Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 4, 1437 - 1450, 05.07.2025
https://doi.org/10.12991/jrespharm.1734450

Abstract

References

  • [1] Solomon S, Iqbal J, Albadarin AB. Insights into the ameliorating ability of mesoporous silica in modulating drug release in ternary amorphous solid dispersion prepared by hot melt extrusion. Eur J Pharm Biopharm. 2021;165:244-258. https://doi.org/10.1016/j.ejpb.2021.04.017
  • [2] Pignatello R, Corsaro R, Bonaccorso A, Zingale E, Carbone C, Musumeci T. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv Transl Res. 2022;12(8):1991-2006. https://doi.org/10.1007/s13346-022-01182-x
  • [3] Han R, Xiong H, Ye Z, Yang Y, Huang T, Jing Q, Lu J, Pan H, Ren F, Ouyang D. Predicting physical stability of solid dispersions by machine learning techniques. J Control Release. 2019;311:16-25. https://doi.org/10.1016/j.jconrel.2019.08.030
  • [4] Kim J-S, Park H, Kang K-T, Ha E-S, Kim M-S, Hwang S-J. Micronization of a poorly water-soluble drug, fenofibrate, via supercritical-fluid-assisted spray-drying. J Pharm Investig. 2022;52(3):353-366. http://dx.doi.org/10.1007/s40005-022-00565-z
  • [5] Quan W, Kong S, Ouyang Q, Tao J, Lu S, Huang Y, Li S, Luo H. Use of 18ƒÀ-glycyrrhetinic acid nanocrystals to enhance anti-inflammatory activity by improving topical delivery. Colloids Surf B Biointerfaces. 2021;205:111791. https://doi.org/10.1016/j.colsurfb.2021.111791
  • [6] Tekade AR, Yadav JN. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv Pharm Bull. 2020;10(3):359-369. https://doi.org/10.34172%2Fapb.2020.044
  • [7] Suresh K, Matzger AJ. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal.organic framework (MOF). Angew Chem Int Ed. 2019;58(47):16790-16794. https://doi.org/10.1002/anie.201907652
  • [8] Bhanderi A, Bari F, Al-Obaidi H. Evaluation of the impact of surfactants on miscibility of griseofulvin in spray dried amorphous solid dispersions. J Drug Deliv Sci Technol. 2021;64:102606. http://dx.doi.org/10.1016/j.jddst.2021.102606
  • [9] Bansal SS, Kaushal AM, Bansal AK. Enthalpy relaxation studies of two structurally related amorphous drugs and their binary dispersions. Drug Dev Ind Pharm. 2010;36(11):1271-1280. https://doi.org/10.3109/03639041003753847
  • [10] Czajkowski M, Jacobsen A-C, Bauer-Brandl A, Brandl M, Skupin-Mrugalska P. Hydrogenated phospholipid, a promising excipient in amorphous solid dispersions of fenofibrate for oral delivery: Preparation and in-vitro biopharmaceutical characterization. Int J Pharm. 2023; 644:123294. https://doi.org/10.1016/j.ijpharm.2023.123294
  • [11] Lehmkemper K, Kyeremateng SO, Bartels M, Degenhardt M, Sadowski G. Physical stability of API/polymer-blend amorphous solid dispersions. Eur J Pharm Biopharm. 2018;124:147-157. https://doi.org/10.1016/j.ejpb.2017.12.002
  • [12] Lust A, Strachan CJ, Veski P, Aaltonen J, Heinamaki J, Yliruusi J, Kogermann K. Amorphous solid dispersions of piroxicam and SoluplusR: Qualitative and quantitative analysis of piroxicam recrystallization during storage. Int J Pharm. 2015;486(1-2):306-314. https://doi.org/10.1016/j.ijpharm.2015.03.079
  • [13] Trasi NS, Bhujbal SV, Zemlyanov DY, Zhou QT, Taylor LS. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. Int J Pharm X. 2020 ;2:100052. https://doi.org/10.1016/j.ijpx.2020.100052
  • [14] Kawakami K, Bi Y, Yoshihashi Y, Sugano K, Terada K. Time-dependent phase separation of amorphous solid dispersions: Implications for accelerated stability studies. J Drug Deliv Sci Technol. 2018;46:197-206. http://dx.doi.org/10.1016/j.jddst.2018.05.016
  • [15] Yang R, Zhang GG, Kjoller K, Dillon E, Purohit HS, Taylor LS. Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Int J Pharm. 2022;619:121708. https://doi.org/10.1016/j.ijpharm.2022.121708
  • [16] Luebbert C, Wessner M, Sadowski G. Mutual impact of phase separation/crystallization and water sorption in amorphous solid dispersions. Mol Pharm. 2018;15(2):669-678. https://doi.org/10.1021/acs.molpharmaceut.7b01076
  • [17] Zeng A, Yao X, Gui Y, Li Y, Jones KJ, Yu L. Inhibiting surface crystallization and improving dissolution of amorphous loratadine by dextran sulfate nanocoating. J Pharm Sci. 2019;108(7):2391-2396. https://doi.org/10.1016/j.xphs.2019.02.018
  • [18] Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, Tony Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B. 2021;11(8):2505-2536. https://doi.org/10.1016%2Fj.apsb.2021.05.014
  • [19] Mendonsa N, Almutairy B, Kallakunta VR, Sarabu S, Thipsay P, Bandari S, Repka MA. Manufacturing strategies to develop amorphous solid dispersions: An overview. J Drug Deliv Sci Technol. 2020;55:101459. https://doi.org/10.1016%2Fj.jddst.2019.101459
  • [20] Saha SK, Joshi A, Singh R, Jana S, Dubey K. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion. J Drug Deliv Sci Technol. 2023;81:104259. http://dx.doi.org/10.1016/j.jddst.2023.104259
  • [21] Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Del Rev. 2016;100:27-50. https://doi.org/10.1016/j.addr.2015.12.010 [22] Mishra DK, Dhote V, Bhargava A, Jain DK, Mishra PK. Amorphous solid dispersion technique for improved drug delivery: Basics to clinical applications. Drug Deliv Transl Res. 2015;5:552-565. https://doi.org/10.1007/s13346-015-0256-9
  • [23] Shi X, Xu T, Huang W, Fan B, Sheng X. Stability and bioavailability enhancement of telmisartan ternary solid dispersions: the synergistic effect of polymers and drug-polymer (s) interactions. AAPS PharmSciTech. 2019;20(4):143. https://doi.org/10.1208/s12249-019-1358-3
  • [24] Thompson SA, Davis Jr DA, Miller DA, Kucera SU, Williams III RO. Pre-processing a polymer blend into a polymer alloy by KinetiSol enables increased ivacaftor amorphous solid dispersion drug loading and dissolution. Biomedicines. 2023;11(5):1281. https://doi.org/10.3390/biomedicines11051281
  • [25] Li J, Wang Y, Yu D. Effects of additives on the physical stability and dissolution of polymeric amorphous solid dispersions: a Review. AAPS PharmSciTech. 2023;24(7):175. https://doi.org/10.1208/s12249-023-02622-8
  • [26] Kourounakis AP, Xanthopoulos D, Tzara A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med Res Rev. 2020;40(2):709-752. https://doi.org/10.1002/med.21634
  • [27] Mesallati H, Umerska A, Paluch KJ, Tajber L. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin. Mol Pharm. 2017;14(7):2209-2223. https://doi.org/10.1021/acs.molpharmaceut.7b00039
  • [28] Crucitti VC, Migneco LM, Piozzi A, Taresco V, Garnett M, Argent RH, Francolini I. Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties. Eur J Pharm Biopharm. 2018;125:114-123. https://doi.org/10.1016/j.ejpb.2018.01.012
  • [29] Kumar N, Sarup P, Pahuja S. Formulation and characterization of dispersible tablets of cefpodoxime proxetil: A cephalosporin antibiotic. Res J Pharm Technol. 2021; 14(5):2806-2813. https://doi.org/10.52711/0974-360X.2021.00495
  • [30] Mostafa GA, Al-Otaibi YH, Al-Badr AA. Cefpodoxime proxetil. Profiles Drug Subst Excip Relat Methodol. 2019;44:1-165. https://doi.org/10.1016/bs.podrm.2019.02.001
  • [31] Patil P, Suryawanshi S, Patil S, Pawar A. HME-assisted formulation of taste-masked dispersible tablets of cefpodoxime proxetil and roxithromycin. J Taibah Univ Med Sci. 2023;19(2):252-262. https://doi.org/10.1016/j.jtumed.2023.12.004
  • [32] Jindal A, Kumar A. Physical characterization of clove oil based self Nano-emulsifying formulations of cefpodoxime proxetil: Assessment of dissolution rate, antioxidant & antibacterial activity. OpenNano. 2022;8:100087. https://doi.org/10.1016/j.onano.2022.100087
  • [33] Mujtaba A, Ali M, Kohli K. Statistical optimization and characterization of pH-independent extended-release drug delivery of cefpodoxime proxetil using Box–Behnken design. Chem Eng Res Des. 2014;92(1):156-165. http://dx.doi.org/10.1016/j.cherd.2013.05.032
  • [34] Patil SH, Talele GS. Natural gum as mucoadhesive controlled release carriers: evaluation of cefpodoxime proxetil by D-Optimal design technique. Drug Deliv. 2014;21(2):118-129. https://doi.org/10.3109/10717544.2013.834416
  • [35] Alipour A, Babaei Shekardasht M, Gharbani P, Mirzaei Shalmani M. Synthesis, characterization and application of MP@ p (EGDMA-co-HPMA) in adsorption and release of cefpodoxime. Int J Polym Mater Polym Biomater. 2023:73(9):1-10. http://dx.doi.org/10.1080/00914037.2023.2207138
  • [36] Kakumanu VK, Arora V, Bansal AK. Investigation on physicochemical and biological differences of cefpodoxime proxetil enantiomers. Eur J Pharm Biopharm. 2006;64(2):255-259. https://doi.org/10.1016/j.ejpb.2006.05.001
  • [37] Li J, Zhang D, Hu C. Characterization of impurities in cefpodoxime proxetil using LC–MSn. Acta Pharm Sin B. 2014;4(4):322-332. https://doi.org/10.1016%2Fj.apsb.2014.06.007
  • [38] Nappinnai M, Sivaneswari S. Formulation optimization and characterization of gastroretentive cefpodoxime proxetil mucoadhesive microspheres using 32 factorial design. J Pharm Res. 2013;7(4):304-309. http://dx.doi.org/10.1016/j.jopr.2013.04.014
  • [39] Kakumanu VK, Arora V, Bansal AK. Investigation of factors responsible for low oral bioavailability of cefpodoxime proxetil. Int J Pharm. 2006;317(2):155-160. https://doi.org/10.1016/j.ijpharm.2006.03.004
  • [40] Fukutsu N, Kawasaki T, Saito K, Nakazawa H. Application of high-performance liquid chromatography hyphenated techniques for identification of degradation products of cefpodoxime proxetil. J Chromatogr A. 2006;1129(2):153-159. https://doi.org/10.1016/j.chroma.2006.06.102
  • [41] Hamaura T, Kusai A, Nishimura K. Gel formation of cefpodoxime proxetil. STP Pharma Sci. 1995;5(4):324-331.
  • [42] Hamamura T, Ohtani T, Kusai A, Nishimura K. Unusual dissolution behavior of cefpodoxime proxetil: effect of pH and ionic factors. STP Pharm Sci. 1995;5:332-338.
  • [43] Chu J, Li G, Row KH, Kim H, Lee Y-W. Preparation of cefpodoxime proxetil fine particles using supercritical fluids. Int J Pharm. 2009;369(1-2):85-91. https://doi.org/10.1016/j.ijpharm.2008.10.029
  • [44] Crauste-Manciet S, Huneau J, Decroix M, Tome D, Farinotti R, Chaumeil J. Cefpodoxime proxetil esterase activity in rabbit small intestine: a role in the partial cefpodoxime absorption. Int J Pharm. 1997;149(2):241-249. https://doi.org/10.1016/S0378-5173(97)04881-3
  • [45] Heng W, Wei Y, Xue Y, Cheng H, Zhang L, Zhang J, Gao Y, Qian S. Gel formation induced slow dissolution of amorphous indomethacin. Pharm Res. 2019;36:1-14. https://doi.org/10.1007/s11095-019-2700-x
  • [46] Yurtdaş-Kırımlıoğlu G. Development and characterization of lyophilized cefpodoxime proxetil-Pluronic® F127/polyvinylpyrrolidone K30 solid dispersions with improved dissolution and enhanced antibacterial activity. Pharm Dev Technol. 2021;26(4):476-489. https://doi.org/10.1080/10837450.2021.1889584
  • [47] Sharma N, Jain N, Sudhakar C, Jain S. Formulation and evaluation of gastro retentive floating tablets containing cefpodoxime proxetil solid dispersions. Int J Curr Pharm Res. 2012;4(4):82-87.
  • [48] Mujtaba A, Ali M, Kohli K. Formulation of extended release cefpodoxime proxetil chitosan–alginate beads using quality by design approach. Int J Biol Macromol. 2014;69:420-429. https://doi.org/10.1016/j.ijbiomac.2014.05.066
  • [49] Patil PS, Suryawanshi SJ, Patil SS, Pawar AP. HME-assisted formulation of taste-masked dispersible tablets of cefpodoxime proxetil and roxithromycin. J Taibah Univ Med Sci. 2024;19(2):252-262. https://doi.org/10.1016%2Fj.jtumed.2023.12.004
  • [50] Apiwongngam J, Limwikrant W, Jintapattanakit A, Jaturanpinyo M. Enhanced supersaturation of chlortetracycline hydrochloride by amorphous solid dispersion. J Drug Deliv Sci Technol. 2018;47:417-426. http://dx.doi.org/10.1016/j.jddst.2018.08.007
  • [51] Shehab OR, AlRabiah H, Abdel-Aziz HA, Mostafa GA. Charge-transfer complexes of cefpodoxime proxetil with chloranilic acid and 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone: Experimental and theoretical studies. J Mol Liq. 2018;257:42-51. http://dx.doi.org/10.1016/j.molliq.2018.02.083
  • [52] Kader NA, Kamer AA, Elekhnawy E, Arafa M, Essa EA, El Maghraby GM. Melt granulation for enhanced dissolution rate and antimicrobial activity of cefpodoxime proxetil. Res J Pharm Technol. 2023;16(8):3921-3928. http://dx.doi.org/10.52711/0974-360X.2023.00645
  • [53] Duraivel S, Venkateswarlu V, Kumar AP, Gopinath H. Enhancement of dissolution rate of cefpodoxime proxetil by using solid dispersion and cogrinding approaches. Res J Pharm Technol. 2012;5(12):1552-1562.
  • [54] Fan Y, Chen H, Huang Z, Zhu J, Wan F, Peng T, Pan X, Huang Y, Wu C. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int J Pharm. 2020;575:118875. https://doi.org/10.1016/j.ijpharm.2019.118875
  • [55] Gupta MK, Vanwert A, Bogner RH. Formation of physically stable amorphous drugs by milling with Neusilin. J Pharm Sci. 2003;92(3):536-551. https://doi.org/10.1002/jps.10308
  • [56] Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci. 2010;99(9):4005-4012. https://doi.org/10.1002/jps.22247
  • [57] Sahoo A, Kumar NK, Suryanarayanan R. Crosslinking: An avenue to develop stable amorphous solid dispersion with high drug loading and tailored physical stability. J Control Release. 2019;311:212-224. https://doi.org/10.1016/j.jconrel.2019.09.007
  • [58] Kaur S, Jena SK, Samal SK, Saini V, Sangamwar AT. Freeze dried solid dispersion of exemestane: A way to negate an aqueous solubility and oral bioavailability problems. Eur J Pharm Sci. 2017;107:54-61. https://doi.org/10.1016/j.ejps.2017.06.032
  • [59] Mujtaba A, Kohli K. In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil. Int J Biol Macromol. 2016;89:434-441. https://doi.org/10.1016/j.ijbiomac.2016.05.010
  • [60] Luebbert C, Sadowski G. Moisture-induced phase separation and recrystallization in amorphous solid dispersions. Int J Pharm. 2017;532(1):635-646. https://doi.org/10.1016/j.ijpharm.2017.08.121
  • [61] Moseson DE, Parker AS, Beaudoin SP, Taylor LS. Amorphous solid dispersions containing residual crystallinity: Influence of seed properties and polymer adsorption on dissolution performance. Eur J Pharm Sci. 2020;146:105276. https://doi.org/10.1016/j.ejps.2020.105276
  • [62] Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355-1377. https://doi.org/10.1002/jps.23031
  • [63] Aldafaay AAA, Abdulamir HA, Abdulhussain HA, Badry AS, Abdulsada AK. The use of Urinary α-amylase level in a diagnosis of chronic renal failure. Res J Pharm Technol. 2021; 14(3):1597-1600. http://dx.doi.org/10.5958/0974-360X.2021.00283.3
  • [64] Al-Shammari AH, Abbood ZA, Lateef HF. Assessing the impacts of L-carnitine and modafinil on fatigue in Iraqi multiple sclerosis patients. J Adv Pharm Technol Res. 2023;14(3):226-228. https://doi.org/10.4103%2FJAPTR.JAPTR_225_23

Improve the solubility of cefpodoxime proxetil by amorphous solid dispersion technique

Year 2025, Volume: 29 Issue: 4, 1437 - 1450, 05.07.2025
https://doi.org/10.12991/jrespharm.1734450

Abstract

This research aimed to improve the solubility and stabilize cefpodoxime proxetil (CP), a class IV drug, by amorphous solid dispersion (ASD) technique. Four formulations were prepared by dispersing amorphous CP in soluplus, polyvinylpyrrolidone (PVP K30), and ethyl cellulose (EC) blends in different compositions and ratios. The optimum formulation was stored in accelerated conditions at 40 °C and 75% relative humidity for six months. The drug's solubility and dissolution rate in different systems were explored. Furthermore, Differential Scanning Calorimetry (DSC), X-ray Powder Diffractometry (PXRD), Fourier Transform Infrared spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) were used to examine the physical state of the drug. The antibacterial activity of the drug was evaluated during the experiment. When mixing CP with soluplus and PVP K30 in a 1:1:1 ratio as ASD, the drug solubility at pH 1.2 enhanced about 28 folds than a pure drug, and the dissolution rate increment was observed. The DSC, FTIR, and PXRD data confirmed the drug is amorphous and miscible with these polymers. FESEM revealed particle size reduction. The antibacterial activity was raised. After storage in the accelerated condition, physical investigations indicated that no recrystallization occurred, and this condition had little effect on in vitro drug dissolution and antibacterial activity. This can be a good indicator of the drug's solubility enhancement and physical stability optimization that will make the possibility of preparing this drug in the future as an oral solid dosage form with the possibility of manufacturing with a drug company due to the promising results.

References

  • [1] Solomon S, Iqbal J, Albadarin AB. Insights into the ameliorating ability of mesoporous silica in modulating drug release in ternary amorphous solid dispersion prepared by hot melt extrusion. Eur J Pharm Biopharm. 2021;165:244-258. https://doi.org/10.1016/j.ejpb.2021.04.017
  • [2] Pignatello R, Corsaro R, Bonaccorso A, Zingale E, Carbone C, Musumeci T. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv Transl Res. 2022;12(8):1991-2006. https://doi.org/10.1007/s13346-022-01182-x
  • [3] Han R, Xiong H, Ye Z, Yang Y, Huang T, Jing Q, Lu J, Pan H, Ren F, Ouyang D. Predicting physical stability of solid dispersions by machine learning techniques. J Control Release. 2019;311:16-25. https://doi.org/10.1016/j.jconrel.2019.08.030
  • [4] Kim J-S, Park H, Kang K-T, Ha E-S, Kim M-S, Hwang S-J. Micronization of a poorly water-soluble drug, fenofibrate, via supercritical-fluid-assisted spray-drying. J Pharm Investig. 2022;52(3):353-366. http://dx.doi.org/10.1007/s40005-022-00565-z
  • [5] Quan W, Kong S, Ouyang Q, Tao J, Lu S, Huang Y, Li S, Luo H. Use of 18ƒÀ-glycyrrhetinic acid nanocrystals to enhance anti-inflammatory activity by improving topical delivery. Colloids Surf B Biointerfaces. 2021;205:111791. https://doi.org/10.1016/j.colsurfb.2021.111791
  • [6] Tekade AR, Yadav JN. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv Pharm Bull. 2020;10(3):359-369. https://doi.org/10.34172%2Fapb.2020.044
  • [7] Suresh K, Matzger AJ. Enhanced drug delivery by dissolution of amorphous drug encapsulated in a water unstable metal.organic framework (MOF). Angew Chem Int Ed. 2019;58(47):16790-16794. https://doi.org/10.1002/anie.201907652
  • [8] Bhanderi A, Bari F, Al-Obaidi H. Evaluation of the impact of surfactants on miscibility of griseofulvin in spray dried amorphous solid dispersions. J Drug Deliv Sci Technol. 2021;64:102606. http://dx.doi.org/10.1016/j.jddst.2021.102606
  • [9] Bansal SS, Kaushal AM, Bansal AK. Enthalpy relaxation studies of two structurally related amorphous drugs and their binary dispersions. Drug Dev Ind Pharm. 2010;36(11):1271-1280. https://doi.org/10.3109/03639041003753847
  • [10] Czajkowski M, Jacobsen A-C, Bauer-Brandl A, Brandl M, Skupin-Mrugalska P. Hydrogenated phospholipid, a promising excipient in amorphous solid dispersions of fenofibrate for oral delivery: Preparation and in-vitro biopharmaceutical characterization. Int J Pharm. 2023; 644:123294. https://doi.org/10.1016/j.ijpharm.2023.123294
  • [11] Lehmkemper K, Kyeremateng SO, Bartels M, Degenhardt M, Sadowski G. Physical stability of API/polymer-blend amorphous solid dispersions. Eur J Pharm Biopharm. 2018;124:147-157. https://doi.org/10.1016/j.ejpb.2017.12.002
  • [12] Lust A, Strachan CJ, Veski P, Aaltonen J, Heinamaki J, Yliruusi J, Kogermann K. Amorphous solid dispersions of piroxicam and SoluplusR: Qualitative and quantitative analysis of piroxicam recrystallization during storage. Int J Pharm. 2015;486(1-2):306-314. https://doi.org/10.1016/j.ijpharm.2015.03.079
  • [13] Trasi NS, Bhujbal SV, Zemlyanov DY, Zhou QT, Taylor LS. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. Int J Pharm X. 2020 ;2:100052. https://doi.org/10.1016/j.ijpx.2020.100052
  • [14] Kawakami K, Bi Y, Yoshihashi Y, Sugano K, Terada K. Time-dependent phase separation of amorphous solid dispersions: Implications for accelerated stability studies. J Drug Deliv Sci Technol. 2018;46:197-206. http://dx.doi.org/10.1016/j.jddst.2018.05.016
  • [15] Yang R, Zhang GG, Kjoller K, Dillon E, Purohit HS, Taylor LS. Phase separation in surfactant-containing amorphous solid dispersions: Orthogonal analytical methods to probe the effects of surfactants on morphology and phase composition. Int J Pharm. 2022;619:121708. https://doi.org/10.1016/j.ijpharm.2022.121708
  • [16] Luebbert C, Wessner M, Sadowski G. Mutual impact of phase separation/crystallization and water sorption in amorphous solid dispersions. Mol Pharm. 2018;15(2):669-678. https://doi.org/10.1021/acs.molpharmaceut.7b01076
  • [17] Zeng A, Yao X, Gui Y, Li Y, Jones KJ, Yu L. Inhibiting surface crystallization and improving dissolution of amorphous loratadine by dextran sulfate nanocoating. J Pharm Sci. 2019;108(7):2391-2396. https://doi.org/10.1016/j.xphs.2019.02.018
  • [18] Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, Tony Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B. 2021;11(8):2505-2536. https://doi.org/10.1016%2Fj.apsb.2021.05.014
  • [19] Mendonsa N, Almutairy B, Kallakunta VR, Sarabu S, Thipsay P, Bandari S, Repka MA. Manufacturing strategies to develop amorphous solid dispersions: An overview. J Drug Deliv Sci Technol. 2020;55:101459. https://doi.org/10.1016%2Fj.jddst.2019.101459
  • [20] Saha SK, Joshi A, Singh R, Jana S, Dubey K. An investigation into solubility and dissolution improvement of alectinib hydrochloride as a third-generation amorphous solid dispersion. J Drug Deliv Sci Technol. 2023;81:104259. http://dx.doi.org/10.1016/j.jddst.2023.104259
  • [21] Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Del Rev. 2016;100:27-50. https://doi.org/10.1016/j.addr.2015.12.010 [22] Mishra DK, Dhote V, Bhargava A, Jain DK, Mishra PK. Amorphous solid dispersion technique for improved drug delivery: Basics to clinical applications. Drug Deliv Transl Res. 2015;5:552-565. https://doi.org/10.1007/s13346-015-0256-9
  • [23] Shi X, Xu T, Huang W, Fan B, Sheng X. Stability and bioavailability enhancement of telmisartan ternary solid dispersions: the synergistic effect of polymers and drug-polymer (s) interactions. AAPS PharmSciTech. 2019;20(4):143. https://doi.org/10.1208/s12249-019-1358-3
  • [24] Thompson SA, Davis Jr DA, Miller DA, Kucera SU, Williams III RO. Pre-processing a polymer blend into a polymer alloy by KinetiSol enables increased ivacaftor amorphous solid dispersion drug loading and dissolution. Biomedicines. 2023;11(5):1281. https://doi.org/10.3390/biomedicines11051281
  • [25] Li J, Wang Y, Yu D. Effects of additives on the physical stability and dissolution of polymeric amorphous solid dispersions: a Review. AAPS PharmSciTech. 2023;24(7):175. https://doi.org/10.1208/s12249-023-02622-8
  • [26] Kourounakis AP, Xanthopoulos D, Tzara A. Morpholine as a privileged structure: A review on the medicinal chemistry and pharmacological activity of morpholine containing bioactive molecules. Med Res Rev. 2020;40(2):709-752. https://doi.org/10.1002/med.21634
  • [27] Mesallati H, Umerska A, Paluch KJ, Tajber L. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin. Mol Pharm. 2017;14(7):2209-2223. https://doi.org/10.1021/acs.molpharmaceut.7b00039
  • [28] Crucitti VC, Migneco LM, Piozzi A, Taresco V, Garnett M, Argent RH, Francolini I. Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties. Eur J Pharm Biopharm. 2018;125:114-123. https://doi.org/10.1016/j.ejpb.2018.01.012
  • [29] Kumar N, Sarup P, Pahuja S. Formulation and characterization of dispersible tablets of cefpodoxime proxetil: A cephalosporin antibiotic. Res J Pharm Technol. 2021; 14(5):2806-2813. https://doi.org/10.52711/0974-360X.2021.00495
  • [30] Mostafa GA, Al-Otaibi YH, Al-Badr AA. Cefpodoxime proxetil. Profiles Drug Subst Excip Relat Methodol. 2019;44:1-165. https://doi.org/10.1016/bs.podrm.2019.02.001
  • [31] Patil P, Suryawanshi S, Patil S, Pawar A. HME-assisted formulation of taste-masked dispersible tablets of cefpodoxime proxetil and roxithromycin. J Taibah Univ Med Sci. 2023;19(2):252-262. https://doi.org/10.1016/j.jtumed.2023.12.004
  • [32] Jindal A, Kumar A. Physical characterization of clove oil based self Nano-emulsifying formulations of cefpodoxime proxetil: Assessment of dissolution rate, antioxidant & antibacterial activity. OpenNano. 2022;8:100087. https://doi.org/10.1016/j.onano.2022.100087
  • [33] Mujtaba A, Ali M, Kohli K. Statistical optimization and characterization of pH-independent extended-release drug delivery of cefpodoxime proxetil using Box–Behnken design. Chem Eng Res Des. 2014;92(1):156-165. http://dx.doi.org/10.1016/j.cherd.2013.05.032
  • [34] Patil SH, Talele GS. Natural gum as mucoadhesive controlled release carriers: evaluation of cefpodoxime proxetil by D-Optimal design technique. Drug Deliv. 2014;21(2):118-129. https://doi.org/10.3109/10717544.2013.834416
  • [35] Alipour A, Babaei Shekardasht M, Gharbani P, Mirzaei Shalmani M. Synthesis, characterization and application of MP@ p (EGDMA-co-HPMA) in adsorption and release of cefpodoxime. Int J Polym Mater Polym Biomater. 2023:73(9):1-10. http://dx.doi.org/10.1080/00914037.2023.2207138
  • [36] Kakumanu VK, Arora V, Bansal AK. Investigation on physicochemical and biological differences of cefpodoxime proxetil enantiomers. Eur J Pharm Biopharm. 2006;64(2):255-259. https://doi.org/10.1016/j.ejpb.2006.05.001
  • [37] Li J, Zhang D, Hu C. Characterization of impurities in cefpodoxime proxetil using LC–MSn. Acta Pharm Sin B. 2014;4(4):322-332. https://doi.org/10.1016%2Fj.apsb.2014.06.007
  • [38] Nappinnai M, Sivaneswari S. Formulation optimization and characterization of gastroretentive cefpodoxime proxetil mucoadhesive microspheres using 32 factorial design. J Pharm Res. 2013;7(4):304-309. http://dx.doi.org/10.1016/j.jopr.2013.04.014
  • [39] Kakumanu VK, Arora V, Bansal AK. Investigation of factors responsible for low oral bioavailability of cefpodoxime proxetil. Int J Pharm. 2006;317(2):155-160. https://doi.org/10.1016/j.ijpharm.2006.03.004
  • [40] Fukutsu N, Kawasaki T, Saito K, Nakazawa H. Application of high-performance liquid chromatography hyphenated techniques for identification of degradation products of cefpodoxime proxetil. J Chromatogr A. 2006;1129(2):153-159. https://doi.org/10.1016/j.chroma.2006.06.102
  • [41] Hamaura T, Kusai A, Nishimura K. Gel formation of cefpodoxime proxetil. STP Pharma Sci. 1995;5(4):324-331.
  • [42] Hamamura T, Ohtani T, Kusai A, Nishimura K. Unusual dissolution behavior of cefpodoxime proxetil: effect of pH and ionic factors. STP Pharm Sci. 1995;5:332-338.
  • [43] Chu J, Li G, Row KH, Kim H, Lee Y-W. Preparation of cefpodoxime proxetil fine particles using supercritical fluids. Int J Pharm. 2009;369(1-2):85-91. https://doi.org/10.1016/j.ijpharm.2008.10.029
  • [44] Crauste-Manciet S, Huneau J, Decroix M, Tome D, Farinotti R, Chaumeil J. Cefpodoxime proxetil esterase activity in rabbit small intestine: a role in the partial cefpodoxime absorption. Int J Pharm. 1997;149(2):241-249. https://doi.org/10.1016/S0378-5173(97)04881-3
  • [45] Heng W, Wei Y, Xue Y, Cheng H, Zhang L, Zhang J, Gao Y, Qian S. Gel formation induced slow dissolution of amorphous indomethacin. Pharm Res. 2019;36:1-14. https://doi.org/10.1007/s11095-019-2700-x
  • [46] Yurtdaş-Kırımlıoğlu G. Development and characterization of lyophilized cefpodoxime proxetil-Pluronic® F127/polyvinylpyrrolidone K30 solid dispersions with improved dissolution and enhanced antibacterial activity. Pharm Dev Technol. 2021;26(4):476-489. https://doi.org/10.1080/10837450.2021.1889584
  • [47] Sharma N, Jain N, Sudhakar C, Jain S. Formulation and evaluation of gastro retentive floating tablets containing cefpodoxime proxetil solid dispersions. Int J Curr Pharm Res. 2012;4(4):82-87.
  • [48] Mujtaba A, Ali M, Kohli K. Formulation of extended release cefpodoxime proxetil chitosan–alginate beads using quality by design approach. Int J Biol Macromol. 2014;69:420-429. https://doi.org/10.1016/j.ijbiomac.2014.05.066
  • [49] Patil PS, Suryawanshi SJ, Patil SS, Pawar AP. HME-assisted formulation of taste-masked dispersible tablets of cefpodoxime proxetil and roxithromycin. J Taibah Univ Med Sci. 2024;19(2):252-262. https://doi.org/10.1016%2Fj.jtumed.2023.12.004
  • [50] Apiwongngam J, Limwikrant W, Jintapattanakit A, Jaturanpinyo M. Enhanced supersaturation of chlortetracycline hydrochloride by amorphous solid dispersion. J Drug Deliv Sci Technol. 2018;47:417-426. http://dx.doi.org/10.1016/j.jddst.2018.08.007
  • [51] Shehab OR, AlRabiah H, Abdel-Aziz HA, Mostafa GA. Charge-transfer complexes of cefpodoxime proxetil with chloranilic acid and 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone: Experimental and theoretical studies. J Mol Liq. 2018;257:42-51. http://dx.doi.org/10.1016/j.molliq.2018.02.083
  • [52] Kader NA, Kamer AA, Elekhnawy E, Arafa M, Essa EA, El Maghraby GM. Melt granulation for enhanced dissolution rate and antimicrobial activity of cefpodoxime proxetil. Res J Pharm Technol. 2023;16(8):3921-3928. http://dx.doi.org/10.52711/0974-360X.2023.00645
  • [53] Duraivel S, Venkateswarlu V, Kumar AP, Gopinath H. Enhancement of dissolution rate of cefpodoxime proxetil by using solid dispersion and cogrinding approaches. Res J Pharm Technol. 2012;5(12):1552-1562.
  • [54] Fan Y, Chen H, Huang Z, Zhu J, Wan F, Peng T, Pan X, Huang Y, Wu C. Taste-masking and colloidal-stable cubosomes loaded with Cefpodoxime proxetil for pediatric oral delivery. Int J Pharm. 2020;575:118875. https://doi.org/10.1016/j.ijpharm.2019.118875
  • [55] Gupta MK, Vanwert A, Bogner RH. Formation of physically stable amorphous drugs by milling with Neusilin. J Pharm Sci. 2003;92(3):536-551. https://doi.org/10.1002/jps.10308
  • [56] Ivanisevic I. Physical stability studies of miscible amorphous solid dispersions. J Pharm Sci. 2010;99(9):4005-4012. https://doi.org/10.1002/jps.22247
  • [57] Sahoo A, Kumar NK, Suryanarayanan R. Crosslinking: An avenue to develop stable amorphous solid dispersion with high drug loading and tailored physical stability. J Control Release. 2019;311:212-224. https://doi.org/10.1016/j.jconrel.2019.09.007
  • [58] Kaur S, Jena SK, Samal SK, Saini V, Sangamwar AT. Freeze dried solid dispersion of exemestane: A way to negate an aqueous solubility and oral bioavailability problems. Eur J Pharm Sci. 2017;107:54-61. https://doi.org/10.1016/j.ejps.2017.06.032
  • [59] Mujtaba A, Kohli K. In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil. Int J Biol Macromol. 2016;89:434-441. https://doi.org/10.1016/j.ijbiomac.2016.05.010
  • [60] Luebbert C, Sadowski G. Moisture-induced phase separation and recrystallization in amorphous solid dispersions. Int J Pharm. 2017;532(1):635-646. https://doi.org/10.1016/j.ijpharm.2017.08.121
  • [61] Moseson DE, Parker AS, Beaudoin SP, Taylor LS. Amorphous solid dispersions containing residual crystallinity: Influence of seed properties and polymer adsorption on dissolution performance. Eur J Pharm Sci. 2020;146:105276. https://doi.org/10.1016/j.ejps.2020.105276
  • [62] Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355-1377. https://doi.org/10.1002/jps.23031
  • [63] Aldafaay AAA, Abdulamir HA, Abdulhussain HA, Badry AS, Abdulsada AK. The use of Urinary α-amylase level in a diagnosis of chronic renal failure. Res J Pharm Technol. 2021; 14(3):1597-1600. http://dx.doi.org/10.5958/0974-360X.2021.00283.3
  • [64] Al-Shammari AH, Abbood ZA, Lateef HF. Assessing the impacts of L-carnitine and modafinil on fatigue in Iraqi multiple sclerosis patients. J Adv Pharm Technol Res. 2023;14(3):226-228. https://doi.org/10.4103%2FJAPTR.JAPTR_225_23
There are 63 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Ali Mohammed Hussein

Ghaidaa Hameed

Fitua M. Aziz

Publication Date July 5, 2025
Submission Date July 15, 2024
Acceptance Date August 20, 2024
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Hussein, A. M., Hameed, G., & M. Aziz, F. (2025). Improve the solubility of cefpodoxime proxetil by amorphous solid dispersion technique. Journal of Research in Pharmacy, 29(4), 1437-1450. https://doi.org/10.12991/jrespharm.1734450
AMA Hussein AM, Hameed G, M. Aziz F. Improve the solubility of cefpodoxime proxetil by amorphous solid dispersion technique. J. Res. Pharm. July 2025;29(4):1437-1450. doi:10.12991/jrespharm.1734450
Chicago Hussein, Ali Mohammed, Ghaidaa Hameed, and Fitua M. Aziz. “Improve the Solubility of Cefpodoxime Proxetil by Amorphous Solid Dispersion Technique”. Journal of Research in Pharmacy 29, no. 4 (July 2025): 1437-50. https://doi.org/10.12991/jrespharm.1734450.
EndNote Hussein AM, Hameed G, M. Aziz F (July 1, 2025) Improve the solubility of cefpodoxime proxetil by amorphous solid dispersion technique. Journal of Research in Pharmacy 29 4 1437–1450.
IEEE A. M. Hussein, G. Hameed, and F. M. Aziz, “Improve the solubility of cefpodoxime proxetil by amorphous solid dispersion technique”, J. Res. Pharm., vol. 29, no. 4, pp. 1437–1450, 2025, doi: 10.12991/jrespharm.1734450.
ISNAD Hussein, Ali Mohammed et al. “Improve the Solubility of Cefpodoxime Proxetil by Amorphous Solid Dispersion Technique”. Journal of Research in Pharmacy 29/4 (July 2025), 1437-1450. https://doi.org/10.12991/jrespharm.1734450.
JAMA Hussein AM, Hameed G, M. Aziz F. Improve the solubility of cefpodoxime proxetil by amorphous solid dispersion technique. J. Res. Pharm. 2025;29:1437–1450.
MLA Hussein, Ali Mohammed et al. “Improve the Solubility of Cefpodoxime Proxetil by Amorphous Solid Dispersion Technique”. Journal of Research in Pharmacy, vol. 29, no. 4, 2025, pp. 1437-50, doi:10.12991/jrespharm.1734450.
Vancouver Hussein AM, Hameed G, M. Aziz F. Improve the solubility of cefpodoxime proxetil by amorphous solid dispersion technique. J. Res. Pharm. 2025;29(4):1437-50.