyoh LG, Matasyoh JC, Wachira FN, Kinyua MG, Muigai AWT, Mukiama TK. Chemical composition and antimicrobial activity of the essential oil of Ocimum gratissimum L. growing in Eastern Kenya. Afr J Biotechnol. 2007; 6(6).
  • [129] Gutiérrez-Grijalva EP, Picos-Salas MA, Leyva-López N, Criollo-Mendoza MS, Vazquez-Olivo G, Heredia JB. Flavonoids and phenolic acids from oregano: Occurrence, biological activity and health benefits. Plants. 2017; 7(1): 2. https://doi.org/10.3390/plants7010002
  • [130] Rodriguez-Garcia I, Silva-Espinoza B, Ortega-Ramirez L, Leyva J, Siddiqui M, Cruz-Valenzuela M, Gonzalez-Aguilar G, Ayala-Zavala J. Oregano essential oil as an antimicrobial and antioxidant additive in food products. Crit Rev Food Sci Nutr. 2016; 56(10): 1717-1727. https://doi.org/10.1080/10408398.2013.800832
  • [131] Gómez JV, Tarazona A, Mateo-Castro R, Gimeno-Adelantado JV, Jiménez M, Mateo EM. Selected plant essential oils and their main active components, a promising approach to inhibit aflatoxigenic fungi and aflatoxin production in food. Food Addit Contam Part A. 2018; 35(8): 1581-1595. https://doi.org/10.1080/19440049.2017.1419287
  • [132] Shohayeb M, Abdel-Hameed E-SS, Bazaid SA, Maghrabi I. Antibacterial and antifungal activity of Rosa damascena Mill. essential oil, different extracts of rose petals. Glob J Pharmacol. 2014; 8(1): 1-7. https://doi.org/10.5829/idosi.gjp.2014.8.1.81275
  • [133] Stojiljkovic J, Trajchev M, Nakov D, Petrovska M. Antibacterial activities of rosemary essential oils and their components against pathogenic bacteria. Adv Cytol Pathol. 2018;3(4):93‒96. https://doi.org/10.15406/acp.2018.03.00060
  • [134] da Silva Bomfim N, Kohiyama CY, Nakasugi LP, Nerilo SB, Mossini SAG, Romoli JCZ, Graton Mikcha JM, Abreu Filho BAd, Machinski Jr M. Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit Contam Part A. 2020; 37(1): 153-161. https://doi.org/10.1080/19440049.2019.1678771
  • [135] Seyedtaghiya MH, Fasaei BN, Peighambari SM. Antimicrobial and antibiofilm effects of Satureja hortensis essential oil against Escherichia coli and Salmonella isolated from poultry. Iran J Microbiol. 2021; 13(1): 74. https://doi.org/10.18502/ijm.v13i1.5495
  • [136] Valizadeh S, Fakheri T, Mahmoudi R, Katiraee F, Gajarbeygi P. Evaluation of antioxidant, antibacterial, and antifungal properties of Satureja hortensis essential oil. Biotech Health Sci. 2014; 1(3): e24733. https://doi.org/10.17795/bhs-24733.
  • [137] Yazdanpanah Goharrizi L, Tasharofi S. Inhibiting Aspergillus flavus growth and aflatoxin decrement in aquatic feed with Satureja hortensis essential oil. Res J Vet Pract. 2017; 4(4): 71-75. http://dx.doi.org/10.14737/journal.rjvp/2016/4.4.71.75
  • [138] Fallahi S, Beyranvand M, Mahmoudvand H, Nayebzadeh H, Kheirandish F, Jahanbakhsh S. Chemical composition, acute and sub-acute toxicity of Satureja khuzestanica essential oil in mice. Marmara Pharm J. 2017; 21(3): 515-521. https://doi.org/10.12991/marupj.318614
  • [139] Mahboubi M, Kazempour N. Antioxidant and antimicrobial activity of Satureja khuzistanica Jamzad essential oil, ethanol and aqueous extracts. Biharean Biologist. 2017: 12 (1): 37-39.
  • [140] Mihajilov-Krstev T, Radnović D, Kitić D, Jovanović V, Mitić V, Stojanović-Radić Z, Zlatković B. Chemical composition, antimicrobial, antioxidative and anticholinesterase activity of Satureja montana L. ssp montana essential oil. Open Life Sci. 2014; 9(7): 668-677. https://doi.org/10.2478/s11535-014-0298-x
  • [141] Radünz M, da Trindade MLM, Camargo TM, Radünz AL, Borges CD, Gandra EA, Helbig E. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum L.) essential oil. Food Chem. 2019; 276: 180-186. https://doi.org/10.1016/j.foodchem.2018.09.173
  • [142] Cerrón-Mercado F, Perez-Alvarez JA, Nolazco-Cama D, Salva-Ruíz B, Tellez-Monzon L, Fernández-López J, Viuda-Martos M. Chemical composition, antioxidant and antibacterial activities of essential oil obtained from Chincho (Tagetes elliptica Sm) leaves grown in the Peruvian Andes. Foods. 2023; 12(4): 894. https://doi.org/10.3390/foods12040894
  • [143] Armas K, Rojas J, Rojas L, Morales A. Comparative study of the chemical composition of essential oils of five Tagetes species collected in Venezuela. Nat Prod Commun. 2012; 7(9): 1934578X1200700932. https://doi.org/10.1177/1934578X1200700932
  • [144] Tripathi B, Bhatia R, Walia S, Kumar B. Chemical composition and evaluation of Tagetes erecta (var. Pusa narangi genda) essential oil for its antioxidant and antimicrobial activity. Biopest Int. 2012; 8(2): 138-146.
  • [145] Lechkova B, Karcheva-Bahchevanska D, Ivanov K, Todorova V, Benbassat N, Penkova N, Atanassova P, Peychev L, Hrischev P, Peychev Z. A Study of the chemical composition, acute and subacute toxicity of Bulgarian Tanacetum parthenium essential oil. Molecules. 2023; 28(13): 4906. https://doi.org/10.3390/molecules28134906
  • [146] Damtie D, Braunberger C, Conrad J, Mekonnen Y, Beifuss U. Composition and hepatoprotective activity of essential oils from Ethiopian thyme species (Thymus serrulatus and Thymus schimperi). J Essent Oil Res. 2019; 31(2): 120-128. https://doi.org/10.1080/10412905.2018.1512907
  • [147] Nasir M, Tafess K, Abate D. Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species. BMC Complement Altern Med. 2015; 15: 1-5. https://doi.org/10.1186/s12906-015-0784-3
  • [148] Kowalczyk A, Przychodna M, Sopata S, Bodalska A, Fecka I. Thymol and thyme essential oil—new insights into selected therapeutic applications. Molecules. 2020; 25(18): 4125. https://doi.org/10.3390/molecules25184125
  • [149] Borugă O, Jianu C, Mişcă C, Goleţ I, Gruia A, Horhat F. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J Med Life. 2014; 7(Spec Iss 3): 56.
  • [150] Tian F, Lee SY, Chun HS. Comparison of the antifungal and antiaflatoxigenic potential of liquid and vapor phase of Thymus vulgaris essential oil against Aspergillus flavus. J Food Protect. 2019; 82(12): 2044-2048. https://doi.org/10.4315/0362-028X.JFP-19-016
  • [151] Vitali LA, Beghelli D, Nya PCB, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab J Chem. 2016; 9(6): 775-786. https://doi.org/10.1016/j.arabjc.2015.06.002
  • [152] Khalilzadeh E, Saiah GV, Hasannejad H, Ghaderi A, Ghaderi S, Hamidian G, Mahmoudi R, Eshgi D, Zangisheh M. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil. Avicenna J Phytomed. 2015; 5(3): 218.
  • [153] Sarikurkcu C, Arisoy K, Tepe B, Cakir A, Abali G, Mete E. Studies on the antioxidant activity of essential oil and different solvent extracts of Vitex agnus castus L. fruits from Turkey. Food Chem Toxicol. 2009; 47(10): 2479-2483. https://doi.org/10.1016/j.fct.2009.07.005
  • [154] Balasubramani S, Rajendhiran T, Moola AK, Diana RKB. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ Sci Pollut Res. 2017; 24: 15125-15133. https://doi.org/10.1007/s11356-017-9118-y
  • [155] De Lima DAN, Pelegrini BB, Uechi FAA, Varago RC, Pimenta BB, de Souza Kaneshima AM, Kaneshima EN, da Costa Souza P, Pedroso RB, Silveira TGV. Evaluation of Antineoplasic Activity of Zingiber officinale Essential Oil in the Colorectal Region of Wistar Rats. Asian Pac J Cancer Prevent. 2020; 21(7): 2141. https://doi.org/10.31557/APJCP.2020.21.7.2141
  • [156] Bellik Y. Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe. Asian Pac J Trop Dis. 2014; 4(1): 40-44. https://doi.org/10.1016/S2222-1808(14)60311-X
  • [157] Nerilo SB, Rocha GHO, Tomoike C, Mossini SA, Grespan R, Mikcha JM, Machinski Jr M. Antifungal properties and inhibitory effects upon aflatoxin production by Zingiber officinale essential oil in Aspergillus flavus. Int J Food Sci Technol. 2016; 51(2): 286-292. https://doi.org/10.1111/ijfs.12950
  • [158] Rani AS, Satyakala M, Devi VS, Murty US. Evaluation of antibacterial activity from rhizome extract of Acorus calamus Linn. J Sci Ind Res.2003; 62(6).
  • [159] Aryal S, Poudel A, Kafle K, Aryal LN. Insecticidal toxicity of essential oil of Nepalese Acorus calamus (Acorales: Acoraceae) against Sitophilus zeamais (Coleoptera: Curculionidae). Heliyon. 2023; 9(11): e22130. https://doi.org/10.1016/j.heliyon.2023.e22130
  • [160] Adnyana IK, Anggadiredja K, Sukmawan YP. Essential oil of Ageratum conyzoides (L.) L.: Acute and subchronic toxicity studies. J Pharm Pharmacogn Res. 2023; 11(4): 625-634. https://doi.org/10.56499/jppres23.1590_11.4.625
  • [161] Lin Y-E, Lin M-H, Yeh T-Y, Lai Y-S, Lu K-H, Huang H-S, Peng F-C, Liu S-H, Sheen L-Y. Genotoxicity and 28-day repeated dose oral toxicity study of garlic essential oil in mice. J Tradit Complement Med. 2022; 12(6): 536-544. https://doi.org/10.1016/j.jtcme.2022.05.001
  • [162] Ihekwereme PC, Asomugha RN, Mbagwu SI, Oraekei DI, Ajaghaku DL. Phytochemicals, acute toxicities and actual median lethal doses (actual LD50) of Zingiber officinale and Allium sativum given singly and in combination via mice models. GSC Biol Pharm Sci. 2023; 25(1): 008-018. https://doi.org/10.30574/gscbps.2023.25.1.0396
  • [163] Thuy Quynh VT, Duszkiewicz–Reinhard W. Antimicrobial activity of essential oils from fresh and dried Alpinia galanga rhizomes. J Essent Oil Bear Plants. 2004; 7(2): 165-170. https://doi.org/10.1080/0972-060X.2004.10643385
  • [164] Lahlou S, Galindo CAB, Leal-Cardoso JH, Fonteles MC, Duarte GP. Cardiovascular effects of the essential oil of Alpinia zerumbet leaves and its main constituent, terpinen-4-ol, in rats: role of the autonomic nervous system. Planta Med. 2002; 68(12): 1097-1102. https://doi.org/10.1055/s-2002-36336
  • [165] Derakhshan S, Navidinia M, Ahmadi A. Antibacterial activity of Dill (Anethum graveolens) essential oil and antibiofilm activity of Cumin (Cuminum cyminum) alcoholic extract. Infect Epidemiol Microbiol. 2017; 3(4): 122-126. https://doi.org/10.18869/modares.iem.3.4.122
  • [166] Vieira TM, Dias HJ, Medeiros TC, Grundmann CO, Groppo M, Heleno VC, Martins CH, Cunha WR, Crotti AE, Silva EO. Chemical composition and antimicrobial activity of the essential oil of Artemisia absinthium Asteraceae leaves. J Essent Oil Bear Plant. 2017; 20(1): 123-131. https://doi.org/10.1080/0972060X.2016.1257370
  • [167] Mihajilov-Krstev T, Jovanović B, Jović J, Ilić B, Miladinović D, Matejić J, Rajković J, Đorđević L, Cvetković V, Zlatković B. Antimicrobial, antioxidative, and insect repellent effects of Artemisia absinthium essential oil. Planta Med. 2014; 80(18): 1698-1705. https://doi.org/10.1055/s-0034-1383182
  • [168] Mammeri B, Bahri F, Kouidri M, Boudani B, Arioui F. Evaluation of chemical composition, anti-inflammatory, antibacterial activity and synergistic effect between antibiotics and the essential oil of Artemisia campestris L. J Appl Biol Sci. 2022; 16(2): 230-247. https://doi.org/10.5281/zenodo.6590285
  • [169] Auti ST, Kulkarni YA. Acute and 28-day repeated dose oral toxicity study of caraway oil in rats. Drug Metabol Pers Ther. 2019; 34(3): 20190011. https://doi.org/10.1515/dmpt-2019-0011
  • [170] Abdoul-latif FM, Obame L-C, Bassolé IH, Dicko MH. Antimicrobial activities of essential oil and methanol extract of Boswellia sacra Flueck. and Boswellia papyrifera (Del.) Hochst from Djibouti. Int J Manag Modern Sci Technol. 2012; 1: 1-10.
  • [171] Tabarraei H, Hassan J, Parvizi MR, Golshahi H. Evaluation of the acute and sub-acute toxicity of the black caraway seed essential oil in Wistar rats. Toxicol Rep. 2019; 6: 869-874. https://doi.org/10.1016/j.toxrep.2019.08.010
  • [172] Behravan J, Ramezani M, Hassanzadeh M, Eskandari M, Kasaian J, Sabeti Z. Composition, antimycotic and antibacterial activity of Ziziphora clinopodioides Lam. essential oil from Iran. J Essent Oil Bear Plant. 2007; 10(4): 339-345. https://doi.org/10.1080/0972060X.2007.10643565
  • [173] Mishra AK, Mishra A, Chattopadhyay P. Screening of acute and sub-chronic dermal toxicity of Calendula officinalis L essential oil. Regul Toxicol Pharmacol. 2018; 98: 184-189. https://doi.org/10.1016/j.yrtph.2018.07.027
  • [174] Simic A, Rančic A, Sokovic M, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD. Essential oil composition of Cymbopogon winterianus and Carum carvi and their antimicrobial activities. Pharm Biol. 2008; 46(6): 437-441.
  • [175] Showraki A, Emamghoreishi M, Oftadegan S. Anticonvulsant effect of the aqueous extract and essential oil of Carum carvi L. seeds in a pentylenetetrazol model of seizure in mice. Iran J Med Sci. 2016; 41(3): 200.
  • [176] Chaudhary AK, Ahmad S, Mazumder A. Cedrus deodara (Roxb.) Loud.: A review on its ethnobotany, phytochemical and pharmacological profile. Pharmacogn J. 2011; 3(23): 12-17. https://doi.org/10.5530/pj.2011.23.2
  • [177] Li J, Yang X, Yu J, Li Z, Deng Q, Cao Y, Chen X, Zhang H, Wang Y. Chemical composition of the volatile oil of Chenopodium ambrosioides L. from Mianyang in Sichuan Province of China and its sub-chronic toxicity in mice. Trop J Pharm Res. 2020; 19(9): 1985-1991. https://doi.org/10.4314/tjpr.v19i9.26
  • [178] Fidalgo LM. Essential oil from Chenopodium ambrosioides as a promising antileishmanial agent. Nat Prod Commun. 2007; 2(12): 1934578X0700201214. https://doi.org/10.1177/1934578X0700201214
  • [179] Xiao S, Yu H, Xie Y, Guo Y, Fan J, Yao W. Evaluation of the analgesic potential and safety of Cinnamomum camphora chvar. Borneol essential oil. Bioeng. 2021; 12(2): 9860-9871. https://doi.org/10.1080/21655979.2021.1996149
  • [180] Adokoh CK, Asante D-B, Acheampong DO, Kotsuchibashi Y, Armah FA, Sirikyi IH, Kimura K, Gmakame E, Abdul-Rauf S. Chemical profile and in vivo toxicity evaluation of unripe Citrus aurantifolia essential oil. Toxicol Rep. 2019; 6: 692-702. https://doi.org/10.1016/j.toxrep.2019.06.020
  • [181] Ouedrhiri W, Bouhdid S, Balouiri M, Lalami AEO, Moja S, Chahdi FO, Greche H. Chemical composition of Citrus aurantium L. leaves and zest essential oils, their antioxidant, antibacterial single and combined effects. J Chem Pharm Res. 2015; 7(1): 78-84.
  • [182] Bengag A, Allem R, Meziane M. Acute oral, intravenous and peritoneal toxicity evaluation of the peel Citrus species. South Asian J Exp Biol. 2020; 10(6). https://doi.org/10.38150/sajeb.10(6).p395-403
  • [183] Tao N-G, Liu Y-J. Chemical composition and antimicrobial activity of the essential oil from the peel of shatian pummelo (Citrus grandis Osbeck). Int J Food Prop. 2012; 15(3): 709-716. https://doi.org/10.1080/10942912.2010.500067
  • [184] Wongsariya K, Phanthong P, Bunyapraphatsara N, Srisukh V, Chomnawang MT. Synergistic interaction and mode of action of Citrus hystrix essential oil against bacteria causing periodontal diseases. Pharm Biol. 2014; 52(3): 273-280. https://doi.org/10.3109/13880209.2013.833948
  • [185] Tao Ng, Liu Yj, Zhang Ml. Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). Int J Food Sci Technol. 2009; 44(7): 1281-1285. https://doi.org/10.1111/j.1365-2621.2009.01947.x
  • [186] Guo Y-N, Tang L-P. The effect and mechanism of volatile oil emulsion from leaves of Clausena lansium (Lour.) Skeels on Staphylococcus aureus in vitro. Front Microbiol. 2024; 15: 1376819. https://doi.org/10.3389/fmicb.2024.1376819
  • [187] Dosoky NS, Pokharel SK, Setzer WN. Leaf essential oil composition, antimicrobial and cytotoxic activities of Cleistocalyx operculatus from Hetauda, Nepal. Am J Essent Oils Nat Prod. 2015; 2(5): 34-37.
  • [188] Özbek H, Öztürk M, Öztürk A, Ceylan E, Yener Z. Determination of lethal doses of volatile and fixed oils of several plants. East J Med. 2004; 9(1): 4-6.
  • [189] de Lima GPG, de Souza TM, de Paula Freire G, Farias DF, Cunha AP, Ricardo NMPS, de Morais SM, Carvalho AFU. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013; 112: 1953-1958. https://doi.org/10.1007/s00436-013-3351-1
  • [190] Alves JAB, da Silva Nunes M, Fakhouri R, Martins-Filho PRS, de Oliveira Ribeiro MdC, de Vasconcellos AC, Santos PO, Marchioro M, de Cassia Trindade R, Frazão GGS. Inhibition of drug-sensitive and drug-resistant Mycobacterium tuberculosis strains by essential oil from Croton argyrophylloides Mull. Arg. Int Archiv Med. 2016; 9. https://doi.org/10.3823/2047
  • [191] de França-Neto A, Cardoso-Teixeira AC, Medeiros TC, do Socorro Quinto-Farias M, de Souza Sampaio CM, Coelho-de-Souza AN, Lahlou S, Leal-Cardoso JH. Essential oil of Croton argyrophylloides: Toxicological aspects and vasorelaxant activity in rats. Nat Prod Commun. 2012; 7(10): 1934578X1200701040. https://doi.org/10.1177/1934578X1200701040
  • [192] Coelho-de-Souza AN, Rocha MVA, Oliveira KA, Vasconcelos YA, Santos EC, Silva-Alves KS, Diniz LRL, Ferreira-da-Silva FW, Oliveira AC, Ponte EL. Volatile oil of Croton zehntneri per oral sub-acute treatment offers small toxicity: perspective of therapeutic use. Rev Brasil Farmacogn. 2019; 29: 228-233. https://doi.org/10.1016/j.bjp.2018.11.005
  • [193] Oliveira A, Leal-Cardoso J, Santos C, Morais S, Coelho-de-Souza A. Antinociceptive effects of the essential oil of Croton zehntneri in mice. Brazil J Med Biol Res. 2001; 34: 1471-1474. https://doi.org/10.1590/S0100-879X2001001100016
  • [194] Taghizadeh M, Ostad SN, Asemi Z, Mahboubi M, Hejazi S, Sharafati-Chaleshtori R, Rashidi A, Akbari H, Sharifi N. Sub-chronic oral toxicity of Cuminum cyminum L.’s essential oil in female Wistar rats. Reg Toxicol Pharmacol. 2017; 88: 138-143. https://doi.org/10.1016/j.yrtph.2017.06.007
  • [195] Liju VB, Jeena K, Kuttan R. Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L). Food Chem Toxicol. 2013; 53: 52-61. https://doi.org/10.1016/j.fct.2012.11.027 [196] Apisariyakul A, Vanittanakom N, Buddhasukh D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol. 1995; 49(3): 163-169. https://doi.org/10.1016/0378-8741(95)01320-2
  • [197] Lulekal E, Tesfaye S, Gebrechristos S, Dires K, Zenebe T, Zegeye N, Feleke G, Kassahun A, Shiferaw Y, Mekonnen A. Phytochemical analysis and evaluation of skin irritation, acute and sub-acute toxicity of Cymbopogon citratus essential oil in mice and rabbits. Toxicol Rep. 2019; 6: 1289-1294. https://doi.org/10.1016/j.toxrep.2019.11.002
  • [198] Toukourou H, Uwambayinema F, Yakoub Y, Mertens B, Laleye A, Lison D, Quetin-Leclercq J, Gbaguidi F. In vitro and in vivo toxicity studies on Cymbopogon giganteus Chiov. leaves essential oil from Benin. J Toxicol. 2020;2020:8261058. https://doi.org/10.1155/2020/8261058
  • [199] Bassolé I, Lamien-Meda A, Bayala B, Obame L, Ilboudo A, Franz C, Novak J, Nebié R, Dicko M. Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine. 2011; 18(12): 1070-1074. https://doi.org/10.1016/j.phymed.2011.05.009
  • [200] Verma RS, Padalia RC, Goswami P, Verma SK, Chauhan A, Singh VR, Darokar MP. Chemical composition and antibacterial activity of p-menthane chemotype of Cymbopogon martini (Roxb.) W. Watson (Poaceae) from India. J Essent Oil Res. 2018; 30(3): 182-188. https://doi.org/10.1080/10412905.2018.1429327
  • [201] Fathifar E, Rastegar T, Asgarpanah J. Histopathological and biochemical toxicity of Cymbopogon schoenanthus essential oil in female mice. Res J Pharmacogn. 2021; 8(1): 53-62. https://doi.org/10.22127/rjp.2020.120330
  • [202] Upatoom P, Visetson S. Mechanisms of essential oils from citronella (Cymbopogon winterianus Jowitt) against Siamensis subterranean termite workers (Coptotermes gestroi Wasmann) and mice (Mus musculus L.). Thai Agric Res J. 2017; 35(3): 270-287.
  • [203] Hu Q-P, Cao X-M, Hao D-L, Zhang L-L. Chemical composition, antioxidant, DNA damage protective, cytotoxic and antibacterial activities of Cyperus rotundus rhizomes essential oil against foodborne pathogens. Sci Rep. 2017; 7(1): 1-9. https://doi.org/10.1038/srep45231
  • [204] Al-Snafi AE. A review on Cyperus rotundus A potential medicinal plant. IOSR J Pharm. 2016; 6(7): 32-48.
  • [205] Alves-Silva JM, Zuzarte M, Gonçalves MJ, Cavaleiro C, Cruz MT, Cardoso SM, Salgueiro L. New claims for wild carrot (Daucus carota subsp. carota) essential oil. Evid-Based Complement Altern Med. 2016;2016:9045196. https://doi.org/10.1155/2016/9045196
  • [206] Asiaei EO, Moghimipour E, Fakoor MH. Evaluation of antimicrobial activity of Eucalyptus camaldulensis essential oil against the growth of drug-resistant bacteria. Jundishapur J Nat Pharm Prod. 2018; 13(4). https://doi.org/10.5812/jjnpp.65050.
  • [207] Mengiste B, Zenebe T, Dires K, Lulekal E, Mekonnen A, Zegeye N, Shiferaw Y. Safety evaluation of Eucalyptus globulus essential oils through acute and sub-acute toxicity and skin irritation in mice and rats. Curr Chem Biol. 2020; 14(3): 187-195. https://doi.org/10.2174/2212796814999200818095036
  • [208] Park J-W, Wendt M, Heo G-J. Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Lab Anim Res. 2016; 32: 87-90. https://doi.org/10.5625/lar.2016.32.2.87
  • [209] Bastos RG, Rosa CP, Oliver JC, Silva NC, Dias AL, Da Rocha CQ, Vilegas W, Da Silva GA, Da Silva MA. Chemical characterization and antimicrobial activity of hydroethanolic crude extract of Eugenia florida DC (Myrtaceae) leaves. Int J Pharm Pharm Sci. 2016; 8: 110-115.
  • [210] Mirzania F, Salimikia I, Ghasemian Yadegari J, Nazarzadeh A, Najmaddini H. Investigating the effect of acute and subacute toxicity of Ferula macrecolea (Boiss.) Boiss essential oil in BALB/c Mice. J Med Plant By-Prod. 2024. https://doi.org/10.22034/jmpb.2024.363350.1598
  • [211] Sadeghi N, Sadeghi H, Mohan DN, Sepahvand A, Alizadeh A, Garavand S. Chemical composition, anti-fungal and cytotoxic effects of Ferula macrecolea essential oil against Candida albicans resistant and sensitive strains. J Herbmed Pharmacol. 2023; 12(2): 228-232. https://doi.org/10.34172/jhp.2023.24
  • [212] AbduRahim SA, Elamin BEK, Bashir AAA, Almagboul AZ. In vitro test of antimicrobial activity of Foeniculum vulgare Mill.(Fennel) essential oil. J Multidisc Eng Sci Stud. 2017; 3(4): 1609-1614.
  • [213] Zeng W-C, Zhu R-X, Jia L-R, Gao H, Zheng Y, Sun Q. Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine. Food Chem Toxicol. 2011; 49(6): 1322-1328. https://doi.org/10.1016/j.fct.2011.03.014
  • [214] Joshi S, Chanotiya CS, Agarwal G, Prakash O, Pant AK, Mathela CS. Terpenoid compositions, and antioxidant and antimicrobial properties of the rhizome essential oils of different Hedychium species. Chem Biodivers. 2008; 5(2): 299-309. https://doi.org/10.1002/cbdv.200890027
  • [215] Goly KRC, Soro Y, Dadie A, Kassi ABB, Djé M. Antibacterial activity of essential oils and extracts from the leaves of Hyptis suaveolens and Lippia multiflora on multi-resistant bacteria. Rasayan J Chem. 2015; 8(4): 396-403.
  • [216] Glišić S, Milojević S, Dimitrijević S, Orlović A, Skala D. Antimicrobial activity of the essential oil and different fractions of Juniperus communis L. and a comparison with some commercial antibiotics. J Serb Chem Soc. 2007; 72(4): 311-320. https://doi.org/10.2298/JSC0704311G
  • [217] Blažeković B, Yang W, Wang Y, Li C, Kindl M, Pepeljnjak S, Vladimir-Knežević S. Chemical composition, antimicrobial and antioxidant activities of essential oils of Lavandula intermedia ‘Budrovka’and L. angustifolia cultivated in Croatia. Ind Crops Prod. 2018; 123: 173-182. https://doi.org/10.1016/j.indcrop.2018.06.041
  • [218] Mekonnen A, Tesfaye S, Christos SG, Dires K, Zenebe T, Zegeye N, Shiferaw Y, Lulekal E. Evaluation of skin irritation and acute and subacute oral toxicity of Lavandula angustifolia essential oils in rabbit and mice. J Toxicol. 2019; 2019(1): 5979546. https://doi.org/10.1155/2019/5979546
  • [219] Guilhon CC, Raymundo LJ, Alviano DS, Blank AF, Arrigoni-Blank MF, Matheus ME, Cavalcanti SC, Alviano CS, Fernandes PD. Characterisation of the anti-inflammatory and antinociceptive activities and the mechanism of the action of Lippia gracilis essential oil. J Ethnopharmacol. 2011; 135(2): 406-413. https://doi.org/10.1016/j.jep.2011.03.032
  • [220] Hernandes C, Pina E, Taleb‐Contini S, Bertoni B, Cestari I, Espanha L, Varanda E, Camilo K, Martinez E, França S. Lippia origanoides essential oil: An efficient and safe alternative to preserve food, cosmetic and pharmaceutical products. J Appl Microbiol. 2017; 122(4): 900-910. https://doi.org/10.1111/jam.13398
  • [221] Pinto Cda P, Rodrigues VD, Pinto Fda P, Pinto Rda P, Uetanabaro AP, Pinheiro CS, Gadea SF, Silva TR, Lucchese AM. Antimicrobial activity of lippia species from the brazilian semiarid region traditionally used as antiseptic and anti-infective agents. Evid Based Complement Alternat Med. 2013;2013:614501. https://doi.org/10.1155/2013/614501
  • [222] Budin SB, Siti Nor Ain SM, Omar B, Taib IS, Hidayatulfathi O. Acute and subacute oral toxicity of Litsea elliptica Blume essential oil in rats. J Zhejiang Univ Sci B. 2012; 13(10): 783-790. https://doi.org/10.1631/jzus.B1100021
  • [223] Abdoul-Latif FM, Mohamed N, Edou P, Ali AA, Djama SO, Obame L-C, Bassolé IH, Dicko MH. Antimicrobial and antioxidant activities of essential oil and methanol extract of Matricaria chamomilla L. from Djibouti. J Med Plant Res. 2011; 5(9): 1512-1517.
  • [224] Borotová P, Galovičová L, Vukovic NL, Vukic M, Tvrdá E, Kačániová M. Chemical and biological characterization of Melaleuca alternifolia essential oil. Plants. 2022; 11(4): 558. https://doi.org/10.3390/plants11040558
  • [225] Hammer KA, Carson CF, Riley TV, Nielsen JB. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem Toxicol. 2006; 44(5): 616-625. https://doi.org/10.1016/j.fct.2005.09.001
  • [226] Jalilzadeh-Amin G, Maham M. Antidiarrheal activity and acute oral toxicity of Mentha longifolia L. essential oil. Avicenna J Phytomed. 2015; 5(2): 128-137.
  • [227] Daneshbakhsh D, Asgarpanah J, Najafizadeh P, Rastegar T, Mousavi Z. Safety assessment of Mentha mozaffarianii essential oil: acute and repeated toxicity studies. Iran J Med Sci. 2018; 43(5): 479.
  • [228] Mahboubi M, Kazempour N. Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) essential oil. Songklanakarin J Sci Technol. 2014; 36(1): 83-87.
  • [229] Debbab A, Mosaddak B, Aly A, Hakiki A, Mosaddak M. Chemical characterization and toxicological evaluation of the essential oil of Mentha piperita L. growing in Morocco. Sci Stud Resour. 2007; 8(3): 281-288.
  • [230] Teixeira B, Marques A, Ramos C, Batista I, Serrano C, Matos O, Neng NR, Nogueira JM, Saraiva JA, Nunes ML. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind Crops Prod. 2012; 36(1): 81-87. https://doi.org/10.1016/j.indcrop.2011.08.011
  • [231] Ez-Zriouli R, El Yacoubi H, Imtara H, El-Hessni A, Mesfioui A, Tarayrah M, Mothana RA, Noman OM, Mouhsine F, Rochdi A. Chemical composition and antimicrobial activity of essential oils from Mentha pulegium and Rosmarinus officinalis against multidrug-resistant microbes and their acute toxicity study. Open Chem. 2022; 20(1): 694-702. https://doi.org/10.1515/chem-2022-0185
  • [232] Di Vito M, Bellardi MG, Mondello F, Modesto M, Michelozzi M, Bugli F, Sanguinetti M, Sclocchi MC, Sebastiani ML, Biffi S. Monarda citriodora hydrolate vs essential oil comparison in several anti-microbial applications. Ind Crop Prod. 2019; 128: 206-212. https://doi.org/10.1016/j.indcrop.2018.11.007
  • [233] Enabulele SA, Oboh FO, Uwadiae EO. Antimicrobial, nutritional and phytochemical properties of Monodora myristica seeds. IOSR J Pharm Biol Sci. 2014; 9(4): 01-06.
  • [234] Miediegha O, Owaba A, Okori-West L. Acute toxicity studies, physicochemical and GC/MS analyses of Monodora myristica (Gaertn.) Dunal oil. Niger J Pharm Res. 2022; 18(2): 91-99. https://doi.org/10.4314/njpr.v18i2.1
  • [235] El Hartiti H, El Mostaphi A, Barrahi M, Ben Ali A, Chahboun N, Amiyare R, Zarrouk A, Bourkhiss B, Ouhssine M. Chemical composition and antibacterial activity of the essential oil of Myrtus communis leaves. Karbala Int J Modern Sci. 2020; 6(3): 3. https://doi.org/10.33640/2405-609X.1546
  • [236] Touaibia M. Composition and anti-inflammatory effect of the common myrtle (Myrtus communis L.) essential oil growing wild in Algeria. Phytothérapie. 2017: 1-6. https://doi.org/10.1007/s10298-017-1100-9
  • [237] Disket J, Mann S, Gupta RK. A review on spikenard (Nardostachys jatamansi DC.)-an ‘endangered’essential herb of India. Int J Pharm Chem. 2012; 2(3): 52-60.
  • [238] Moghaddam AMD, Shayegh J, Mikaili P, Sharaf JD. Antimicrobial activity of essential oil extract of Ocimum basilicum L. leaves on a variety of pathogenic bacteria. J Med Plants Res. 2011; 5(15): 3453-3456.
  • [239] Ismail M. Central properties and chemical composition of Ocimum basilicum. essential oil. Pharm Biol. 2006; 44(8): 619-626. https://doi.org/10.1080/13880200600897544
  • [240] Orafidiya L, Agbani E, Iwalewa E, Adelusola K, Oyedapo O. Studies on the acute and sub-chronic toxicity of the essential oil of Ocimum gratissimum L. leaf. Phytomedicine. 2004; 11(1): 71-76. https://doi.org/10.1078/0944-7113-00317
  • [241] Nakamura CV, Ueda-Nakamura T, Bando E, Melo AFN, Cortez DAG, Dias Filho BP. Antibacterial activity of Ocimum gratissimum L. essential oil. Memórias do Instituto Oswaldo Cruz. 1999; 94: 675-678. https://doi.org/10.1590/S0074-02761999000500022
  • [242] Houda E, Abdelhalim M, Aboubaker E, Younes EYE, Atmane R. Assessment of bioactive compounds, antibacterial potential and acute toxicity of a volatile Origanum compactum extract, an endemic plant of northern Morocco. Arab J Med Arom Plant. 2021; 7(3): 422-437. https://doi.org/10.48347/IMIST.PRSM/ajmap-v7i3.26574
  • [243] Llana-Ruiz-Cabello M, Maisanaba S, Puerto M, Pichardo S, Jos A, Moyano R, Cameán AM. A subchronic 90-day oral toxicity study of Origanum vulgare essential oil in rats. Food Chem Toxicol. 2017; 101: 36-47. https://doi.org/10.1016/j.fct.2017.01.001
  • [244] Ghavam M, Afzali A, Manconi M, Bacchetta G, Manca ML. Variability in chemical composition and antimicrobial activity of essential oil of Rosa damascena Herrm. from mountainous regions of Iran. Chem Biol Technol Agric. 2021; 8: 1-16. https://doi.org/10.1186/s40538-021-00219-6
  • [245] Mulkijanyan K, Gogitidze N, Sulakvelidze M, Mushkiashvili N, Novikova Z, Mskhiladze L. Pharmacological assessment of the aqueous extract of rose oil waste from Rosa damascena Herrm cultivated in Georgia. World J Biol Pharm Health Sci. 2021; 7(1): 001-008. https://doi.org/10.30574/wjbphs.2021.7.1.0069
  • [246] Mengiste B, Dires K, Lulekal E, Arayaselassie M, Zenebe T, Feleke G, Makonnen E, Mekonnen A. Acute skin irritation, acute and sub-acute oral toxicity studies of Rosmarinus officinalis essential oils in mice and rabbit. Afr J Pharm Pharmacol. 2018; 12(26): 389-396. https://doi.org/10.5897/AJPP2018.4957
  • [247] Mihajilov-Krstev T, Radnović D, Kitić D, Zlatković B, Ristić M, Branković S. Chemical composition and antimicrobial activity of Satureja hortensis L. essential oil. Open Life Sci. 2009; 4(3): 411-416. https://doi.org/10.2478/s11535-009-0027-z
  • [248] Siavash Saei‐Dehkordi S, Fallah AA, Heidari‐Nasirabadi M, Moradi M. Chemical composition, antioxidative capacity and interactive antimicrobial potency of Satureja khuzestanica Jamzad essential oil and antimicrobial agents against selected food‐related microorganisms. Int J Food Sci Technol. 2012; 47(8): 1579-1585. https://doi.org/10.1111/j.1365-2621.2012.03006.x
  • [249] Cerrón-Mercado F, Salva-Ruíz BK, Nolazco-Cama D, Espinoza-Silva C, Fernández-López J, Pérez-Alvarez JA, Viuda-Martos M. Development of Chincho (Tagetes elliptica Sm.) essential oil organogel nanoparticles through ionic gelation and process optimization with Box–Behnken Design. Gels. 2022; 8(12): 815. https://doi.org/10.3390/gels8120815
  • [250] Mohsenzadeh F, Chehregani A, Amiri H. Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium in different developmental stages. Pharm Biol. 2011; 49(9): 920-926. https://doi.org/10.3109/13880209.2011.556650
  • [251] Adane F, Asres K, Ergete W, Woldekidan S, Abebe A, Lengiso B, Seyoum G. Composition of the essential oil Thymus schimperi and evaluation of its acute and subacute toxicity in wistar albino rats: in silico toxicity studies. Evid-Based Complement Altern Med. 2021;2021:5521302. https://doi.org/10.1155/2021/5521302
  • [252] Rojas-Armas J, Arroyo-Acevedo J, Ortiz-Sánchez M, Palomino-Pacheco M, Castro-Luna A, Ramos-Cevallos N, Justil-Guerrero H, Hilario-Vargas J, Herrera-Calderón O. Acute and repeated 28-day oral dose toxicity studies of Thymus vulgaris L. essential oil in rats. Toxicol Res. 2019; 35: 225-232. https://doi.org/10.5487/TR.2019.35.3.225
  • [253] Vazirian M, Hekmati D, Ostad S, Manayi A. Toxicity evaluation of essential oil of Trachyspermum ammi in acute and sub-chronic toxicity experiments. J Med Plants. 2019; 18(69): 70-77.
  • [254] Moein MR, Zomorodian K, Pakshir K, Yavari F, Motamedi M, Zarshenas MM. Trachyspermum ammi (L.) sprague: chemical composition of essential oil and antimicrobial activities of respective fractions. J Evid Based Complementary Altern Med. 2015;20(1):50-56. https://doi.org/10.1177/2156587214553302
  • [255] Stojković D, Soković M, Glamočlija J, Džamić A, Ćirić A, Ristić M, Grubišić D. Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chem. 2011; 128(4): 1017-1022. https://doi.org/10.1016/j.foodchem.2011.04.007
  • [256] Chattopadhyay P, Banerjee S, Pathak MP, Agnihotri A, Karmakar S, Goyary D, Dhiman S, Veer V. Acute and subchronic dermal toxicity of Vitex negundo essential oil. Cutan Ocul Toxicol. 2014; 33(1): 16-21. https://doi.org/10.3109/15569527.2013.791829.
  • [257] Ai H-W, Kang Y-X, Cao Y, Zheng C-J. Antifungal properties and chemical analysis of essential oil from Vitex negundo seeds. J Pharm Res I. 2014; 4(5): 541-548. https://doi.org/10.9734/BJPR/2014/7079.
  • [258] López EIC, Balcázar MFH, Mendoza JMR, Ortiz ADR, Melo MTO, Parrales RS, Delgado TH. Antimicrobial activity of essential oil of Zingiber officinale Roscoe (Zingiberaceae). Am J Plant Sci. 2017; 8(7): 1511-1524. https://doi.org/10.4236/ajps.2017.87104
  • [259] Yang S-K, Tan N-P, Chong C-W, Abushelaibi A, Lim S-H-E, Lai K-S. The missing piece: Recent approaches investigating the antimicrobial mode of action of essential oils. Evol Bioinform. 2021; 17: 1176934320938391. https://doi.org/10.1177/1176934320938391
  • [260] Oliveira RC, Carvajal-Moreno M, Mercado-Ruaro P, Rojo-Callejas F, Correa B. Essential oils trigger an antifungal and anti-aflatoxigenic effect on Aspergillus flavus via the induction of apoptosis-like cell death and gene regulation. Food Control. 2020; 110: 107038. https://doi.org/10.1016/j.foodcont.2019.107038
  • [261] Kuwagata M, Doi Y, Saito H, Tsurumoto M, Igarashi T, Nishimura T, Taquahashi Y, Hirabayashi Y, Kitajima S. A 90-day repeated oral dose toxicity study of p-cymene in rats. Fundam Toxicol Sci. 2024; 11(4): 169-181. https://doi.org/10.2131/fts.11.169
  • [262] Salehi B, Mishra AP, Shukla I, Sharifi‐Rad M, Contreras MdM, Segura‐Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi‐Rad J. Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Res. 2018; 32(9): 1688-1706. https://doi.org/10.1002/ptr.6109
  • [263] Nejad SM, Özgüneş H, Başaran N. Pharmacological and toxicological properties of eugenol. Turk J Pharm Sci. 2017; 14(2): 201. https://doi.org/10.4274/tjps.62207
  • [264] Sun J. D-Limonene: safety and clinical applications. Altern Med Rev. 2007;12(3):259-264.
  • [265] Gupta A, Jeyakumar E, Lawrence R. Journey of limonene as an antimicrobial agent. J Pure Appl Microbiol. 2021; 15(3). https://doi.org/10.22207/JPAM.15.3.01
  • [266] Shah BB, Mehta AA. In vitro evaluation of antioxidant activity of D-Limonene. Asian J Pharm Pharmacol. 2018; 4(6): 883-887. https://doi.org/10.31024/ajpp.2018.4.6.25
  • [267] Fisher, Scientific. Safety Data Sheet for (-)-Limonene 92%. https://www.fishersci.com/store/msds?partNumber=AC203731000&productDescription=%28-%29-LIMONENE+92%25+100ML&vendorId=VN00032119&countryCode=US&language=en (accessed 2024).
  • [268] Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, Mrabti HN, Bakrim S, Zengin G, Bouyahya A. Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol. 2021; 153: 112259. https://doi.org/10.1016/j.fct.2021.112259
  • [269] Tian F, Woo SY, Lee SY, Chun HS. p-Cymene and its derivatives exhibit antiaflatoxigenic activities against Aspergillus flavus through multiple modes of action. Appl Biol Chem. 2018; 61: 489-497. https://doi.org/10.1007/s13765-018-0382-4
  • [270] Carl Roth Gmb, H. Co K. G. Safety Data Sheet for Chemical Compound. https://www.carlroth.com/medias/SDB-3465-AU-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNzMxNTN8YXBwbGljYXRpb24vcGRmfGgxYS9oNmQvOTE0NDM5MjIyMDcwMi9TREJfMzQ2NV9BVV9FTi5wZGZ8YmMzYTE1NDAxMmQ5OTMyOGM1MGZlMWE2NTQ5NDE0ZDU1Mjg4Yjg1MTY0Y2VhYjUyY2JmMTc2ZTFmOTIwZTEzNg (accessed 2024).
  • [271] Sato K, Krist S, Buchbauer G. Antimicrobial effect of vapours of geraniol,(R)‐(–)‐linalool, terpineol, γ‐terpinene and 1, 8‐cineole on airborne microbes using an airwasher. Flavour Fragr J. 2007; 22(5): 435-437. https://doi.org/10.1002/ffj.1818
  • [272] Mollica F, Gelabert I, Amorati R. Synergic antioxidant effects of the essential oil component γ-terpinene on high-temperature oil oxidation. ACS Food Sci Technol. 2022; 2(1): 180-186. https://doi.org/10.1021/acsfoodscitech.1c00399
  • [273] An Q, Ren J-N, Li X, Fan G, Qu S-S, Song Y, Li Y, Pan S-Y. Recent updates on bioactive properties of linalool. Food Funct. 2021; 12(21): 10370-10389. https://doi.org/10.1039/D1FO02120F
  • [274] Kamatou GP, Viljoen AM. Linalool–A review of a biologically active compound of commercial importance. Nat Prod Commun. 2008; 3(7): 1934578X0800300727. https://doi.org/10.1177/1934578X0800300727
  • [275] Nakasugi LP, Silva Bomfim N, Romoli JCZ, Botião Nerilo S, Veronezi Silva M, Rocha Oliveira GH, Machinski Jr M. Antifungal and antiaflatoxigenic activities of thymol and carvacrol against Aspergillus flavus. Saúde e Pesquisa. 2021; 14(1). https://doi.org/10.17765/2176-9206.2021v14n1.e7727
  • [276] Escobar A, Perez M, Romanelli G, Blustein G. Thymol bioactivity: A review focusing on practical applications. Arab J Chem. 2020; 13(12): 9243-9269. https://doi.org/10.1016/j.arabjc.2020.11.009
  • [277] Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015; 20(7): 11808-11829. https://doi.org/10.3390/molecules200711808
  • [278] Francomano F, Caruso A, Barbarossa A, Fazio A, La Torre C, Ceramella J, Mallamaci R, Saturnino C, Iacopetta D, Sinicropi MS. β-Caryophyllene: a sesquiterpene with countless biological properties. Appl Sci. 2019; 9(24): 5420. https://doi.org/10.3390/app9245420
  • [279] Carl Roth Gmb, H. Co K. G. Safety Data Sheet for Caryophyllene. https://www.carlroth.com/medias/SDB-7232-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNDQ0NDR8YXBwbGljYXRpb24vcGRmfGFHTTJMMmd6Wmk4NU1UUTJPVEExTURBeU1ERTBMMU5FUWw4M01qTXlYMGRDWDBWT0xuQmtaZ3w3ZWI0YTAxMWYwNzhmZDAzZjg1ZDg2OGQ4YzJlNDJlNzRhYzY4ZTYyYmIxYWZiNTczMTZhY2VjYmJkYWNlN2U5 (accessed 2024).
  • [280] Cai Z-M, Peng J-Q, Chen Y, Tao L, Zhang Y-Y, Fu L-Y, Long Q-D, Shen X-C. 1, 8-Cineole: A review of source, biological activities, and application. J Asian Nat Prod Res. 2021; 23(10): 938-954. https://doi.org/10.1080/10286020.2020.1839432
  • [281] Xu J, Hu Z-Q, Wang C, Yin Z-Q, Wei Q, Zhou L-J, Li L, Du Y-H, Jia R-Y, Li M. Acute and subacute toxicity study of 1, 8-cineole in mice. Int J Clin Exp Pathol. 2014; 7(4): 1495.
  • [282] Kim H-M, Kwon H, Kim K, Lee S-E. Antifungal and Antiaflatoxigenic Activities of 1, 8-Cineole and t-Cinnamaldehyde on Aspergillus flavus. Appl Sci. 2018; 8(9): 1655. https://doi.org/10.3390/app8091655
  • [283] Carl Roth Gmb, H. Safety Data Sheet for Eucalyptol. https://www.carlroth.com/medias/SDB-7244-IE-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNzUzMDB8YXBwbGljYXRpb24vcGRmfGg4NS9oNDMvOTE0NjkwNTEzMzA4Ni9TREJfNzI0NF9JRV9FTi5wZGZ8MWMxYTQwZTdhNWM4ZDI1ZjA3NzMzOWVhMjAyNGY2MWIzYWJjNTIxY2I2OTQ1M2Y5ODIyOGU0MzdkNmM3NWQ4NA (accessed 2023).
  • [284] Xu Z, Chang L, Xu Z, Chang L. Lamiaceae. Identification and Control of Common Weeds: Volume 3. 2017: 181-265. https://doi.org/10.1007/978-981-10-5403-7_8
  • [285] Uritu CM, Mihai CT, Stanciu G-D, Dodi G, Alexa-Stratulat T, Luca A, Leon-Constantin M-M, Stefanescu R, Bild V, Melnic S. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res Manag 2018; 2018(1): 7801543. https://doi.org/10.1155/2018/7801543
  • [286] Tan PV, Mezui C, Enow-Orock G, Njikam N, Dimo T, Bitolog P. Teratogenic effects, acute and sub chronic toxicity of the leaf aqueous extract of Ocimum suave Wild (Lamiaceae) in rats. J Ethnopharmacol. 2008; 115(2): 232-237. https://doi.org/10.1016/j.jep.2007.09.022
  • [287] Rolnik A, Olas B. The plants of the Asteraceae family as agents in the protection of human health. Int J Mol Sci. 2021; 22(6): 3009. https://doi.org/10.3390/ijms22063009
  • [288] Amiri MS, Joharchi MR. Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna J Phytomed. 2016; 6(6): 621.
  • [289] Sayed-Ahmad B, Talou T, Saad Z, Hijazi A, Merah O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind Crops Prod. 2017; 109: 661-671. https://doi.org/10.1016/j.indcrop.2017.09.027
  • [290] de Paulo Farias D, Neri-Numa IA, de Araujo FF, Pastore GM. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem. 2020; 306: 125630. https://doi.org/10.1016/j.foodchem.2019.125630
  • [291] Faleiro JH, Gonçalves RC, dos Santos MNG, da Silva DP, Naves PLF, Malafaia G. The chemical featuring, toxicity, and antimicrobial activity of Psidium cattleianum (Myrtaceae) leaves. New J Sci. 2016; 2016(1): 7538613. https://doi.org/10.1155/2016/7538613
  • [292] Khalil AA, Khan M, Rauf A, Naz S, Al-Awthan YS, Bahattab O. The Family Rutaceae: An Overview of Its Traditional Uses. In: Phytochemical and Pharmacological Investigation of the Family Rutaceae. 2024: 15-31.
  • [293] Liaqat I, Riaz N, Saleem Q-u-A, Tahir HM, Arshad M, Arshad N. Toxicological evaluation of essential oils from some plants of Rutaceae family. Evid‐Base Complement Altern Med. 2018; 2018(1): 4394687. https://doi.org/10.1155/2018/4394687
  • [294] Khalil AA, Khan AA, Khan MA, Naz S. Antioxidant Properties of the Family Rutaceae. In: Phytochemical and Pharmacological Investigation of the Family Rutaceae. Apple Academic Press, 2024.
  • [295] Kachuei R, Khodavaisy S, Rezaie S, Sharifynia S. In vitro antifungal susceptibility of clinical species belonging to Aspergillus genus and Rhizopus oryzae. J Mycol Méd. 2016; 26(1): 17-21. https://doi.org/10.1016/j.mycmed.2015.12.002
  • [296] Ikeda M, Yagihara Y, Tatsuno K, Okazaki M, Okugawa S, Moriya K. Clinical characteristics and antimicrobial susceptibility of Bacillus cereus blood stream infections. Ann Clin Microbiol Antimicrob. 2015; 14: 1-7. https://doi.org/10.1186/s12941-015-0104-2
  • [297] Senok A, Yousif A, Mazi W, Sharaf E, Bindayna K, Elnima E-A, Botta G. Pattern of antibiotic susceptibility in Campylobacter jejuni isolates of human and poultry origin. Japan J Infect Dis. 2007; 60(1): 1-4. https://doi.org/10.7883/yoken.JJID.2007.1
  • [298] Lyon GM, Karatela S, Sunay S, Adiri Y. Antifungal susceptibility testing of Candida isolates from the Candida surveillance study. J Clin Microbiol. 2010; 48(4): 1270-1275. https://doi.org/10.1128/jcm.02363-09
  • [299] Rams TE, Feik D, Mortensen JE, Degener JE, van Winkelhoff AJ. Antibiotic susceptibility of periodontal Enterococcus faecalis. J Periodontol. 2013; 84(7): 1026-1033. https://doi.org/10.1902/jop.2012.120050
  • [300] Kumar Y, Sood S, Sharma A, Mani KR. Antibiogram and characterization of resistance markers among Escherichia coli Isolates from urinary tract infections. J Infect Develop Countr. 2013; 7(07): 513-519. https://doi.org/10.3855/jidc.2706
  • [301] Khayyat AN, Abbas HA, Mohamed MF, Asfour HZ, Khayat MT, Ibrahim TS, Youns M, Khafagy E-S, Abu Lila AS, Safo MK. Not only antimicrobial: metronidazole mitigates the virulence of Proteus mirabilis isolated from macerated diabetic foot ulcer. Appl Sci. 2021; 11(15): 6847. https://doi.org/10.3390/app11156847
  • [302] Nagshetty K, Channappa ST, Gaddad SM. Antimicrobial susceptibility of Salmonella typhi in India. J Infect Develop Countr. 2010; 4(02): 070-073. https://doi.org/10.3855/jidc.109
  • [303] Falcone M, Russo A, Pacini G, Merli M, Venditti M. Spontaneous bacterial peritonitis due to methicillin-resistant Staphylococcus aureus in a patient with cirrhosis: the potential role for daptomycin and review of the literature. Infect Dis Repo. 2015; 7(3). https://doi.org/10.4081/idr.2015.6127
  • [304] Dima C, Dima S. Essential oils in foods: extraction, stabilization, and toxicity. Curr Opin Food Sci. 2015; 5: 29-35. https://doi.org/10.1016/j.cofs.2015.07.003
  • [305] Turek C, Stintzing FC. Stability of essential oils: a review. In: Comprehensive reviews in food science and food safety. 2013; 12(1): 40-53. https://doi.org/10.1111/1541-4337.12006
  • [306] Parke D, Lewis D. Safety aspects of food preservatives. Food Addit Contam. 1992; 9(5): 561-577. https://doi.org/10.1080/02652039209374110
  • [307] Naja F, Hamadeh R, Alameddine M. Regulatory frameworks for a safe and effective use of essential oils: a critical appraisal. Adv Biomed Health Sci. 2022; 1(1): 7-12. https://doi.org/10.4103/abhs.abhs_8_21
  • [308] Authority EFS, Dorne JLC, Manini P, Hogstrand C. Animal Health Risk assessment of multiple chemicals in essential oils for farm animals. 2020. https://doi.org/10.2903/sp.efsa.2020.EN-1760
  • [309] Tisserand R, Young R. Essential oil safety: a guide for health care professionals. Elsevier Health Sciences, 2013.
  • [310] Rahmi D, Yunilawati R, Jati BN, Setiawati I, Riyanto A, Batubara I, Astuti RI. Antiaging and skin irritation potential of four main Indonesian essential oils. Cosmetics. 2021; 8(4): 94. https://doi.org/10.3390/cosmetics8040094
  • [311] Reichling J, Suschke U, Schneele J, Geiss HK. Antibacterial activity and irritation potential of selected essential oil components–structure-activity relationship. Nat Prod Commun. 2006; 1(11): 1934578X0600101116. https://doi.org/10.1177/1934578X0600101116
  • [312] Mezzoug N, Idaomar M, Baudoux D, Debauche P, Liemans V, Zhiri A. Genotoxicity of some essential oils frequently used in aromatherapy. Adv Biosci Biotechnol. 2016; 7(2): 63-73. http://dx.doi.org/10.4236/abb.2016.72008

Chemical composition, antimicrobial, antioxidant, and toxicity of essential oils as food preservatives

Year 2025, Volume: 29 Issue: 4, 1379 - 1418, 05.07.2025
https://doi.org/10.12991/jrespharm.1653671

Abstract

Owing to the toxicity of chemical food preservatives, essential oils have gained significant attention in the food industry. Because they can be toxic at certain concentrations, their toxicity must be carefully considered. This study is based on a review of 312 references to ensure accuracy. The databases WOS, PubMed, Embase, Scopus, and Google Scholar are utilized to gather relevant information. Various combinations of the following keywords are employed: essential oil, food preservative, antimicrobial, toxicity, and MIC. The inclusion and exclusion criteria and quality assessment of the included studies led to the formation of a search strategy flowchart. Data were tabulated showing the names of the plants containing volatile oil, the major ingredients of essential oils, their antimicrobial, antioxidant, and anti-aflatoxin effects, oral toxicity, and Minimum Inhibitory Concentration (MIC) of volatile oils against pathogens. The acute, sub-acute, and chronic toxicities of volatile oils are also discussed and investigated. In addition, the toxicity of the essential oils and their MIC were compared. Additionally, the MIC of the effective antibiotics against pathogenic microorganisms were compared with those of the volatile oils. Several figures have been prepared that show the relative frequencies of the data obtained from the tables. These results suggest that essential oils have great potential for use in the food industry. However, only a few studies have been conducted to determine their toxicity. Thus, further investigation is required.

References

  • [1] Rawat S. Food Spoilage: Microorganisms and their prevention. Asian J Plant Sci Res. 2015; 5(4): 47-56.
  • [2] Sahu M, Bala S. Food processing, food spoilage and their prevention: An overview. Int J Life-Sci Sci Res. 2017; 3(1): 753-759. https://doi.org/10.21276/ijlssr.2017.3.1.1
  • [3] Sherawat M, Rahi RK, Gupta V, Neelam D, Sain D. Prevention and control of food spoilage: an overview. Int J Pharm Biol Sci. 2021; 11(1): 124-130. https://doi.org/10.21276/ijpbs.2021.11.1.1
  • [4] Silva MM, Lidon F. Food preservatives–An overview on applications and side effects. Emirates J Food Agric. 2016: 366-373. https://doi.org/10.9755/ejfa.2016-04-351
  • [5] Anand S, Sati N. Artificial preservatives and their harmful effects: looking toward nature for safer alternatives. Int J Pharm Sci Res. 2013; 4(7): 2496-2501. https://doi.org/10.13040/IJPSR.0975-8232.4(7).24960-01
  • [6] Sharma S. Food preservatives and their harmful effects. Int J Sci Res Pub. 2015; 5(4): 1-2.
  • [7] Kumari PK, Akhila S, Rao YS, Devi BR. Alternative to artificial preservatives. Syst Rev Pharm. 2019; 10: 99-102. https://doi.org/10.5530/srp.2019.1.17
  • [8] Mihai AL, Popa ME. Essential oils utilization in food industry-a literature review. Sci Bull Ser F.2013; 17: 187-192.
  • [9] Salanță LC, Cropotova J. An update on effectiveness and practicability of plant essential oils in the food industry. Plants. 2022; 11(19): 2488. https://doi.org/10.3390/plants11192488
  • [10] Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crop Prod. 2014; 62: 250-264. https://doi.org/10.1016/j.indcrop.2014.05.055
  • [11] Wojtunik-Kulesza KA. Toxicity of selected monoterpenes and essential oils rich in these compounds. Molecules. 2022; 27(5): 1716. https://doi.org/10.3390/molecules27051716
  • [12] Loying R, Gogoi R, Sarma N, Borah A, Munda S, Pandey SK, Lal M. Chemical compositions, in-vitro antioxidant, anti-microbial, anti-inflammatory and cytotoxic activities of essential oil of Acorus calamus L. rhizome from North-East India. J Essent Oil Bear Plants. 2019; 22(5): 1299-1312. https://doi.org/10.1080/0972060X.2019.1696236
  • [13] Shukla R, Singh P, Prakash B, Dubey NK. Efficacy of A corus calamus L. essential oil as a safe plant‐based antioxidant, A flatoxin B 1 suppressor and broad spectrum antimicrobial against food‐infesting fungi. Int J Food Sci Technol. 2013; 48(1): 128-135. https://doi.org/10.1111/j.1365-2621.2012.03168.x
  • [14] Kouame BKFP, Toure D, Kablan L, Bedi G, Tea I, Robins R, Chalchat JC, Tonzibo F. Chemical constituents and antibacterial activity of essential oils from flowers and stems of Ageratum conyzoides from Ivory Coast. Rec Nat Prod. 2018; 12(2):160-168. http://doi.org/10.25135/rnp.22.17.06.040
  • [15] Chahal R, Nanda A, Akkol EK, Sobarzo-Sánchez E, Arya A, Kaushik D, Dutt R, Bhardwaj R, Rahman MH, Mittal V. Ageratum conyzoides L. and its secondary metabolites in the management of different fungal pathogens. Molecules. 2021; 26(10): 2933. https://doi.org/10.3390/molecules26102933
  • [16] Satyal P, Craft JD, Dosoky NS, Setzer WN. The chemical compositions of the volatile oils of garlic (Allium sativum) and wild garlic (Allium vineale). Foods. 2017; 6(8): 63. https://doi.org/10.3390/foods6080063
  • [17] Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012; 3: 12. https://doi.org/10.3389/fmicb.2012.00012
  • [18] Zhou C, Li C, Siva S, Cui H, Lin L. Chemical composition, antibacterial activity and study of the interaction mechanisms of the main compounds present in the Alpinia galanga rhizomes essential oil. Ind Crop Prod. 2021; 165: 113441. https://doi.org/10.1016/j.indcrop.2021.113441
  • [19] Alves-Silva JM, Zuzarte M, Girão H, Salgueiro L. The role of essential oils and their main compounds in the management of cardiovascular disease risk factors. Molecules. 2021; 26(12): 3506. https://doi.org/10.3390/molecules26123506
  • [20] Kerdudo A, Ellong EN, Burger P, Gonnot V, Boyer L, Chandre F, Adenet S, Rochefort K, Michel T, Fernandez X. Chemical composition, antimicrobial and insecticidal activities of flowers essential oils of Alpinia zerumbet (Pers.) BL Burtt & RM Sm. from Martinique Island. Chem Biodivers. 2017; 14(4): e1600344. https://doi.org/10.1002/cbdv.201600344
  • [21] Be Tu PT, Tawata S. Anti-oxidant, anti-aging, and anti-melanogenic properties of the essential oils from two varieties of Alpinia zerumbet. Molecules. 2015; 20(9): 16723-16740. https://doi.org/10.3390/molecules200916723
  • [22] Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils—present status and future perspectives. Medicines. 2017; 4(3): 58. https://doi.org/10.3390/medicines4030058
  • [23] Altameme HJ, Hameed IH, Hamza LF. Anethum graveolens: Physicochemical properties, medicinal uses, antimicrobial effects, antioxidant effect, anti-inflammatory and analgesic effects: A review. Int J Pharm Qual Assur. 2017; 8(3): 88-91. https://doi.org/10.25258/ijpqa.v8i03.9569
  • [24] Bailen M, Julio LF, Diaz CE, Sanz J, Martínez-Díaz RA, Cabrera R, Burillo J, Gonzalez-Coloma A. Chemical composition and biological effects of essential oils from Artemisia absinthium L. cultivated under different environmental conditions. Ind Crop Prod. 2013; 49: 102-107. https://doi.org/10.1016/j.indcrop.2013.04.055
  • [25] Pandey AK, Kumar P, Singh P, Tripathi NN, Bajpai VK. Essential oils: Sources of antimicrobials and food preservatives. Front Microbiol. 2017; 7: 2161. https://doi.org/10.3389/fmicb.2016.02161
  • [26] Al Jahid A, Essabaq S, Elamrani A, Blaghen M, Jamal Eddine J. Chemical composition, antimicrobial and antioxidant activities of the essential oil and the hydro-alcoholic extract of Artemisia campestris L. leaves from southeastern Morocco. J Biol Act Prod Nat. 2016; 6(5-6): 393-405. https://doi.org/10.1080/22311866.2016.1268068
  • [27] Houicher A, Hechachna H, Özogul F. In vitro determination of the antifungal activity of Artemisia campestris essential oil from Algeria. Int J Food Prop. 2016; 19(8): 1749-1756. https://doi.org/10.1080/10942912.2015.1107734
  • [28] Bertella A, Benlahcen K, Abouamama S, Pinto DC, Maamar K, Kihal M, Silva AM. Artemisia herba-alba Asso. essential oil antibacterial activity and acute toxicity. Ind Crop Prod. 2018; 116: 137-143. https://doi.org/10.1016/j.indcrop.2018.02.064
  • [29] DeCarlo A, Agieb S, Johnson S, Satyal P, Setzer WN. Inter-tree variation in the chemical composition of Boswellia papyrifera oleo-gum-resin. Nat Prod Commun. 2022; 17(7): 1934578X221117411. https://doi.org/10.1177/1934578X221117411
  • [30] Abdelsamad A, Ahmed K, Al-magboul A, Fadul E. Antimicrobial activity of essential oils and extracts of oleo-gum resins from Boswellia papyrifera (Tarak tarak) grown in some parts of the Sudan. Arab J Med Arom Plant. 2020; 6(1): 22-35. https://doi.org/10.48347/IMIST.PRSM/ajmap-v6i1.20370
  • [31] Shahsavari N, Barzegar M, Sahari MA, Naghdibadi H. Antioxidant activity and chemical characterization of essential oil of Bunium persicum. Plant Food Hum Nutr. 2008; 63: 183-188. https://doi.org/10.1007/s11130-008-0091-y
  • [32] Moghtader M, Mansori AI, Salari H, Farahmand A. Chemical composition and antimicrobial activity of the essential oil of Bunium persicum Boiss. seed. Iran J Med Arom Plant. 2009; 25(1): 20-28.
  • [33] Ak G, Zengin G, Ceylan R, Fawzi Mahomoodally M, Jugreet S, Mollica A, Stefanucci A. Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragr J. 2021; 36(5): 554-563. https://doi.org/10.1002/ffj.3661
  • [34] Hajlaoui H, Arraouadi S, Noumi E, Aouadi K, Adnan M, Khan MA, Kadri A, Snoussi M. Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules. 2021; 26(12): 3625. https://doi.org/10.3390/molecules26123625
  • [35] Lasram S, Zemni H, Hamdi Z, Chenenaoui S, Houissa H, Tounsi MS, Ghorbel A. Antifungal and antiaflatoxinogenic activities of Carum carvi L., Coriandrum sativum L. seed essential oils and their major terpene component against Aspergillus flavus. Ind Crop Prod. 2019; 134: 11-18. https://doi.org/10.1016/j.indcrop.2019.03.037
  • [36] Zeng WC, Zhang Z, Gao H, Jia LR, He Q. Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrus deodara). J Food Sci. 2012; 77(7): C824-C829. https://doi.org/10.1111/j.1750-3841.2012.02767.x
  • [37] Degenhardt RT, Farias IV, Grassi LT, Franchi Jr GC, Nowill AE, Bittencourt CMdS, Wagner TM, Souza MMd, Cruz AB, Malheiros A. Characterization and evaluation of the cytotoxic potential of the essential oil of Chenopodium ambrosioides. Rev Brasil Farmacogn. 2016; 26: 56-61. https://doi.org/10.1016/j.bjp.2015.08.012
  • [38] Chekem MSG, Lunga PK, Tamokou JDD, Kuiate JR, Tane P, Vilarem G, Cerny M. Antifungal properties of Chenopodium ambrosioides essential oil against Candida species. Pharmaceuticals. 2010; 3(9): 2900-2909. https://doi.org/10.3390/ph3092900
  • [39] Poudel DK, Rokaya A, Ojha PK, Timsina S, Satyal R, Dosoky NS, Satyal P, Setzer WN. The chemical profiling of essential oils from different tissues of Cinnamomum camphora L. and their antimicrobial activities. Molecules. 2021; 26(17): 5132. https://doi.org/10.3390/molecules26175132
  • [40] Chang C-T, Chang W-L, Hsu J-C, Shih Y, Chou S-T. Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil. Bot Stud. 2013; 54(1): 1-7. https://doi.org/10.1186/1999-3110-54-10
  • [41] Kačániová M, Galovičová L, Valková V, Tvrdá E, Terentjeva M, Žiarovská J, Kunová S, Savitskaya T, Grinshpan D, Štefániková J. Antimicrobial and antioxidant activities of Cinnamomum cassia essential oil and its application in food preservation. Open Chem. 2021; 19(1): 214-227. https://doi.org/10.1515/chem-2021-0191
  • [42] Singh A, Deepika, Chaudhari AK, Das S, Prasad J, Dwivedy AK, Dubey NK. Efficacy of Cinnamomum cassia essential oil against food-borne molds and aflatoxin B1 contamination. Plant Biosyst. 2021; 155(4): 899-907. https://doi.org/10.1080/11263504.2020.1810804
  • [43] Lin L-Y, Chuang C-H, Chen H-C, Yang K-M. Lime (Citrus aurantifolia (Christm.) Swingle) essential oils: Volatile compounds, antioxidant capacity, and hypolipidemic effect. Foods. 2019; 8(9): 398. https://doi.org/10.3390/foods8090398
  • [44] Lemes RS, Alves CC, Estevam EB, Santiago MB, Martins CH, Santos TCD, Crotti AE, Miranda ML. Chemical composition and antibacterial activity of essential oils from Citrus aurantifolia leaves and fruit peel against oral pathogenic bacteria. An Acad Brasil Ciên. 2018; 90: 1285-1292. https://doi.org/10.1590/0001-3765201820170847
  • [45] Sarma R, Adhikari K, Mahanta S, Khanikor B. Insecticidal activities of Citrus aurantifolia essential oil against Aedes aegypti (Diptera: Culicidae). Toxicol Rep. 2019; 6: 1091-1096. https://doi.org/10.1016/j.toxrep.2019.10.009
  • [46] Ammar AH, Bouajila J, Lebrihi A, Mathieu F, Romdhane M, Zagrouba F. Chemical composition and in vitro antimicrobial and antioxidant activities of Citrus aurantium L. flowers essential oil (Neroli oil). Pakistan J Biol Sci. 2012; 15(21): 1034-1040. https://doi.org/10.3923/pjbs.2012.1034.104
  • [47] Bhandari DP, Poudel DK, Satyal P, Khadayat K, Dhami S, Aryal D, Chaudhary P, Ghimire A, Parajuli N. Volatile compounds and antioxidant and antimicrobial activities of selected citrus essential oils originated from Nepal. Molecules. 2021; 26(21): 6683. https://doi.org/10.3390/molecules26216683
  • [48] Van Hung P, Chi PTL, Phi NTL. Comparison of antifungal activities of Vietnamese citrus essential oils. Nat Prod Res. 2013; 27(4-5): 506-508. https://doi.org/10.1080/14786419.2012.706293
  • [49] Othman HIA, Alkatib HH, Zaid A, Sasidharan S, Rahiman SSF, Lee TP, Dimitrovski G, Althakafy JT, Wong YF. Phytochemical composition, antioxidant and antiproliferative activities of Citrus hystrix, Citrus limon, Citrus pyriformis, and Citrus microcarpa leaf essential oils against human cervical cancer cell line. Plants. 2022; 12(1): 134. https://doi.org/10.3390/plants12010134
  • [50] Sreepian A, Sreepian P, Chanthong C, Mingkhwancheep T, Prathit P. Antibacterial activity of essential oil extracted from Citrus hystrix (kaffir lime) peels: an in vitro study. Trop Biomed. 2019; 36(2): 531-541.
  • [51] Tao N, Jia L, Zhou H. Anti-fungal activity of Citrus reticulata Blanco essential oil against Penicillium italicum and Penicillium digitatum. Food Chem. 2014; 153: 265-271. https://doi.org/10.1016/j.foodchem.2013.12.070
  • [52] Velázquez-Nuñez MJ, Avila-Sosa R, Palou E, López-Malo A. Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition or vapor contact. Food Control. 2013; 31(1): 1-4. https://doi.org/10.1016/j.foodcont.2012.09.029
  • [53] Ben Miri Y, Arino A, Djenane D. Study of antifungal, anti-aflatoxigenic, antioxidant activity and phytotoxicity of Algerian Citrus limon var. Eureka and Citrus sinensis var. Valencia essential oils. J Essent Oil Bear Plant. 2018; 21(2): 345-361. https://doi.org/10.1080/0972060X.2018.1456363
  • [54] Guo S-S, Wang Y, Chen Z-Y, Zhang Z, Cao J-Q, Pang X, Geng Z-F, Du S-S. Essential oils from Clausena species in China: Santalene Sesquiterpenes resource and toxicity against Liposcelis bostrychophila. J Chem. 2018; 2018: 1-8. https://doi.org/10.1155/2018/7813675
  • [55] He X, Zhang L, Chen J, Sui J, Yi G, Wu J, Ma Y. Correlation between chemical composition and antifungal activity of Clausena lansium essential oil against Candida spp. Molecules. 2019; 24(7): 1394. https://doi.org/10.3390/molecules24071394
  • [56] Dosoky NS, Pokharel SK, Setzer WN. Leaf essential oil composition, antimicrobial; and cytotoxic activities of Cleistocalyx operculatus from Hetauda, Nepal. Am J Essent Oils Nat Prod. 2015; 2(5): 34-37.
  • [57] Minh TTL, Kieu LTB, Mai STT, Ngoc DLB, Thuy LTB, Quyen NT, Anh TT, Huy LV, Phong NV, Duyen CTM. Addition of Mentha arvensis in infusions of Cleistocalyx operculatus improves the hedonic score and retains the high antioxidant and anti lipid-peroxidation effects. Appl Sci. 2023; 13(5): 2873. https://doi.org/10.3390/app13052873
  • [58] Soares BV, Morais SM, dos Santos Fontenelle RO, Queiroz VA, Vila-Nova NS, Pereira CM, Brito ES, Neto MA, Brito EH, Cavalcante CS. Antifungal activity, toxicity and chemical composition of the essential oil of Coriandrum sativum L. fruits. Molecules. 2012; 17(7): 8439-8448. https://doi.org/10.3390/molecules17078439
  • [59] Neri T, Silva K, Maior L, Oliveira-Silva S, Azevedo P, Gomes D, Souza M, Pavão J, Costa J, Cunha A. Phytochemical characterization, antioxidant potential and antibacterial activity of the Croton argyrophylloides Muell. Arg.(Euphorbiaceae). Brazil J Biol. 2021; 83. https://doi.org/10.1590/1519-6984.236649
  • [60] Fontenelle R, Morais S, Brito E, Brilhante R, Cordeiro R, Nascimento N, Kerntopf M, Sidrim J, Rocha M. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome. J Appl Microbiol. 2008; 104(5): 1383-1390. https://doi.org/10.1111/j.1365-2672.2007.03707.x
  • [61] Andrade TC, Lima SG, Freitas RM, Rocha MS, Islam T, Silva TG, Militao GC. Isolation, characterization and evaluation of antimicrobial and cytotoxic activity of estragole, obtained from the essential oil of Croton zehntneri (Euphorbiaceae). An Acad Brasil Ciên. 2015; 87: 173-182. https://doi.org/10.1590/0001-3765201520140111
  • [62] Kedia A, Prakash B, Mishra PK, Dubey N. Antifungal and antiaflatoxigenic properties of Cuminum cyminum (L.) seed essential oil and its efficacy as a preservative in stored commodities. Int J Food Microbiol. 2014; 168: 1-7. https://doi.org/10.1016/j.ijfoodmicro.2013.10.008
  • [63] Kumar A, Agarwal K, Singh M, Saxena A, Yadav P, Maurya AK, Yadav A, Tandon S, Chanda D, Bawankule DU. Essential oil from waste leaves of Curcuma longa L. alleviates skin inflammation. Inflammopharmacology. 2018; 26(5): 1245-1255. https://doi.org/10.1007/s10787-018-0447-3
  • [64] Dosoky NS, Setzer WN. Chemical composition and biological activities of essential oils of Curcuma species. Nutrients. 2018; 10(9): 1196. https://doi.org/10.3390/nu10091196
  • [65] Majewska E, Kozlowska M, Gruszczynska-Sekowska E, Kowalska D, Tarnowska K. Lemongrass (Cymbopogon citratus) essential oil: extraction, composition, bioactivity and uses for food preservation-a review. Pol J Food Nutr Sci. 2019; 69(4):327-341. http://dx.doi.org/10.31883/pjfns/113152
  • [66] Sawadogo I, Paré A, Kaboré D, Montet D, Durand N, Bouajila J, Zida EP, Sawadogo-Lingani H, Nikiéma PA, Nebié RHC. Antifungal and antiaflatoxinogenic effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus essential oils alone and in combination. J Fungi. 2022; 8(2): 117. https://doi.org/10.3390/jof8020117
  • [67] Alitonou GA, Avlessi F, Tchobo F, Noudogbessi J-P, Tonouhewa A, Yehouenou B, Menut C, Sohounhloue DK. Chemical composition and biological activities of essential oils from the leaves of Cymbopogon giganteus Chiov. and Cymbopogon schoenanthus (L.) Spreng (Poaceae) from Benin. Int J Biol Chem Sci. 2012; 6(4): 1819-1827. https://doi.org/10.4314/ijbcs.v6i4.37
  • [68] Ayenew KD, Sewale Y, Amare YE, Ayalew A. Acute and subacute toxicity study of essential oil of Cymbopogon martini in mice. J Toxicol. 2022;2022:1995578. https://doi.org/10.1155/2022/1995578
  • [69] Prasad CS, Shukla R, Kumar A, Dubey N. In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses. 2010; 53(2): 123-129. https://doi.org/10.1111/j.1439-0507.2008.01676.x
  • [70] Lawrence K, Lawrence R, Parihar D, Srivastava R, Charan A. Antioxidant activity of Palmarosa essential oil (Cymbopogon martini) grown in north Indian plains. Asian Pac J Trop Biomed. 2012; 2(2): S888-S891. https://doi.org/10.1016/S2221-1691(12)60330-X
  • [71] Gemeda N, Tadele A, Lemma H, Girma B, Addis G, Tesfaye B, Abebe A, Gemechu W, Yirsaw K, Teka F, Haile C, Amano A, Woldkidan S, Geleta B, Debella A. Development, characterization, and evaluation of novel broad-spectrum antimicrobial topical formulations from Cymbopogon martini (Roxb.) W. Watson essential oil. Evid Based Complement Alternat Med. 2018;2018:9812093. https://doi.org/10.1155/2018/9812093
  • [72] Hellali N, Mahammed MH, Ramdane F, Talli A. Antimicrobial and antioxidant activities of Cymbopogon schoenanthus (L.) spreng. essential oil, growing in Illizi-Algeria. J Med Plant Res. 2016; 10(14): 188-194. https://doi.org/10.5897/JMPR2015.5985
  • [73] Shrestha D, Sharma P, Pandey A, Dhakal K, Baral RP, Adhikari A. Chemical characterization, antioxidant and antibacterial activity of essential oil of Cymbopogon winterianus jowitt (Citronella) from western Nepal. Curr Biotechnol. 2022; 11(1): 86-91. https://doi.org/10.2174/2211550111666220405133558
  • [74] Simic A, Rančic A, Sokovic MD, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD. Essential Oil Composition of Cymbopogon winterianus. and Carum carvi. and their antimicrobial activities. Pharm Biol. 2008; 46(6): 437-441. https://doi.org/10.1080/13880200802055917
  • [75] Ghannadi A, Rabbani M, Ghaemmaghami L, Malekian N. Phytochemical screening and essential oil analysis of one of the Persian sedges; Cyperus rotundus L. Int J Pharm Sci Res. 2012; 3(2): 424.
  • [76] Ksouri A, Dob T, Belkebir A, Krimat S, Chelghoum C. Chemical composition and antioxidant activity of the essential oil and the methanol extract of Algerian wild carrot Daucus carota L. ssp. carota.(L.) Thell. J Mater Environ Sci. 2015; 6(3): 784-791.
  • [77] Rokbeni N, M'rabet Y, Dziri S, Chaabane H, Jemli M, Fernandez X, Boulila A. Variation of the chemical composition and antimicrobial activity of the essential oils of natural populations of Tunisian Daucus carota L.(Apiaceae). Chem Biodivers. 2013; 10(12): 2278-2290. https://doi.org/10.1002/cbdv.201300137
  • [78] Sabo VA, Knezevic P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind Crop Prod. 2019; 132: 413-429. https://doi.org/10.1016/j.indcrop.2019.02.051
  • [79] Gakuubi MM, Maina AW, Wagacha JM. Antifungal activity of essential oil of Eucalyptus camaldulensis Dehnh. against selected Fusarium spp. Int J Microbiol. 2017; 2017. https://doi.org/10.1155/2017/8761610
  • [80] Harkat-Madouri L, Asma B, Madani K, Said ZB-OS, Rigou P, Grenier D, Allalou H, Remini H, Adjaoud A, Boulekbache-Makhlouf L. Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Ind Crop Prod. 2015; 78: 148-153. https://doi.org/10.1016/j.indcrop.2015.10.015
  • [81] Ferreira OO, da Silva SHM, de Oliveira MS, Andrade EHdA. Chemical composition and antifungal activity of Myrcia multiflora and Eugenia florida essential oils. Molecules. 2021; 26(23): 7259. https://doi.org/10.3390/molecules26237259
  • [82] Ferreira OO, Franco CdJP, Varela ELP, Silva SG, Cascaes MM, Percário S, de Oliveira MS, Andrade EHdA. Chemical Composition and Antioxidant activity of essential oils from leaves of two specimens of Eugenia florida DC. Molecules. 2021; 26(19): 5848. https://doi.org/10.3390/molecules26195848
  • [83] Ahluwalia V, Sisodia R, Walia S, Sati OP, Kumar J, Kundu A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J Pest Sci. 2014; 87: 341-349. https://doi.org/10.1007/s10340-013-0542-6
  • [84] de França-Neto A, Cardoso-Teixeira AC, Medeiros TC, do Socorro Quinto-Farias M, de Souza Sampaio CM, Coelho-de-Souza AN, Lahlou S, Leal-Cardoso JH. Essential oil of Croton argyrophylloides: toxicological aspects and vasorelaxant activity in rats. Nat Prod Commun. 2012; 7(10): 1934578X1200701040. https://doi.org/10.1177/1934578X1200701040.
  • [85] Kavoosi G, Rowshan V. Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assafoetida oleo-gum-resin: effect of collection time. Food Chem. 2013; 138(4): 2180-2187. https://doi.org/10.1016/j.foodchem.2012.11.131
  • [86] Mahmoudvand H, Yadegari JG, Khalaf AK, Hashemi MJ, Dastyarhaghighi S, Salimikia I. Chemical composition, antileishmanial, and cytotoxic effects Ferula macrecolea essential oil against Leishmania tropica. Parasite Epidemiol Control. 2022; 19: e00270. https://doi.org/10.1016/j.parepi.2022.e00270
  • [87] Roby MHH, Sarhan MA, Selim KA-H, Khalel KI. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Ind Crop Prod. 2013; 44: 437-445. https://doi.org/10.1016/j.indcrop.2012.10.012
  • [88] Kumar A, Singh PP, Prakash B. Unravelling the antifungal and anti-aflatoxin B1 mechanism of chitosan nanocomposite incorporated with Foeniculum vulgare essential oil. Carbohydr Polym. 2020; 236: 116050. https://doi.org/10.1016/j.carbpol.2020.116050
  • [89] Zeng W-C, Zhang W-C, Zhang W-H, He Q, Shi B. The antioxidant activity and active component of Gnaphalium affine extract. Food Chem Toxicol. 2013; 58: 311-317. https://doi.org/10.1016/j.fct.2013.05.004
  • [90] Rawat A, Prakash O, Kumar R, Arya S, Srivastava R. Hedychium spicatum Sm.: Chemical composition with biological activities of methanolic and ethylacetate oleoresins from rhizomes. J Biol Act Prod Nat. 2021; 11(3): 269-288. https://doi.org/10.1080/22311866.2021.1923572
  • [91] Matejic JS, Dzamic AM, Mihajilov-Krstev T, Ristic MS, Randelovic VN, Krivošej ZÐ, Marin PD. Chemical composition, antioxidant and antimicrobial properties of essential oil and extracts from Heracleum sphondylium L. J Essent Oil Bear Plant. 2016; 19(4): 944-953. https://doi.org/10.1080/0972060X.2014.986538
  • [92] Noudogbessi J-P, Agbangnan P, Yehouenou B, Adjalian E, Nonviho G, Osseni MA, Wotto V, Figueredo G, Chalchat J-C, Sohounhloue D. Physico-chemical properties of Hyptis suaveolens essential oil. Int J Med Arom Plants. 2013; 3: 191-199.
  • [93] Xu D-H, Huang Y-S, Jiang D-Q, Yuan K. The essential oils chemical compositions and antimicrobial, antioxidant activities and toxicity of three Hyptis species. Pharm Biol. 2013; 51(9): 1125-1130. https://doi.org/10.3109/13880209.2013.781195
  • [94] Moreira ACP, Carmo ES, Wanderley PA, da Souza EL, da Oliveira Lima E. Inhibitory effect of the essential oil from Hyptis suaveolens (l.) Poit on the growth and aflatoxins synthesis of Aspergillus flavus. J Life Sci. 2013; 7(3): 276.
  • [95] Höferl M, Stoilova I, Schmidt E, Wanner J, Jirovetz L, Trifonova D, Krastev L, Krastanov A. Chemical composition and antioxidant properties of Juniper berry (Juniperus communis L.) essential oil. Action of the essential oil on the antioxidant protection of Saccharomyces cerevisiae model organism. Antioxidants. 2014; 3(1): 81-98.
  • [96] Cabral C, Francisco V, Cavaleiro C, Gonçalves M, Cruz M, Sales F, Batista M, Salgueiro L. Essential oil of Juniperus communis subsp. alpina (Suter) Čelak needles: Chemical composition, antifungal activity and cytotoxicity. Phytother Res. 2012; 26(9): 1352-1357. https://doi.org/10.1002/ptr.3730
  • [97] Sela F, Karapandzova M, Stefkov G, Cvetkovikj I, Trajkovska-Dokik E, Kaftandzieva A, Kulevanova S. Chemical composition and antimicrobial activity of leaves essential oil of Juniperus communis (Cupressaceae) grown in Republic of Macedonia. Maced Pharm Bull. 2013; 59(1-2): 23-32.
  • [98] Mekonnen A, Tesfaye S, Christos SG, Dires K, Zenebe T, Zegeye N, Shiferaw Y, Lulekal E. Evaluation of skin irritation and acute and subacute oral toxicity of Lavandula angustifolia essential oils in rabbit and mice. J Toxicol. 2019; 2019: 5979546. https://doi.org/10.1155/2019/5979546
  • [99] de Rapper S, Kamatou G, Viljoen A, van Vuuren S. The In Vitro Antimicrobial Activity of Lavandula angustifolia Essential Oil in Combination with Other Aroma-Therapeutic Oils. Evid-Based Complement Altern Med. 2013; 2013: 852049. https://doi.org/10.1155/2013/852049
  • [100] Franco CdS, Ribeiro AF, Carvalho NC, Monteiro OS, da Silva JKR, Andrade EHA, Maia JGS. Composition and antioxidant and antifungal activities of the essential oil from Lippia gracilis Schauer. Afr J Biotechnol. 2014; 13(30). https://doi.org/10.5897/AJB2012.2941
  • [101] Oliveira T, Silva‐Filho C, Malveira E, Aguiar T, Santos H, Albuquerque C, Morais M, Teixeira E, Vasconcelos M. Antifungal and antibiofilm activities of the essential oil of leaves from Lippia gracilis Schauer against phytopathogenic fungi. J Appl Microbiol. 2021; 130(4): 1117-1129. https://doi.org/10.1111/jam.14857
  • [102] Andrade VA, Almeida AC, Souza DS, Colen KG, Macêdo AA, Martins ER, Fonseca FS, Santos RL. Antimicrobial activity and acute and chronic toxicity of the essential oil of Lippia origanoides. Pesquisa Vet Brasil. 2014; 34: 1153-1161. https://doi.org/10.1590/S0100-736X2014001200002
  • [103] Stashenko E, Ruiz C, Muñoz A, Castañeda M, Martínez J. Composition and antioxidant activity of essential oils of Lippia origanoides HBK grown in Colombia. Nat Prod Commun. 2008; 3(4): 1934578X0800300417. https://doi.org/10.1177/1934578X0800300417
  • [104] Wong M-H, Lim L-F, bin Ahmad F, bin Assim Z. Antioxidant and antimicrobial properties of Litsea elliptica Blume and Litsea resinosa Blume (Lauraceae). Asian Pac J Trop Biomed. 2014; 4(5): 386-392. https://doi.org/10.12980/APJTB.4.2014C1129
  • [105] Pillai M, Hj Yakop F, Metussin N, Hamid M, Yasin H, Majid H, Young D. Phytochemical characterization of essential oils from shoots, mature leaves and branchlets of Litsea elliptica (Lauraceae) collected in Brunei Darussalam. Scientia Bruneiana. 2019; 17. https://doi.org/10.46537/scibru.v17i2.77
  • [106] Stanojevic LP, Marjanovic-Balaban ZR, Kalaba VD, Stanojevic JS, Cvetkovic DJ. Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.). J Essent Oil Bear Plant. 2016; 19(8): 2017-2028. https://doi.org/10.1080/0972060X.2016.1224689
  • [107] Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential oils as antimicrobial agents-myth or real alternative? Molecules. 2019; 24(11): 2130. https://doi.org/10.3390/molecules24112130
  • [108] Nikolić MM, Jovanović KK, Marković TL, Marković DL, Gligorijević NN, Radulović SS, Kostić M, Glamočlija JM, Soković MD. Antimicrobial synergism and cytotoxic properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel essential oils. J Pharm Pharmacol. 2017; 69(11): 1606-1614. https://doi.org/10.1111/jphp.12792
  • [109] Siddique S, Parveen Z, Mazhar S. Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three Melaleuca species of Pakistani flora. Arab J Chem. 2020; 13(1): 67-74. https://doi.org/10.1016/j.arabjc.2017.01.018
  • [110] Abdellatif F, Boudjella H, Zitouni A, Hassani A. Chemical composition and antimicrobial activity of the essential oil from leaves of Algerian Melissa officinalis L. EXCLI J. 2014; 13: 772. https://doi.org/10.1080/0972060x.2008.10643602
  • [111] Skotti E, Sotiropoulou NS, Lappa I, Kaiafa M, Tsitsigiannis D, Tarantilis P. Screening of lemon balm extracts for anti-aflatoxigenic, antioxidant and other biological activities. Preprints (www.preprints.org); 2019. https://doi.org/10.20944/preprints201907.0005.v1
  • [112] Bai X, Aimila A, Aidarhan N, Duan X, Maiwulanjiang M. Chemical constituents and biological activities of essential oil from Mentha longifolia: Effects of different extraction methods. Int J Food Prop. 2020; 23(1): 1951-1960. https://doi.org/10.1080/10942912.2020.1833035
  • [113] Dehghanpour-Farashah S, Taheri P. Antifungal and antiaflatoxigenic effects of Mentha longifolia essential oil against Aspergillus flavus. Int J New Technol Res. 2016; 2(9): 263437.
  • [114] Arman M, Yousefzadi M, Khademi SZ. Antimicrobial activity and composition of the essential oil from Mentha mozaffarianii. J Essent Oil Bear Plant. 2011; 14(1): 131-135. https://doi.org/10.1080/0972060X.2011.10643912
  • [115] Moghaddam M, Pourbaige M, Tabar HK, Farhadi N, Hosseini SMA. Composition and antifungal activity of peppermint (Mentha piperita) essential oil from Iran. J Essent Oil Bear Plant. 2013; 16(4): 506-512. https://doi.org/10.1080/0972060X.2013.813265
  • [116] Abd El-Hack ME, Kamal M, Altaie HA, Youssef IM, Algarni EH, Almohmadi NH, Abukhalil MH, Khafaga AF, Alqhtani AH, Swelum AA. Peppermint essential oil and its nano-emulsion: Potential against aflatoxigenic fungus Aspergillus flavus in food and feed. Toxicon. 2023; 234: 107309. https://doi.org/10.1016/j.toxicon.2023.107309
  • [117] Teixeira B, Marques A, Ramos C, Batista I, Serrano C, Matos O, Neng NR, Nogueira JM, Saraiva JA, Nunes ML. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Industrial Crops and Products. 2012; 36(1): 81-87.
  • [118] Wani AR, Yadav K. Chemical Characterization, antimicrobial, antiproliferative and antioxidant activities of the essential oil of Monarda citriodora growing in Kashmir. Int J Pharm Investig. 2021; 11(2): 170-175. https://doi.org/10.5530/ijpi.2021.2.31
  • [119] Deepika, Singh A, Chaudhari AK, Das S, Dubey NK. Nanoencapsulated Monarda citriodora Cerv. ex Lag. essential oil as potential antifungal and antiaflatoxigenic agent against deterioration of stored functional foods. J Food Sci Technol. 2020; 57: 2863-2876. https://doi.org/10.1007/s13197-020-04318-4
  • [120] Okechukwu QN, Ugwuona FU, Ofoedu CE, Juchniewicz S, Okpala COR. Chemical composition, antibacterial efficacy, and antioxidant capacity of essential oil and oleoresin from Monodora myristica and Tetrapleura tetraptera in Southeast Nigeria. Sci Rep. 2022; 12(1): 19861. https://doi.org/10.1038/s41598-022-23161-5
  • [121] Aleksic V, Knezevic P. Antimicrobial and antioxidative activity of extracts and essential oils of Myrtus communis L. Microbiol Res. 2014; 169(4): 240-254. https://doi.org/10.1016/j.micres.2013.10.003
  • [122] Majeed A, Guleria S, Sharma N, Salaria KH, Aiman F, Singh B, Gupta VK. Antioxidant capacity and combinatorial antimicrobial effects of Nardostachys jatamansi essential oil with conventional antibiotics against some drug resistant bacteria. Curr Res Biotechnol. 2023; 5: 100118. https://doi.org/10.1016/j.crbiot.2022.100118
  • [123] Jianu C, Moleriu R, Stoin D, Cocan I, Bujancă G, Pop G, Lukinich-Gruia AT, Muntean D, Rusu L-C, Horhat DI. Antioxidant and antibacterial activity of Nepeta faassenii bergmans ex stearn essential oil. Appl Sci. 2021; 11(1): 442. https://doi.org/10.3390/app11010442
  • [124] Shakeri A, Khakdan F, Soheili V, Sahebkar A, Shaddel R, Asili J. Volatile composition, antimicrobial, cytotoxic and antioxidant evaluation of the essential oil from Nepeta sintenisii Bornm. Ind Crop Prod. 2016; 84: 224-229. https://doi.org/10.1016/j.indcrop.2015.12.030
  • [125] Alimi D, Hajri A, Jallouli S, Sebai H. Acaricidal and anthelmintic efficacy of Ocimum basilicum essential oil and its major constituents estragole and linalool, with insights on acetylcholinesterase inhibition. Vet Parasitol. 2022; 309: 109743. https://doi.org/10.1016/j.vetpar.2022.109743
  • [126] Beatovic D, Krstic-Milosevic D, Trifunovic S, Siljegovic J, Glamoclija J, Ristic M, Jelacic S. Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec Nat Prod. 2015; 9(1): 62-75.
  • [127] Mohr F, Lermen C, Gazim Z, Gonçalves J, Alberton O. Antifungal activity, yield, and composition of Ocimum gratissimum essential oil. Genet Mol Res. 2017; 16(1): 1-10. http://dx.doi.org/10.4238/gmr16019542
  • [128] Matasyoh LG, Matasyoh JC, Wachira FN, Kinyua MG, Muigai AWT, Mukiama TK. Chemical composition and antimicrobial activity of the essential oil of Ocimum gratissimum L. growing in Eastern Kenya. Afr J Biotechnol. 2007; 6(6).
  • [129] Gutiérrez-Grijalva EP, Picos-Salas MA, Leyva-López N, Criollo-Mendoza MS, Vazquez-Olivo G, Heredia JB. Flavonoids and phenolic acids from oregano: Occurrence, biological activity and health benefits. Plants. 2017; 7(1): 2. https://doi.org/10.3390/plants7010002
  • [130] Rodriguez-Garcia I, Silva-Espinoza B, Ortega-Ramirez L, Leyva J, Siddiqui M, Cruz-Valenzuela M, Gonzalez-Aguilar G, Ayala-Zavala J. Oregano essential oil as an antimicrobial and antioxidant additive in food products. Crit Rev Food Sci Nutr. 2016; 56(10): 1717-1727. https://doi.org/10.1080/10408398.2013.800832
  • [131] Gómez JV, Tarazona A, Mateo-Castro R, Gimeno-Adelantado JV, Jiménez M, Mateo EM. Selected plant essential oils and their main active components, a promising approach to inhibit aflatoxigenic fungi and aflatoxin production in food. Food Addit Contam Part A. 2018; 35(8): 1581-1595. https://doi.org/10.1080/19440049.2017.1419287
  • [132] Shohayeb M, Abdel-Hameed E-SS, Bazaid SA, Maghrabi I. Antibacterial and antifungal activity of Rosa damascena Mill. essential oil, different extracts of rose petals. Glob J Pharmacol. 2014; 8(1): 1-7. https://doi.org/10.5829/idosi.gjp.2014.8.1.81275
  • [133] Stojiljkovic J, Trajchev M, Nakov D, Petrovska M. Antibacterial activities of rosemary essential oils and their components against pathogenic bacteria. Adv Cytol Pathol. 2018;3(4):93‒96. https://doi.org/10.15406/acp.2018.03.00060
  • [134] da Silva Bomfim N, Kohiyama CY, Nakasugi LP, Nerilo SB, Mossini SAG, Romoli JCZ, Graton Mikcha JM, Abreu Filho BAd, Machinski Jr M. Antifungal and antiaflatoxigenic activity of rosemary essential oil (Rosmarinus officinalis L.) against Aspergillus flavus. Food Addit Contam Part A. 2020; 37(1): 153-161. https://doi.org/10.1080/19440049.2019.1678771
  • [135] Seyedtaghiya MH, Fasaei BN, Peighambari SM. Antimicrobial and antibiofilm effects of Satureja hortensis essential oil against Escherichia coli and Salmonella isolated from poultry. Iran J Microbiol. 2021; 13(1): 74. https://doi.org/10.18502/ijm.v13i1.5495
  • [136] Valizadeh S, Fakheri T, Mahmoudi R, Katiraee F, Gajarbeygi P. Evaluation of antioxidant, antibacterial, and antifungal properties of Satureja hortensis essential oil. Biotech Health Sci. 2014; 1(3): e24733. https://doi.org/10.17795/bhs-24733.
  • [137] Yazdanpanah Goharrizi L, Tasharofi S. Inhibiting Aspergillus flavus growth and aflatoxin decrement in aquatic feed with Satureja hortensis essential oil. Res J Vet Pract. 2017; 4(4): 71-75. http://dx.doi.org/10.14737/journal.rjvp/2016/4.4.71.75
  • [138] Fallahi S, Beyranvand M, Mahmoudvand H, Nayebzadeh H, Kheirandish F, Jahanbakhsh S. Chemical composition, acute and sub-acute toxicity of Satureja khuzestanica essential oil in mice. Marmara Pharm J. 2017; 21(3): 515-521. https://doi.org/10.12991/marupj.318614
  • [139] Mahboubi M, Kazempour N. Antioxidant and antimicrobial activity of Satureja khuzistanica Jamzad essential oil, ethanol and aqueous extracts. Biharean Biologist. 2017: 12 (1): 37-39.
  • [140] Mihajilov-Krstev T, Radnović D, Kitić D, Jovanović V, Mitić V, Stojanović-Radić Z, Zlatković B. Chemical composition, antimicrobial, antioxidative and anticholinesterase activity of Satureja montana L. ssp montana essential oil. Open Life Sci. 2014; 9(7): 668-677. https://doi.org/10.2478/s11535-014-0298-x
  • [141] Radünz M, da Trindade MLM, Camargo TM, Radünz AL, Borges CD, Gandra EA, Helbig E. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum L.) essential oil. Food Chem. 2019; 276: 180-186. https://doi.org/10.1016/j.foodchem.2018.09.173
  • [142] Cerrón-Mercado F, Perez-Alvarez JA, Nolazco-Cama D, Salva-Ruíz B, Tellez-Monzon L, Fernández-López J, Viuda-Martos M. Chemical composition, antioxidant and antibacterial activities of essential oil obtained from Chincho (Tagetes elliptica Sm) leaves grown in the Peruvian Andes. Foods. 2023; 12(4): 894. https://doi.org/10.3390/foods12040894
  • [143] Armas K, Rojas J, Rojas L, Morales A. Comparative study of the chemical composition of essential oils of five Tagetes species collected in Venezuela. Nat Prod Commun. 2012; 7(9): 1934578X1200700932. https://doi.org/10.1177/1934578X1200700932
  • [144] Tripathi B, Bhatia R, Walia S, Kumar B. Chemical composition and evaluation of Tagetes erecta (var. Pusa narangi genda) essential oil for its antioxidant and antimicrobial activity. Biopest Int. 2012; 8(2): 138-146.
  • [145] Lechkova B, Karcheva-Bahchevanska D, Ivanov K, Todorova V, Benbassat N, Penkova N, Atanassova P, Peychev L, Hrischev P, Peychev Z. A Study of the chemical composition, acute and subacute toxicity of Bulgarian Tanacetum parthenium essential oil. Molecules. 2023; 28(13): 4906. https://doi.org/10.3390/molecules28134906
  • [146] Damtie D, Braunberger C, Conrad J, Mekonnen Y, Beifuss U. Composition and hepatoprotective activity of essential oils from Ethiopian thyme species (Thymus serrulatus and Thymus schimperi). J Essent Oil Res. 2019; 31(2): 120-128. https://doi.org/10.1080/10412905.2018.1512907
  • [147] Nasir M, Tafess K, Abate D. Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species. BMC Complement Altern Med. 2015; 15: 1-5. https://doi.org/10.1186/s12906-015-0784-3
  • [148] Kowalczyk A, Przychodna M, Sopata S, Bodalska A, Fecka I. Thymol and thyme essential oil—new insights into selected therapeutic applications. Molecules. 2020; 25(18): 4125. https://doi.org/10.3390/molecules25184125
  • [149] Borugă O, Jianu C, Mişcă C, Goleţ I, Gruia A, Horhat F. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J Med Life. 2014; 7(Spec Iss 3): 56.
  • [150] Tian F, Lee SY, Chun HS. Comparison of the antifungal and antiaflatoxigenic potential of liquid and vapor phase of Thymus vulgaris essential oil against Aspergillus flavus. J Food Protect. 2019; 82(12): 2044-2048. https://doi.org/10.4315/0362-028X.JFP-19-016
  • [151] Vitali LA, Beghelli D, Nya PCB, Bistoni O, Cappellacci L, Damiano S, Lupidi G, Maggi F, Orsomando G, Papa F. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab J Chem. 2016; 9(6): 775-786. https://doi.org/10.1016/j.arabjc.2015.06.002
  • [152] Khalilzadeh E, Saiah GV, Hasannejad H, Ghaderi A, Ghaderi S, Hamidian G, Mahmoudi R, Eshgi D, Zangisheh M. Antinociceptive effects, acute toxicity and chemical composition of Vitex agnus-castus essential oil. Avicenna J Phytomed. 2015; 5(3): 218.
  • [153] Sarikurkcu C, Arisoy K, Tepe B, Cakir A, Abali G, Mete E. Studies on the antioxidant activity of essential oil and different solvent extracts of Vitex agnus castus L. fruits from Turkey. Food Chem Toxicol. 2009; 47(10): 2479-2483. https://doi.org/10.1016/j.fct.2009.07.005
  • [154] Balasubramani S, Rajendhiran T, Moola AK, Diana RKB. Development of nanoemulsion from Vitex negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ Sci Pollut Res. 2017; 24: 15125-15133. https://doi.org/10.1007/s11356-017-9118-y
  • [155] De Lima DAN, Pelegrini BB, Uechi FAA, Varago RC, Pimenta BB, de Souza Kaneshima AM, Kaneshima EN, da Costa Souza P, Pedroso RB, Silveira TGV. Evaluation of Antineoplasic Activity of Zingiber officinale Essential Oil in the Colorectal Region of Wistar Rats. Asian Pac J Cancer Prevent. 2020; 21(7): 2141. https://doi.org/10.31557/APJCP.2020.21.7.2141
  • [156] Bellik Y. Total antioxidant activity and antimicrobial potency of the essential oil and oleoresin of Zingiber officinale Roscoe. Asian Pac J Trop Dis. 2014; 4(1): 40-44. https://doi.org/10.1016/S2222-1808(14)60311-X
  • [157] Nerilo SB, Rocha GHO, Tomoike C, Mossini SA, Grespan R, Mikcha JM, Machinski Jr M. Antifungal properties and inhibitory effects upon aflatoxin production by Zingiber officinale essential oil in Aspergillus flavus. Int J Food Sci Technol. 2016; 51(2): 286-292. https://doi.org/10.1111/ijfs.12950
  • [158] Rani AS, Satyakala M, Devi VS, Murty US. Evaluation of antibacterial activity from rhizome extract of Acorus calamus Linn. J Sci Ind Res.2003; 62(6).
  • [159] Aryal S, Poudel A, Kafle K, Aryal LN. Insecticidal toxicity of essential oil of Nepalese Acorus calamus (Acorales: Acoraceae) against Sitophilus zeamais (Coleoptera: Curculionidae). Heliyon. 2023; 9(11): e22130. https://doi.org/10.1016/j.heliyon.2023.e22130
  • [160] Adnyana IK, Anggadiredja K, Sukmawan YP. Essential oil of Ageratum conyzoides (L.) L.: Acute and subchronic toxicity studies. J Pharm Pharmacogn Res. 2023; 11(4): 625-634. https://doi.org/10.56499/jppres23.1590_11.4.625
  • [161] Lin Y-E, Lin M-H, Yeh T-Y, Lai Y-S, Lu K-H, Huang H-S, Peng F-C, Liu S-H, Sheen L-Y. Genotoxicity and 28-day repeated dose oral toxicity study of garlic essential oil in mice. J Tradit Complement Med. 2022; 12(6): 536-544. https://doi.org/10.1016/j.jtcme.2022.05.001
  • [162] Ihekwereme PC, Asomugha RN, Mbagwu SI, Oraekei DI, Ajaghaku DL. Phytochemicals, acute toxicities and actual median lethal doses (actual LD50) of Zingiber officinale and Allium sativum given singly and in combination via mice models. GSC Biol Pharm Sci. 2023; 25(1): 008-018. https://doi.org/10.30574/gscbps.2023.25.1.0396
  • [163] Thuy Quynh VT, Duszkiewicz–Reinhard W. Antimicrobial activity of essential oils from fresh and dried Alpinia galanga rhizomes. J Essent Oil Bear Plants. 2004; 7(2): 165-170. https://doi.org/10.1080/0972-060X.2004.10643385
  • [164] Lahlou S, Galindo CAB, Leal-Cardoso JH, Fonteles MC, Duarte GP. Cardiovascular effects of the essential oil of Alpinia zerumbet leaves and its main constituent, terpinen-4-ol, in rats: role of the autonomic nervous system. Planta Med. 2002; 68(12): 1097-1102. https://doi.org/10.1055/s-2002-36336
  • [165] Derakhshan S, Navidinia M, Ahmadi A. Antibacterial activity of Dill (Anethum graveolens) essential oil and antibiofilm activity of Cumin (Cuminum cyminum) alcoholic extract. Infect Epidemiol Microbiol. 2017; 3(4): 122-126. https://doi.org/10.18869/modares.iem.3.4.122
  • [166] Vieira TM, Dias HJ, Medeiros TC, Grundmann CO, Groppo M, Heleno VC, Martins CH, Cunha WR, Crotti AE, Silva EO. Chemical composition and antimicrobial activity of the essential oil of Artemisia absinthium Asteraceae leaves. J Essent Oil Bear Plant. 2017; 20(1): 123-131. https://doi.org/10.1080/0972060X.2016.1257370
  • [167] Mihajilov-Krstev T, Jovanović B, Jović J, Ilić B, Miladinović D, Matejić J, Rajković J, Đorđević L, Cvetković V, Zlatković B. Antimicrobial, antioxidative, and insect repellent effects of Artemisia absinthium essential oil. Planta Med. 2014; 80(18): 1698-1705. https://doi.org/10.1055/s-0034-1383182
  • [168] Mammeri B, Bahri F, Kouidri M, Boudani B, Arioui F. Evaluation of chemical composition, anti-inflammatory, antibacterial activity and synergistic effect between antibiotics and the essential oil of Artemisia campestris L. J Appl Biol Sci. 2022; 16(2): 230-247. https://doi.org/10.5281/zenodo.6590285
  • [169] Auti ST, Kulkarni YA. Acute and 28-day repeated dose oral toxicity study of caraway oil in rats. Drug Metabol Pers Ther. 2019; 34(3): 20190011. https://doi.org/10.1515/dmpt-2019-0011
  • [170] Abdoul-latif FM, Obame L-C, Bassolé IH, Dicko MH. Antimicrobial activities of essential oil and methanol extract of Boswellia sacra Flueck. and Boswellia papyrifera (Del.) Hochst from Djibouti. Int J Manag Modern Sci Technol. 2012; 1: 1-10.
  • [171] Tabarraei H, Hassan J, Parvizi MR, Golshahi H. Evaluation of the acute and sub-acute toxicity of the black caraway seed essential oil in Wistar rats. Toxicol Rep. 2019; 6: 869-874. https://doi.org/10.1016/j.toxrep.2019.08.010
  • [172] Behravan J, Ramezani M, Hassanzadeh M, Eskandari M, Kasaian J, Sabeti Z. Composition, antimycotic and antibacterial activity of Ziziphora clinopodioides Lam. essential oil from Iran. J Essent Oil Bear Plant. 2007; 10(4): 339-345. https://doi.org/10.1080/0972060X.2007.10643565
  • [173] Mishra AK, Mishra A, Chattopadhyay P. Screening of acute and sub-chronic dermal toxicity of Calendula officinalis L essential oil. Regul Toxicol Pharmacol. 2018; 98: 184-189. https://doi.org/10.1016/j.yrtph.2018.07.027
  • [174] Simic A, Rančic A, Sokovic M, Ristic M, Grujic-Jovanovic S, Vukojevic J, Marin PD. Essential oil composition of Cymbopogon winterianus and Carum carvi and their antimicrobial activities. Pharm Biol. 2008; 46(6): 437-441.
  • [175] Showraki A, Emamghoreishi M, Oftadegan S. Anticonvulsant effect of the aqueous extract and essential oil of Carum carvi L. seeds in a pentylenetetrazol model of seizure in mice. Iran J Med Sci. 2016; 41(3): 200.
  • [176] Chaudhary AK, Ahmad S, Mazumder A. Cedrus deodara (Roxb.) Loud.: A review on its ethnobotany, phytochemical and pharmacological profile. Pharmacogn J. 2011; 3(23): 12-17. https://doi.org/10.5530/pj.2011.23.2
  • [177] Li J, Yang X, Yu J, Li Z, Deng Q, Cao Y, Chen X, Zhang H, Wang Y. Chemical composition of the volatile oil of Chenopodium ambrosioides L. from Mianyang in Sichuan Province of China and its sub-chronic toxicity in mice. Trop J Pharm Res. 2020; 19(9): 1985-1991. https://doi.org/10.4314/tjpr.v19i9.26
  • [178] Fidalgo LM. Essential oil from Chenopodium ambrosioides as a promising antileishmanial agent. Nat Prod Commun. 2007; 2(12): 1934578X0700201214. https://doi.org/10.1177/1934578X0700201214
  • [179] Xiao S, Yu H, Xie Y, Guo Y, Fan J, Yao W. Evaluation of the analgesic potential and safety of Cinnamomum camphora chvar. Borneol essential oil. Bioeng. 2021; 12(2): 9860-9871. https://doi.org/10.1080/21655979.2021.1996149
  • [180] Adokoh CK, Asante D-B, Acheampong DO, Kotsuchibashi Y, Armah FA, Sirikyi IH, Kimura K, Gmakame E, Abdul-Rauf S. Chemical profile and in vivo toxicity evaluation of unripe Citrus aurantifolia essential oil. Toxicol Rep. 2019; 6: 692-702. https://doi.org/10.1016/j.toxrep.2019.06.020
  • [181] Ouedrhiri W, Bouhdid S, Balouiri M, Lalami AEO, Moja S, Chahdi FO, Greche H. Chemical composition of Citrus aurantium L. leaves and zest essential oils, their antioxidant, antibacterial single and combined effects. J Chem Pharm Res. 2015; 7(1): 78-84.
  • [182] Bengag A, Allem R, Meziane M. Acute oral, intravenous and peritoneal toxicity evaluation of the peel Citrus species. South Asian J Exp Biol. 2020; 10(6). https://doi.org/10.38150/sajeb.10(6).p395-403
  • [183] Tao N-G, Liu Y-J. Chemical composition and antimicrobial activity of the essential oil from the peel of shatian pummelo (Citrus grandis Osbeck). Int J Food Prop. 2012; 15(3): 709-716. https://doi.org/10.1080/10942912.2010.500067
  • [184] Wongsariya K, Phanthong P, Bunyapraphatsara N, Srisukh V, Chomnawang MT. Synergistic interaction and mode of action of Citrus hystrix essential oil against bacteria causing periodontal diseases. Pharm Biol. 2014; 52(3): 273-280. https://doi.org/10.3109/13880209.2013.833948
  • [185] Tao Ng, Liu Yj, Zhang Ml. Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). Int J Food Sci Technol. 2009; 44(7): 1281-1285. https://doi.org/10.1111/j.1365-2621.2009.01947.x
  • [186] Guo Y-N, Tang L-P. The effect and mechanism of volatile oil emulsion from leaves of Clausena lansium (Lour.) Skeels on Staphylococcus aureus in vitro. Front Microbiol. 2024; 15: 1376819. https://doi.org/10.3389/fmicb.2024.1376819
  • [187] Dosoky NS, Pokharel SK, Setzer WN. Leaf essential oil composition, antimicrobial and cytotoxic activities of Cleistocalyx operculatus from Hetauda, Nepal. Am J Essent Oils Nat Prod. 2015; 2(5): 34-37.
  • [188] Özbek H, Öztürk M, Öztürk A, Ceylan E, Yener Z. Determination of lethal doses of volatile and fixed oils of several plants. East J Med. 2004; 9(1): 4-6.
  • [189] de Lima GPG, de Souza TM, de Paula Freire G, Farias DF, Cunha AP, Ricardo NMPS, de Morais SM, Carvalho AFU. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013; 112: 1953-1958. https://doi.org/10.1007/s00436-013-3351-1
  • [190] Alves JAB, da Silva Nunes M, Fakhouri R, Martins-Filho PRS, de Oliveira Ribeiro MdC, de Vasconcellos AC, Santos PO, Marchioro M, de Cassia Trindade R, Frazão GGS. Inhibition of drug-sensitive and drug-resistant Mycobacterium tuberculosis strains by essential oil from Croton argyrophylloides Mull. Arg. Int Archiv Med. 2016; 9. https://doi.org/10.3823/2047
  • [191] de França-Neto A, Cardoso-Teixeira AC, Medeiros TC, do Socorro Quinto-Farias M, de Souza Sampaio CM, Coelho-de-Souza AN, Lahlou S, Leal-Cardoso JH. Essential oil of Croton argyrophylloides: Toxicological aspects and vasorelaxant activity in rats. Nat Prod Commun. 2012; 7(10): 1934578X1200701040. https://doi.org/10.1177/1934578X1200701040
  • [192] Coelho-de-Souza AN, Rocha MVA, Oliveira KA, Vasconcelos YA, Santos EC, Silva-Alves KS, Diniz LRL, Ferreira-da-Silva FW, Oliveira AC, Ponte EL. Volatile oil of Croton zehntneri per oral sub-acute treatment offers small toxicity: perspective of therapeutic use. Rev Brasil Farmacogn. 2019; 29: 228-233. https://doi.org/10.1016/j.bjp.2018.11.005
  • [193] Oliveira A, Leal-Cardoso J, Santos C, Morais S, Coelho-de-Souza A. Antinociceptive effects of the essential oil of Croton zehntneri in mice. Brazil J Med Biol Res. 2001; 34: 1471-1474. https://doi.org/10.1590/S0100-879X2001001100016
  • [194] Taghizadeh M, Ostad SN, Asemi Z, Mahboubi M, Hejazi S, Sharafati-Chaleshtori R, Rashidi A, Akbari H, Sharifi N. Sub-chronic oral toxicity of Cuminum cyminum L.’s essential oil in female Wistar rats. Reg Toxicol Pharmacol. 2017; 88: 138-143. https://doi.org/10.1016/j.yrtph.2017.06.007
  • [195] Liju VB, Jeena K, Kuttan R. Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L). Food Chem Toxicol. 2013; 53: 52-61. https://doi.org/10.1016/j.fct.2012.11.027 [196] Apisariyakul A, Vanittanakom N, Buddhasukh D. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol. 1995; 49(3): 163-169. https://doi.org/10.1016/0378-8741(95)01320-2
  • [197] Lulekal E, Tesfaye S, Gebrechristos S, Dires K, Zenebe T, Zegeye N, Feleke G, Kassahun A, Shiferaw Y, Mekonnen A. Phytochemical analysis and evaluation of skin irritation, acute and sub-acute toxicity of Cymbopogon citratus essential oil in mice and rabbits. Toxicol Rep. 2019; 6: 1289-1294. https://doi.org/10.1016/j.toxrep.2019.11.002
  • [198] Toukourou H, Uwambayinema F, Yakoub Y, Mertens B, Laleye A, Lison D, Quetin-Leclercq J, Gbaguidi F. In vitro and in vivo toxicity studies on Cymbopogon giganteus Chiov. leaves essential oil from Benin. J Toxicol. 2020;2020:8261058. https://doi.org/10.1155/2020/8261058
  • [199] Bassolé I, Lamien-Meda A, Bayala B, Obame L, Ilboudo A, Franz C, Novak J, Nebié R, Dicko M. Chemical composition and antimicrobial activity of Cymbopogon citratus and Cymbopogon giganteus essential oils alone and in combination. Phytomedicine. 2011; 18(12): 1070-1074. https://doi.org/10.1016/j.phymed.2011.05.009
  • [200] Verma RS, Padalia RC, Goswami P, Verma SK, Chauhan A, Singh VR, Darokar MP. Chemical composition and antibacterial activity of p-menthane chemotype of Cymbopogon martini (Roxb.) W. Watson (Poaceae) from India. J Essent Oil Res. 2018; 30(3): 182-188. https://doi.org/10.1080/10412905.2018.1429327
  • [201] Fathifar E, Rastegar T, Asgarpanah J. Histopathological and biochemical toxicity of Cymbopogon schoenanthus essential oil in female mice. Res J Pharmacogn. 2021; 8(1): 53-62. https://doi.org/10.22127/rjp.2020.120330
  • [202] Upatoom P, Visetson S. Mechanisms of essential oils from citronella (Cymbopogon winterianus Jowitt) against Siamensis subterranean termite workers (Coptotermes gestroi Wasmann) and mice (Mus musculus L.). Thai Agric Res J. 2017; 35(3): 270-287.
  • [203] Hu Q-P, Cao X-M, Hao D-L, Zhang L-L. Chemical composition, antioxidant, DNA damage protective, cytotoxic and antibacterial activities of Cyperus rotundus rhizomes essential oil against foodborne pathogens. Sci Rep. 2017; 7(1): 1-9. https://doi.org/10.1038/srep45231
  • [204] Al-Snafi AE. A review on Cyperus rotundus A potential medicinal plant. IOSR J Pharm. 2016; 6(7): 32-48.
  • [205] Alves-Silva JM, Zuzarte M, Gonçalves MJ, Cavaleiro C, Cruz MT, Cardoso SM, Salgueiro L. New claims for wild carrot (Daucus carota subsp. carota) essential oil. Evid-Based Complement Altern Med. 2016;2016:9045196. https://doi.org/10.1155/2016/9045196
  • [206] Asiaei EO, Moghimipour E, Fakoor MH. Evaluation of antimicrobial activity of Eucalyptus camaldulensis essential oil against the growth of drug-resistant bacteria. Jundishapur J Nat Pharm Prod. 2018; 13(4). https://doi.org/10.5812/jjnpp.65050.
  • [207] Mengiste B, Zenebe T, Dires K, Lulekal E, Mekonnen A, Zegeye N, Shiferaw Y. Safety evaluation of Eucalyptus globulus essential oils through acute and sub-acute toxicity and skin irritation in mice and rats. Curr Chem Biol. 2020; 14(3): 187-195. https://doi.org/10.2174/2212796814999200818095036
  • [208] Park J-W, Wendt M, Heo G-J. Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Lab Anim Res. 2016; 32: 87-90. https://doi.org/10.5625/lar.2016.32.2.87
  • [209] Bastos RG, Rosa CP, Oliver JC, Silva NC, Dias AL, Da Rocha CQ, Vilegas W, Da Silva GA, Da Silva MA. Chemical characterization and antimicrobial activity of hydroethanolic crude extract of Eugenia florida DC (Myrtaceae) leaves. Int J Pharm Pharm Sci. 2016; 8: 110-115.
  • [210] Mirzania F, Salimikia I, Ghasemian Yadegari J, Nazarzadeh A, Najmaddini H. Investigating the effect of acute and subacute toxicity of Ferula macrecolea (Boiss.) Boiss essential oil in BALB/c Mice. J Med Plant By-Prod. 2024. https://doi.org/10.22034/jmpb.2024.363350.1598
  • [211] Sadeghi N, Sadeghi H, Mohan DN, Sepahvand A, Alizadeh A, Garavand S. Chemical composition, anti-fungal and cytotoxic effects of Ferula macrecolea essential oil against Candida albicans resistant and sensitive strains. J Herbmed Pharmacol. 2023; 12(2): 228-232. https://doi.org/10.34172/jhp.2023.24
  • [212] AbduRahim SA, Elamin BEK, Bashir AAA, Almagboul AZ. In vitro test of antimicrobial activity of Foeniculum vulgare Mill.(Fennel) essential oil. J Multidisc Eng Sci Stud. 2017; 3(4): 1609-1614.
  • [213] Zeng W-C, Zhu R-X, Jia L-R, Gao H, Zheng Y, Sun Q. Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine. Food Chem Toxicol. 2011; 49(6): 1322-1328. https://doi.org/10.1016/j.fct.2011.03.014
  • [214] Joshi S, Chanotiya CS, Agarwal G, Prakash O, Pant AK, Mathela CS. Terpenoid compositions, and antioxidant and antimicrobial properties of the rhizome essential oils of different Hedychium species. Chem Biodivers. 2008; 5(2): 299-309. https://doi.org/10.1002/cbdv.200890027
  • [215] Goly KRC, Soro Y, Dadie A, Kassi ABB, Djé M. Antibacterial activity of essential oils and extracts from the leaves of Hyptis suaveolens and Lippia multiflora on multi-resistant bacteria. Rasayan J Chem. 2015; 8(4): 396-403.
  • [216] Glišić S, Milojević S, Dimitrijević S, Orlović A, Skala D. Antimicrobial activity of the essential oil and different fractions of Juniperus communis L. and a comparison with some commercial antibiotics. J Serb Chem Soc. 2007; 72(4): 311-320. https://doi.org/10.2298/JSC0704311G
  • [217] Blažeković B, Yang W, Wang Y, Li C, Kindl M, Pepeljnjak S, Vladimir-Knežević S. Chemical composition, antimicrobial and antioxidant activities of essential oils of Lavandula intermedia ‘Budrovka’and L. angustifolia cultivated in Croatia. Ind Crops Prod. 2018; 123: 173-182. https://doi.org/10.1016/j.indcrop.2018.06.041
  • [218] Mekonnen A, Tesfaye S, Christos SG, Dires K, Zenebe T, Zegeye N, Shiferaw Y, Lulekal E. Evaluation of skin irritation and acute and subacute oral toxicity of Lavandula angustifolia essential oils in rabbit and mice. J Toxicol. 2019; 2019(1): 5979546. https://doi.org/10.1155/2019/5979546
  • [219] Guilhon CC, Raymundo LJ, Alviano DS, Blank AF, Arrigoni-Blank MF, Matheus ME, Cavalcanti SC, Alviano CS, Fernandes PD. Characterisation of the anti-inflammatory and antinociceptive activities and the mechanism of the action of Lippia gracilis essential oil. J Ethnopharmacol. 2011; 135(2): 406-413. https://doi.org/10.1016/j.jep.2011.03.032
  • [220] Hernandes C, Pina E, Taleb‐Contini S, Bertoni B, Cestari I, Espanha L, Varanda E, Camilo K, Martinez E, França S. Lippia origanoides essential oil: An efficient and safe alternative to preserve food, cosmetic and pharmaceutical products. J Appl Microbiol. 2017; 122(4): 900-910. https://doi.org/10.1111/jam.13398
  • [221] Pinto Cda P, Rodrigues VD, Pinto Fda P, Pinto Rda P, Uetanabaro AP, Pinheiro CS, Gadea SF, Silva TR, Lucchese AM. Antimicrobial activity of lippia species from the brazilian semiarid region traditionally used as antiseptic and anti-infective agents. Evid Based Complement Alternat Med. 2013;2013:614501. https://doi.org/10.1155/2013/614501
  • [222] Budin SB, Siti Nor Ain SM, Omar B, Taib IS, Hidayatulfathi O. Acute and subacute oral toxicity of Litsea elliptica Blume essential oil in rats. J Zhejiang Univ Sci B. 2012; 13(10): 783-790. https://doi.org/10.1631/jzus.B1100021
  • [223] Abdoul-Latif FM, Mohamed N, Edou P, Ali AA, Djama SO, Obame L-C, Bassolé IH, Dicko MH. Antimicrobial and antioxidant activities of essential oil and methanol extract of Matricaria chamomilla L. from Djibouti. J Med Plant Res. 2011; 5(9): 1512-1517.
  • [224] Borotová P, Galovičová L, Vukovic NL, Vukic M, Tvrdá E, Kačániová M. Chemical and biological characterization of Melaleuca alternifolia essential oil. Plants. 2022; 11(4): 558. https://doi.org/10.3390/plants11040558
  • [225] Hammer KA, Carson CF, Riley TV, Nielsen JB. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food Chem Toxicol. 2006; 44(5): 616-625. https://doi.org/10.1016/j.fct.2005.09.001
  • [226] Jalilzadeh-Amin G, Maham M. Antidiarrheal activity and acute oral toxicity of Mentha longifolia L. essential oil. Avicenna J Phytomed. 2015; 5(2): 128-137.
  • [227] Daneshbakhsh D, Asgarpanah J, Najafizadeh P, Rastegar T, Mousavi Z. Safety assessment of Mentha mozaffarianii essential oil: acute and repeated toxicity studies. Iran J Med Sci. 2018; 43(5): 479.
  • [228] Mahboubi M, Kazempour N. Chemical composition and antimicrobial activity of peppermint (Mentha piperita L.) essential oil. Songklanakarin J Sci Technol. 2014; 36(1): 83-87.
  • [229] Debbab A, Mosaddak B, Aly A, Hakiki A, Mosaddak M. Chemical characterization and toxicological evaluation of the essential oil of Mentha piperita L. growing in Morocco. Sci Stud Resour. 2007; 8(3): 281-288.
  • [230] Teixeira B, Marques A, Ramos C, Batista I, Serrano C, Matos O, Neng NR, Nogueira JM, Saraiva JA, Nunes ML. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind Crops Prod. 2012; 36(1): 81-87. https://doi.org/10.1016/j.indcrop.2011.08.011
  • [231] Ez-Zriouli R, El Yacoubi H, Imtara H, El-Hessni A, Mesfioui A, Tarayrah M, Mothana RA, Noman OM, Mouhsine F, Rochdi A. Chemical composition and antimicrobial activity of essential oils from Mentha pulegium and Rosmarinus officinalis against multidrug-resistant microbes and their acute toxicity study. Open Chem. 2022; 20(1): 694-702. https://doi.org/10.1515/chem-2022-0185
  • [232] Di Vito M, Bellardi MG, Mondello F, Modesto M, Michelozzi M, Bugli F, Sanguinetti M, Sclocchi MC, Sebastiani ML, Biffi S. Monarda citriodora hydrolate vs essential oil comparison in several anti-microbial applications. Ind Crop Prod. 2019; 128: 206-212. https://doi.org/10.1016/j.indcrop.2018.11.007
  • [233] Enabulele SA, Oboh FO, Uwadiae EO. Antimicrobial, nutritional and phytochemical properties of Monodora myristica seeds. IOSR J Pharm Biol Sci. 2014; 9(4): 01-06.
  • [234] Miediegha O, Owaba A, Okori-West L. Acute toxicity studies, physicochemical and GC/MS analyses of Monodora myristica (Gaertn.) Dunal oil. Niger J Pharm Res. 2022; 18(2): 91-99. https://doi.org/10.4314/njpr.v18i2.1
  • [235] El Hartiti H, El Mostaphi A, Barrahi M, Ben Ali A, Chahboun N, Amiyare R, Zarrouk A, Bourkhiss B, Ouhssine M. Chemical composition and antibacterial activity of the essential oil of Myrtus communis leaves. Karbala Int J Modern Sci. 2020; 6(3): 3. https://doi.org/10.33640/2405-609X.1546
  • [236] Touaibia M. Composition and anti-inflammatory effect of the common myrtle (Myrtus communis L.) essential oil growing wild in Algeria. Phytothérapie. 2017: 1-6. https://doi.org/10.1007/s10298-017-1100-9
  • [237] Disket J, Mann S, Gupta RK. A review on spikenard (Nardostachys jatamansi DC.)-an ‘endangered’essential herb of India. Int J Pharm Chem. 2012; 2(3): 52-60.
  • [238] Moghaddam AMD, Shayegh J, Mikaili P, Sharaf JD. Antimicrobial activity of essential oil extract of Ocimum basilicum L. leaves on a variety of pathogenic bacteria. J Med Plants Res. 2011; 5(15): 3453-3456.
  • [239] Ismail M. Central properties and chemical composition of Ocimum basilicum. essential oil. Pharm Biol. 2006; 44(8): 619-626. https://doi.org/10.1080/13880200600897544
  • [240] Orafidiya L, Agbani E, Iwalewa E, Adelusola K, Oyedapo O. Studies on the acute and sub-chronic toxicity of the essential oil of Ocimum gratissimum L. leaf. Phytomedicine. 2004; 11(1): 71-76. https://doi.org/10.1078/0944-7113-00317
  • [241] Nakamura CV, Ueda-Nakamura T, Bando E, Melo AFN, Cortez DAG, Dias Filho BP. Antibacterial activity of Ocimum gratissimum L. essential oil. Memórias do Instituto Oswaldo Cruz. 1999; 94: 675-678. https://doi.org/10.1590/S0074-02761999000500022
  • [242] Houda E, Abdelhalim M, Aboubaker E, Younes EYE, Atmane R. Assessment of bioactive compounds, antibacterial potential and acute toxicity of a volatile Origanum compactum extract, an endemic plant of northern Morocco. Arab J Med Arom Plant. 2021; 7(3): 422-437. https://doi.org/10.48347/IMIST.PRSM/ajmap-v7i3.26574
  • [243] Llana-Ruiz-Cabello M, Maisanaba S, Puerto M, Pichardo S, Jos A, Moyano R, Cameán AM. A subchronic 90-day oral toxicity study of Origanum vulgare essential oil in rats. Food Chem Toxicol. 2017; 101: 36-47. https://doi.org/10.1016/j.fct.2017.01.001
  • [244] Ghavam M, Afzali A, Manconi M, Bacchetta G, Manca ML. Variability in chemical composition and antimicrobial activity of essential oil of Rosa damascena Herrm. from mountainous regions of Iran. Chem Biol Technol Agric. 2021; 8: 1-16. https://doi.org/10.1186/s40538-021-00219-6
  • [245] Mulkijanyan K, Gogitidze N, Sulakvelidze M, Mushkiashvili N, Novikova Z, Mskhiladze L. Pharmacological assessment of the aqueous extract of rose oil waste from Rosa damascena Herrm cultivated in Georgia. World J Biol Pharm Health Sci. 2021; 7(1): 001-008. https://doi.org/10.30574/wjbphs.2021.7.1.0069
  • [246] Mengiste B, Dires K, Lulekal E, Arayaselassie M, Zenebe T, Feleke G, Makonnen E, Mekonnen A. Acute skin irritation, acute and sub-acute oral toxicity studies of Rosmarinus officinalis essential oils in mice and rabbit. Afr J Pharm Pharmacol. 2018; 12(26): 389-396. https://doi.org/10.5897/AJPP2018.4957
  • [247] Mihajilov-Krstev T, Radnović D, Kitić D, Zlatković B, Ristić M, Branković S. Chemical composition and antimicrobial activity of Satureja hortensis L. essential oil. Open Life Sci. 2009; 4(3): 411-416. https://doi.org/10.2478/s11535-009-0027-z
  • [248] Siavash Saei‐Dehkordi S, Fallah AA, Heidari‐Nasirabadi M, Moradi M. Chemical composition, antioxidative capacity and interactive antimicrobial potency of Satureja khuzestanica Jamzad essential oil and antimicrobial agents against selected food‐related microorganisms. Int J Food Sci Technol. 2012; 47(8): 1579-1585. https://doi.org/10.1111/j.1365-2621.2012.03006.x
  • [249] Cerrón-Mercado F, Salva-Ruíz BK, Nolazco-Cama D, Espinoza-Silva C, Fernández-López J, Pérez-Alvarez JA, Viuda-Martos M. Development of Chincho (Tagetes elliptica Sm.) essential oil organogel nanoparticles through ionic gelation and process optimization with Box–Behnken Design. Gels. 2022; 8(12): 815. https://doi.org/10.3390/gels8120815
  • [250] Mohsenzadeh F, Chehregani A, Amiri H. Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium in different developmental stages. Pharm Biol. 2011; 49(9): 920-926. https://doi.org/10.3109/13880209.2011.556650
  • [251] Adane F, Asres K, Ergete W, Woldekidan S, Abebe A, Lengiso B, Seyoum G. Composition of the essential oil Thymus schimperi and evaluation of its acute and subacute toxicity in wistar albino rats: in silico toxicity studies. Evid-Based Complement Altern Med. 2021;2021:5521302. https://doi.org/10.1155/2021/5521302
  • [252] Rojas-Armas J, Arroyo-Acevedo J, Ortiz-Sánchez M, Palomino-Pacheco M, Castro-Luna A, Ramos-Cevallos N, Justil-Guerrero H, Hilario-Vargas J, Herrera-Calderón O. Acute and repeated 28-day oral dose toxicity studies of Thymus vulgaris L. essential oil in rats. Toxicol Res. 2019; 35: 225-232. https://doi.org/10.5487/TR.2019.35.3.225
  • [253] Vazirian M, Hekmati D, Ostad S, Manayi A. Toxicity evaluation of essential oil of Trachyspermum ammi in acute and sub-chronic toxicity experiments. J Med Plants. 2019; 18(69): 70-77.
  • [254] Moein MR, Zomorodian K, Pakshir K, Yavari F, Motamedi M, Zarshenas MM. Trachyspermum ammi (L.) sprague: chemical composition of essential oil and antimicrobial activities of respective fractions. J Evid Based Complementary Altern Med. 2015;20(1):50-56. https://doi.org/10.1177/2156587214553302
  • [255] Stojković D, Soković M, Glamočlija J, Džamić A, Ćirić A, Ristić M, Grubišić D. Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chem. 2011; 128(4): 1017-1022. https://doi.org/10.1016/j.foodchem.2011.04.007
  • [256] Chattopadhyay P, Banerjee S, Pathak MP, Agnihotri A, Karmakar S, Goyary D, Dhiman S, Veer V. Acute and subchronic dermal toxicity of Vitex negundo essential oil. Cutan Ocul Toxicol. 2014; 33(1): 16-21. https://doi.org/10.3109/15569527.2013.791829.
  • [257] Ai H-W, Kang Y-X, Cao Y, Zheng C-J. Antifungal properties and chemical analysis of essential oil from Vitex negundo seeds. J Pharm Res I. 2014; 4(5): 541-548. https://doi.org/10.9734/BJPR/2014/7079.
  • [258] López EIC, Balcázar MFH, Mendoza JMR, Ortiz ADR, Melo MTO, Parrales RS, Delgado TH. Antimicrobial activity of essential oil of Zingiber officinale Roscoe (Zingiberaceae). Am J Plant Sci. 2017; 8(7): 1511-1524. https://doi.org/10.4236/ajps.2017.87104
  • [259] Yang S-K, Tan N-P, Chong C-W, Abushelaibi A, Lim S-H-E, Lai K-S. The missing piece: Recent approaches investigating the antimicrobial mode of action of essential oils. Evol Bioinform. 2021; 17: 1176934320938391. https://doi.org/10.1177/1176934320938391
  • [260] Oliveira RC, Carvajal-Moreno M, Mercado-Ruaro P, Rojo-Callejas F, Correa B. Essential oils trigger an antifungal and anti-aflatoxigenic effect on Aspergillus flavus via the induction of apoptosis-like cell death and gene regulation. Food Control. 2020; 110: 107038. https://doi.org/10.1016/j.foodcont.2019.107038
  • [261] Kuwagata M, Doi Y, Saito H, Tsurumoto M, Igarashi T, Nishimura T, Taquahashi Y, Hirabayashi Y, Kitajima S. A 90-day repeated oral dose toxicity study of p-cymene in rats. Fundam Toxicol Sci. 2024; 11(4): 169-181. https://doi.org/10.2131/fts.11.169
  • [262] Salehi B, Mishra AP, Shukla I, Sharifi‐Rad M, Contreras MdM, Segura‐Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi‐Rad J. Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Res. 2018; 32(9): 1688-1706. https://doi.org/10.1002/ptr.6109
  • [263] Nejad SM, Özgüneş H, Başaran N. Pharmacological and toxicological properties of eugenol. Turk J Pharm Sci. 2017; 14(2): 201. https://doi.org/10.4274/tjps.62207
  • [264] Sun J. D-Limonene: safety and clinical applications. Altern Med Rev. 2007;12(3):259-264.
  • [265] Gupta A, Jeyakumar E, Lawrence R. Journey of limonene as an antimicrobial agent. J Pure Appl Microbiol. 2021; 15(3). https://doi.org/10.22207/JPAM.15.3.01
  • [266] Shah BB, Mehta AA. In vitro evaluation of antioxidant activity of D-Limonene. Asian J Pharm Pharmacol. 2018; 4(6): 883-887. https://doi.org/10.31024/ajpp.2018.4.6.25
  • [267] Fisher, Scientific. Safety Data Sheet for (-)-Limonene 92%. https://www.fishersci.com/store/msds?partNumber=AC203731000&productDescription=%28-%29-LIMONENE+92%25+100ML&vendorId=VN00032119&countryCode=US&language=en (accessed 2024).
  • [268] Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, Mrabti HN, Bakrim S, Zengin G, Bouyahya A. Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol. 2021; 153: 112259. https://doi.org/10.1016/j.fct.2021.112259
  • [269] Tian F, Woo SY, Lee SY, Chun HS. p-Cymene and its derivatives exhibit antiaflatoxigenic activities against Aspergillus flavus through multiple modes of action. Appl Biol Chem. 2018; 61: 489-497. https://doi.org/10.1007/s13765-018-0382-4
  • [270] Carl Roth Gmb, H. Co K. G. Safety Data Sheet for Chemical Compound. https://www.carlroth.com/medias/SDB-3465-AU-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNzMxNTN8YXBwbGljYXRpb24vcGRmfGgxYS9oNmQvOTE0NDM5MjIyMDcwMi9TREJfMzQ2NV9BVV9FTi5wZGZ8YmMzYTE1NDAxMmQ5OTMyOGM1MGZlMWE2NTQ5NDE0ZDU1Mjg4Yjg1MTY0Y2VhYjUyY2JmMTc2ZTFmOTIwZTEzNg (accessed 2024).
  • [271] Sato K, Krist S, Buchbauer G. Antimicrobial effect of vapours of geraniol,(R)‐(–)‐linalool, terpineol, γ‐terpinene and 1, 8‐cineole on airborne microbes using an airwasher. Flavour Fragr J. 2007; 22(5): 435-437. https://doi.org/10.1002/ffj.1818
  • [272] Mollica F, Gelabert I, Amorati R. Synergic antioxidant effects of the essential oil component γ-terpinene on high-temperature oil oxidation. ACS Food Sci Technol. 2022; 2(1): 180-186. https://doi.org/10.1021/acsfoodscitech.1c00399
  • [273] An Q, Ren J-N, Li X, Fan G, Qu S-S, Song Y, Li Y, Pan S-Y. Recent updates on bioactive properties of linalool. Food Funct. 2021; 12(21): 10370-10389. https://doi.org/10.1039/D1FO02120F
  • [274] Kamatou GP, Viljoen AM. Linalool–A review of a biologically active compound of commercial importance. Nat Prod Commun. 2008; 3(7): 1934578X0800300727. https://doi.org/10.1177/1934578X0800300727
  • [275] Nakasugi LP, Silva Bomfim N, Romoli JCZ, Botião Nerilo S, Veronezi Silva M, Rocha Oliveira GH, Machinski Jr M. Antifungal and antiaflatoxigenic activities of thymol and carvacrol against Aspergillus flavus. Saúde e Pesquisa. 2021; 14(1). https://doi.org/10.17765/2176-9206.2021v14n1.e7727
  • [276] Escobar A, Perez M, Romanelli G, Blustein G. Thymol bioactivity: A review focusing on practical applications. Arab J Chem. 2020; 13(12): 9243-9269. https://doi.org/10.1016/j.arabjc.2020.11.009
  • [277] Dahham SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, Majid AM. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015; 20(7): 11808-11829. https://doi.org/10.3390/molecules200711808
  • [278] Francomano F, Caruso A, Barbarossa A, Fazio A, La Torre C, Ceramella J, Mallamaci R, Saturnino C, Iacopetta D, Sinicropi MS. β-Caryophyllene: a sesquiterpene with countless biological properties. Appl Sci. 2019; 9(24): 5420. https://doi.org/10.3390/app9245420
  • [279] Carl Roth Gmb, H. Co K. G. Safety Data Sheet for Caryophyllene. https://www.carlroth.com/medias/SDB-7232-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNDQ0NDR8YXBwbGljYXRpb24vcGRmfGFHTTJMMmd6Wmk4NU1UUTJPVEExTURBeU1ERTBMMU5FUWw4M01qTXlYMGRDWDBWT0xuQmtaZ3w3ZWI0YTAxMWYwNzhmZDAzZjg1ZDg2OGQ4YzJlNDJlNzRhYzY4ZTYyYmIxYWZiNTczMTZhY2VjYmJkYWNlN2U5 (accessed 2024).
  • [280] Cai Z-M, Peng J-Q, Chen Y, Tao L, Zhang Y-Y, Fu L-Y, Long Q-D, Shen X-C. 1, 8-Cineole: A review of source, biological activities, and application. J Asian Nat Prod Res. 2021; 23(10): 938-954. https://doi.org/10.1080/10286020.2020.1839432
  • [281] Xu J, Hu Z-Q, Wang C, Yin Z-Q, Wei Q, Zhou L-J, Li L, Du Y-H, Jia R-Y, Li M. Acute and subacute toxicity study of 1, 8-cineole in mice. Int J Clin Exp Pathol. 2014; 7(4): 1495.
  • [282] Kim H-M, Kwon H, Kim K, Lee S-E. Antifungal and Antiaflatoxigenic Activities of 1, 8-Cineole and t-Cinnamaldehyde on Aspergillus flavus. Appl Sci. 2018; 8(9): 1655. https://doi.org/10.3390/app8091655
  • [283] Carl Roth Gmb, H. Safety Data Sheet for Eucalyptol. https://www.carlroth.com/medias/SDB-7244-IE-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNzUzMDB8YXBwbGljYXRpb24vcGRmfGg4NS9oNDMvOTE0NjkwNTEzMzA4Ni9TREJfNzI0NF9JRV9FTi5wZGZ8MWMxYTQwZTdhNWM4ZDI1ZjA3NzMzOWVhMjAyNGY2MWIzYWJjNTIxY2I2OTQ1M2Y5ODIyOGU0MzdkNmM3NWQ4NA (accessed 2023).
  • [284] Xu Z, Chang L, Xu Z, Chang L. Lamiaceae. Identification and Control of Common Weeds: Volume 3. 2017: 181-265. https://doi.org/10.1007/978-981-10-5403-7_8
  • [285] Uritu CM, Mihai CT, Stanciu G-D, Dodi G, Alexa-Stratulat T, Luca A, Leon-Constantin M-M, Stefanescu R, Bild V, Melnic S. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res Manag 2018; 2018(1): 7801543. https://doi.org/10.1155/2018/7801543
  • [286] Tan PV, Mezui C, Enow-Orock G, Njikam N, Dimo T, Bitolog P. Teratogenic effects, acute and sub chronic toxicity of the leaf aqueous extract of Ocimum suave Wild (Lamiaceae) in rats. J Ethnopharmacol. 2008; 115(2): 232-237. https://doi.org/10.1016/j.jep.2007.09.022
  • [287] Rolnik A, Olas B. The plants of the Asteraceae family as agents in the protection of human health. Int J Mol Sci. 2021; 22(6): 3009. https://doi.org/10.3390/ijms22063009
  • [288] Amiri MS, Joharchi MR. Ethnobotanical knowledge of Apiaceae family in Iran: A review. Avicenna J Phytomed. 2016; 6(6): 621.
  • [289] Sayed-Ahmad B, Talou T, Saad Z, Hijazi A, Merah O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind Crops Prod. 2017; 109: 661-671. https://doi.org/10.1016/j.indcrop.2017.09.027
  • [290] de Paulo Farias D, Neri-Numa IA, de Araujo FF, Pastore GM. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem. 2020; 306: 125630. https://doi.org/10.1016/j.foodchem.2019.125630
  • [291] Faleiro JH, Gonçalves RC, dos Santos MNG, da Silva DP, Naves PLF, Malafaia G. The chemical featuring, toxicity, and antimicrobial activity of Psidium cattleianum (Myrtaceae) leaves. New J Sci. 2016; 2016(1): 7538613. https://doi.org/10.1155/2016/7538613
  • [292] Khalil AA, Khan M, Rauf A, Naz S, Al-Awthan YS, Bahattab O. The Family Rutaceae: An Overview of Its Traditional Uses. In: Phytochemical and Pharmacological Investigation of the Family Rutaceae. 2024: 15-31.
  • [293] Liaqat I, Riaz N, Saleem Q-u-A, Tahir HM, Arshad M, Arshad N. Toxicological evaluation of essential oils from some plants of Rutaceae family. Evid‐Base Complement Altern Med. 2018; 2018(1): 4394687. https://doi.org/10.1155/2018/4394687
  • [294] Khalil AA, Khan AA, Khan MA, Naz S. Antioxidant Properties of the Family Rutaceae. In: Phytochemical and Pharmacological Investigation of the Family Rutaceae. Apple Academic Press, 2024.
  • [295] Kachuei R, Khodavaisy S, Rezaie S, Sharifynia S. In vitro antifungal susceptibility of clinical species belonging to Aspergillus genus and Rhizopus oryzae. J Mycol Méd. 2016; 26(1): 17-21. https://doi.org/10.1016/j.mycmed.2015.12.002
  • [296] Ikeda M, Yagihara Y, Tatsuno K, Okazaki M, Okugawa S, Moriya K. Clinical characteristics and antimicrobial susceptibility of Bacillus cereus blood stream infections. Ann Clin Microbiol Antimicrob. 2015; 14: 1-7. https://doi.org/10.1186/s12941-015-0104-2
  • [297] Senok A, Yousif A, Mazi W, Sharaf E, Bindayna K, Elnima E-A, Botta G. Pattern of antibiotic susceptibility in Campylobacter jejuni isolates of human and poultry origin. Japan J Infect Dis. 2007; 60(1): 1-4. https://doi.org/10.7883/yoken.JJID.2007.1
  • [298] Lyon GM, Karatela S, Sunay S, Adiri Y. Antifungal susceptibility testing of Candida isolates from the Candida surveillance study. J Clin Microbiol. 2010; 48(4): 1270-1275. https://doi.org/10.1128/jcm.02363-09
  • [299] Rams TE, Feik D, Mortensen JE, Degener JE, van Winkelhoff AJ. Antibiotic susceptibility of periodontal Enterococcus faecalis. J Periodontol. 2013; 84(7): 1026-1033. https://doi.org/10.1902/jop.2012.120050
  • [300] Kumar Y, Sood S, Sharma A, Mani KR. Antibiogram and characterization of resistance markers among Escherichia coli Isolates from urinary tract infections. J Infect Develop Countr. 2013; 7(07): 513-519. https://doi.org/10.3855/jidc.2706
  • [301] Khayyat AN, Abbas HA, Mohamed MF, Asfour HZ, Khayat MT, Ibrahim TS, Youns M, Khafagy E-S, Abu Lila AS, Safo MK. Not only antimicrobial: metronidazole mitigates the virulence of Proteus mirabilis isolated from macerated diabetic foot ulcer. Appl Sci. 2021; 11(15): 6847. https://doi.org/10.3390/app11156847
  • [302] Nagshetty K, Channappa ST, Gaddad SM. Antimicrobial susceptibility of Salmonella typhi in India. J Infect Develop Countr. 2010; 4(02): 070-073. https://doi.org/10.3855/jidc.109
  • [303] Falcone M, Russo A, Pacini G, Merli M, Venditti M. Spontaneous bacterial peritonitis due to methicillin-resistant Staphylococcus aureus in a patient with cirrhosis: the potential role for daptomycin and review of the literature. Infect Dis Repo. 2015; 7(3). https://doi.org/10.4081/idr.2015.6127
  • [304] Dima C, Dima S. Essential oils in foods: extraction, stabilization, and toxicity. Curr Opin Food Sci. 2015; 5: 29-35. https://doi.org/10.1016/j.cofs.2015.07.003
  • [305] Turek C, Stintzing FC. Stability of essential oils: a review. In: Comprehensive reviews in food science and food safety. 2013; 12(1): 40-53. https://doi.org/10.1111/1541-4337.12006
  • [306] Parke D, Lewis D. Safety aspects of food preservatives. Food Addit Contam. 1992; 9(5): 561-577. https://doi.org/10.1080/02652039209374110
  • [307] Naja F, Hamadeh R, Alameddine M. Regulatory frameworks for a safe and effective use of essential oils: a critical appraisal. Adv Biomed Health Sci. 2022; 1(1): 7-12. https://doi.org/10.4103/abhs.abhs_8_21
  • [308] Authority EFS, Dorne JLC, Manini P, Hogstrand C. Animal Health Risk assessment of multiple chemicals in essential oils for farm animals. 2020. https://doi.org/10.2903/sp.efsa.2020.EN-1760
  • [309] Tisserand R, Young R. Essential oil safety: a guide for health care professionals. Elsevier Health Sciences, 2013.
  • [310] Rahmi D, Yunilawati R, Jati BN, Setiawati I, Riyanto A, Batubara I, Astuti RI. Antiaging and skin irritation potential of four main Indonesian essential oils. Cosmetics. 2021; 8(4): 94. https://doi.org/10.3390/cosmetics8040094
  • [311] Reichling J, Suschke U, Schneele J, Geiss HK. Antibacterial activity and irritation potential of selected essential oil components–structure-activity relationship. Nat Prod Commun. 2006; 1(11): 1934578X0600101116. https://doi.org/10.1177/1934578X0600101116
  • [312] Mezzoug N, Idaomar M, Baudoux D, Debauche P, Liemans V, Zhiri A. Genotoxicity of some essential oils frequently used in aromatherapy. Adv Biosci Biotechnol. 2016; 7(2): 63-73. http://dx.doi.org/10.4236/abb.2016.72008
There are 311 citations in total.

Details

Primary Language English
Subjects Pharmacognosy, Pharmaceutical Toxicology, Toxicology
Journal Section Articles
Authors

Mahyar Dadbin 0009-0009-5053-467X

Mohammad Soltanpour 0009-0008-3812-3272

Laleh Khodaie 0000-0001-7416-0822

Mina Islambulchilar 0000-0001-8355-8795

Publication Date July 5, 2025
Submission Date March 10, 2025
Acceptance Date April 18, 2025
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Dadbin, M., Soltanpour, M., Khodaie, L., Islambulchilar, M. (2025). Chemical composition, antimicrobial, antioxidant, and toxicity of essential oils as food preservatives. Journal of Research in Pharmacy, 29(4), 1379-1418. https://doi.org/10.12991/jrespharm.1653671
AMA Dadbin M, Soltanpour M, Khodaie L, Islambulchilar M. Chemical composition, antimicrobial, antioxidant, and toxicity of essential oils as food preservatives. J. Res. Pharm. July 2025;29(4):1379-1418. doi:10.12991/jrespharm.1653671
Chicago Dadbin, Mahyar, Mohammad Soltanpour, Laleh Khodaie, and Mina Islambulchilar. “Chemical Composition, Antimicrobial, Antioxidant, and Toxicity of Essential Oils As Food Preservatives”. Journal of Research in Pharmacy 29, no. 4 (July 2025): 1379-1418. https://doi.org/10.12991/jrespharm.1653671.
EndNote Dadbin M, Soltanpour M, Khodaie L, Islambulchilar M (July 1, 2025) Chemical composition, antimicrobial, antioxidant, and toxicity of essential oils as food preservatives. Journal of Research in Pharmacy 29 4 1379–1418.
IEEE M. Dadbin, M. Soltanpour, L. Khodaie, and M. Islambulchilar, “Chemical composition, antimicrobial, antioxidant, and toxicity of essential oils as food preservatives”, J. Res. Pharm., vol. 29, no. 4, pp. 1379–1418, 2025, doi: 10.12991/jrespharm.1653671.
ISNAD Dadbin, Mahyar et al. “Chemical Composition, Antimicrobial, Antioxidant, and Toxicity of Essential Oils As Food Preservatives”. Journal of Research in Pharmacy 29/4 (July 2025), 1379-1418. https://doi.org/10.12991/jrespharm.1653671.
JAMA Dadbin M, Soltanpour M, Khodaie L, Islambulchilar M. Chemical composition, antimicrobial, antioxidant, and toxicity of essential oils as food preservatives. J. Res. Pharm. 2025;29:1379–1418.
MLA Dadbin, Mahyar et al. “Chemical Composition, Antimicrobial, Antioxidant, and Toxicity of Essential Oils As Food Preservatives”. Journal of Research in Pharmacy, vol. 29, no. 4, 2025, pp. 1379-18, doi:10.12991/jrespharm.1653671.
Vancouver Dadbin M, Soltanpour M, Khodaie L, Islambulchilar M. Chemical composition, antimicrobial, antioxidant, and toxicity of essential oils as food preservatives. J. Res. Pharm. 2025;29(4):1379-418.