Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 4, 1522 - 1531, 05.07.2025
https://doi.org/10.12991/jrespharm.1734641

Abstract

References

  • [1] Salmerron-Manzano E, Garrido-cardenas JA, Manzano-agugliaro F. Worldwide research trends on medicinal plants. Int J Environ Res Public Health. 2020; 17: 1–20. http://dx.doi.org/10.3390/ijerph17103376.
  • [2] Astuti KI, Wulandari LD, Susiani EF. Antidiarrheal activity of ethanolic extract of Vernonia amygdalina Del Leaves againts male mice ınduced http://dx.doi.org/10.33084/bjop.v2i1.707. by oleum Ricini. Borneo J Pharm. 2019; 2(1): 10–14.
  • [3] Adedapo A, Ogunmiluyi I, Adeoye A, Ofuegbe B, Emikpe. Evaluation of the medicinal potential of the methanol leaf extract of Chromolaena odorata in some laboratory animals. J Med Plants Stud. 2016; 4(3): 29–37.
  • [4] Meira M, Silva EP da, David JM, David JP, David. Review of the genus Ipomoea : Traditional uses, chemistry and biological activities. Rev Bras Farmacogn. 2012; 22(3): 682-713. https://dx.doi.org/10.1590/S0102 695X2012005000025.
  • [5] Semwal P, Painuli S, Painuli KM, Antika G, Tumer TB, Thapliyal A, Setzer WN, Martorell M, Alshehri MM, Taheri Y, Daştan SD, Ayatollahi SA, Petkoska AT, Sharifi-Rad J, Cho WC. Diplazium esculentum (Retz.) Sw.: Ethnomedicinal, phytochemical, and pharmacological overview of the Himalayan ferns. Oxid Med Cell Longev. 2021;2021:1917890. https://dx.doi.org/10.1155/2021/1917890.
  • [6] Boukhers I, Boudard F, Morel S, Servent A, Portet K, Guzman C, Vitou M, Kongolo J, Michel A, Poucheret P. Nutrition, healthcare benefits and phytochemical properties of Cassava (Manihot esculenta) leaves sourced from three (Reunion, https://doi.org/10.3390/foods11142027. Guinea, and Costa Rica). Foods. 2022;11(14):2027.
  • [7] Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel). 2020; 9(9): 252. https://dx.doi.org/10.3390/biology9090252.
  • [8] Kaushik B, Sharma J, Yadav K, Kumar P, Shourie A. Phytochemical properties and pharmacological role of plants: secondary metabolites. Biosci Biotechnol Res Asia. 2021; 18(1): 23–35. http://dx.doi.org/10.13005/bbra/2894.
  • [9] Shakya AK. Medicinal plants: Future source of new drugs Medicinal plants: Future source of new drugs. Int J Herb Med. 2016; 4(4): 59-64.
  • [10] Rajkumar G, Panambara PAHR, Sanmugarajah V. Comparative analysis of qualitative and quantitative phytochemical evaluation of selected leaves of medicinal plants in Jaffna, Sri Lanka. Borneo J Pharm. 2022; 5(2): 93 103. https://dx.doi.org/10.33084/bjop.v5i2.3091.
  • [11] Rubio CP, Hernández-ruiz J, Martinez-subiela S, Tvarijonaviciute A, Ceron JJ. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: An update. BMC Vet Res. 2016; 12(1): 166. https://dx.doi.org/10.1186/s12917-016-0792-7.
  • [12] Widodo H, Sismindari S, Asmara W, Rohman A. Antioxidant activity, total phenolic and flavonoid contents of selected medicinal plants used for liver diseases and its classification with chemometrics. J Appl Pharm Sci. 2019; 9(06): 99–105. https://dx.doi.org/10.7324/JAPS.2019.90614.
  • [13] Pasqualetti V, Locato V, Fanali C, Mulinacci N, Cimini S, Morgia AM, Pasqua G, Gara LD. Comparison between in vitro chemical and ex vivo biological assays to evaluate antioxidant capacity of botanical extracts. Antioxidants (Basel). 2021;10(7):1136. https://dx.doi.org/10.3390/antiox10071136.
  • [14] Kotha RR, Tareq FS, Yildiz E, Luthria DL. Oxidative stress and antioxidants — A critical review on in vitro antioxidant assays. Antioxidants (Basel). 2022;11(12):2388. https://dx.doi.org/10.3390/antiox11122388.
  • [15] Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, Chang CM. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022;27(4):1326. https://doi.org/10.3390/molecules27041326.
  • [16] Nisa FZ, Astuti M, Haryana SM, Murdiati A. Antioxidant activity and total flavonoid of Carica papaya L. leaves with different varieties, maturity and solvent. Agritech. 2019; 39(1): 54–59. https://dx.doi.org/10.22146/agritech.12813.
  • [17] Yamin Y, Sabarudin S, Zubaydah WOS, Sahumena MH, Arba M, Elnawati E, Andriani R, Suryani S. Determination of antiradical activity, total phenolic and flavonoid contents of Kamena-mena (Clerodendrum paniculatum. L) leaves. Trop J Nat Prod Res. 2021; 5(2): 287–293. https://dx.doi.org/10.26538/tjnpr/v5i2.12.
  • [18] Rohman A, Ghazali MAB, Windarsih A, Irnawati, Riyanto S, Yusof FM, Mustafa M. Comprehensive review on application of FTIR Spectroscopy coupled with chemometrics for authentication analysis of fats and oils in the food products. Molecules. 2020;25(22):5485. https://doi.org/10.3390/molecules25225485
  • [19] Maouardi M El, Kharbach M, Cherrah Y, Braekeleer K De, Bouklouze A, Heyden Y Vander. Quality control and authentication of Argan Oils : Application of advanced analytical techniques. Molecules. 2023;28(4):1818. https://doi.org/10.3390/molecules28041818.
  • [20] Kusumadewi AP, Martien R, Pramono S, Setyawan AA, Windarsih A, Rohman A. Application of FTIR spectroscopy and chemometrics for correlation of antioxidant activities, phenolics and flavonoid contents of IndonesianCurcumaxanthorrhiza.IntJFoodProp.2022;25(1):2364–2372.https://dx.doi.org/10.1080/10942912.2022.2134418.
  • [21] Rafi M, Jannah R, Heryanto R, Kautsar A, Septaningsih DA. UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. Int Food Res J. 2018; 25(2): 643–648.
  • [22] Spiteri M, Rogers KM, Jamin E, Thomas F, Guyader S, Lees M, Rutledge DN. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania. Food Chem. 2017; 217: 766–772. https://dx.doi.org/10.1016/j.foodchem.2016.09.027.
  • [23] Marjoni M, Zulfisa A. Antioxidant activity of methanol extract/fractions of Senggani Leaves (Melastoma candidum D. Don). Pharm Anal Acta. 2017; 08(08): 1–6. https://dx.doi.org/10.4172/2153-2435.1000557.
  • [24] Yamin, Ruslin, Sartinah A, Ihsan S, Kasmawati H, Suryani, Andriyani R, Asma, Adjeng ANT, Arba M. Radical scavenging assay and determination flavonoid and phenolic total of extract and fractions of Raghu bark (Dracontomelon dao (Blanco) Merr). Res J Pharm Technol. 2020; 13(5): 2335–2339. https://dx.doi.org/10.5958/0974 360X.2020.00420.5.
  • [25] Zubaydah WOS, Sahumena MH, Fatimah WON, Sabarudin, Arba M, Yamin. Determination of antiradical activity and phenolic and flavonoid contents of extracts and fractions of jackfruit (Artocarpus heterophyllus Lamk ) seeds. Food Res. 2021; 5(3): 36–43. https://dx.doi.org/10.26656/fr.2017.5(3).563.
  • [26] Lin CZ, Zhu CC, Hu M, Wu AZ, Bairu ZD, Kangsa SQ. Structure-activity relationships of antioxidant activity in vitro about flavonoids isolated from Pyrethrum tatsienense. J Intercult Ethnopharmacol. 2014;3(3):123-127. https://dx.doi.org/10.5455/jice.20140619030232.
  • [27] Zakaria SR, Saim N, Osman R, Haiyee ZA, Juahir H. Combination of sensory, chromatographic, and chemometrics analysis of volatile organic compounds for the discrimination of authentic and unauthentic Harumanis Mangoes. Molecules. 2018;23(9):2365. https://doi.org/10.3390/molecules23092365.
  • [28] Kumar K. Principal Component Analysis: Most Favourite Tool in Chemometrics. Resonance. 2017; 22(August): 74759. [29] Arifah MF, Rohman A. A chemometric approach to chromatography for authentication milk product. Indonesian J Chemom Pharm Anal. 2021; 1(3): 121–132.
  • [30] Shiyan S, Zubaidah, Pratiwi G. Chemometric approach to assess response correlation and its classification in simplex centroid design for pre-optimization stage of catechin-SNEDDS. Res J Pharm Technol. 2021; 14(11): 5863 5870. https://dx.doi.org/10.52711/0974-360X.2021.01020.
  • [31] Santos HTL dos, Oliveira AM de, Melo PG de, Freitas W, Freitas APR de. Chemometrics : Theory and Application. In: Multivariate Analysis in Management, Engineering and the Sciences. IntechOpen Limited, United Kingdom, 2013, pp. 121–32.
  • [32] Cao Z, Wang Z, Shang Z, Zhao J. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics. PLoS One. 2017;12(2):e0172359. https://dx.doi.org/10.1371/journal.pone.0172359.
  • [33] Wang YY, Li JQ, Liu HG, Wang YZ. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR FTIR) combined with chemometrics methods for the classification of Lingzhi species. Molecules. 2019;24(12):2210. https://doi.org/10.3390/molecules24122210.
  • [34] da Silva HRG, Quintella CM, Meira M. Separation and ıdentification of functional groups of molecules responsible for fluorescence of Biodiesel Using FTIR Spectroscopy and principal component analysis. J Braz Chem Soc. 2017; 28(12): 2348–2356. https://dx.doi.org/10.21577/0103-5053.20170088. [35] Bharti D, Kim D, Cerqueira MA, Mohanty B, Habibullah S, Banerjee I, Pal K. Effect of biodegradable hydrophilic and hydrophobic emulsifiers on the oleogels containing sunflower wax and sunflower oil. Gels. 2021; 7 (3): 133. https://dx.doi.org/10.3390/gels7030133.
  • [36] Lim SY, Sokhini M, Mutalib A, Khaza H, Kiat S. Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. Int J Food Prop. 2018; 21(1): 2428–2451. https://dx.doi.org/10.1080/10942912.2018.1522332.
  • [37] Djande CYH, Piater LA, Steenkamp PA, Tugizimana F. A metabolomics approach and chemometric tools for differentiation of barley cultivars and biomarker discovery. Metabolites. 2021;11(9):578. https://doi.org/10.3390/metabo11090578.
  • [38] Sharma S, Vig AP. Preliminary phytochemical screening and in vitro antioxidant activities of Parkinsonia aculeata Linn. Biomed Res Int. 2014; 2014: 756184. https://dx.doi.org/10.1155/2014/756184.
  • [39] Sabarudin, Ruslin, Zubaydah WOS, Sartinah A, Buton S, Yamin. Antiradical activity, total phenolic, and total flavonoids extract and fractions of pumpkin (Cucurbita moshata Duch) leaves. Food Res. 2021; 5(2): 348–353. https://dx.doi.org/10.26656/fr.2017.5(2).529.
  • [40] Ruslin, Sahumena MH, Andriani R, Manangkara M, Mistriyani, Yamin. In vitro antioxidant activity test and determination of phenolic and flavonoid content of Moringa oleifera pulp and seeds. Food Res. 2021; 5(4): 59–65. https://dx.doi.org/10.26656/fr.2017.5(4).033.

FTIR spectra-based fingerprinting and chemometrics for rapid investigation of antioxidant activities of medicinal plants

Year 2025, Volume: 29 Issue: 4, 1522 - 1531, 05.07.2025
https://doi.org/10.12991/jrespharm.1734641

Abstract

Various plants have been used as herbal medicines by the community since they contain a lot of phytochemicals having the beneficial effect to human health including flavonoids and phenolic compounds. The objective of this study was to evaluate the antioxidant activities, determine the levels of total phenolics and flavonoids contents in selected medicinal plant extracts and fractions. The plants were extracted with methanol, then fractionated with n-hexane and ethyl acetate to get extracts and its fractions. The extracts were subjected to FTIR spectral measurements antioxidant activities evaluation as well as total phenolics and total flavonoids contents. Furthemore, FTIR spectra assisted by chemometrics were used to predict these antioxidant activities. Ethyl acetate fraction of medicinal plants provided the strongest antioxidant activities with high levels of total phenolic and flavonoids. Partial least square regression (PLSR) using variable of absorbance values at 3600 – 650 cm-1 exhibited good correlation between actual values of antioxidant activities (IC50) and predicted values with R2 values of 0.9974 and 0.9983 in calibration and validation models, respectively. Furthermore, the low values of RMSEC (0.706) and RMSEP indicate that the developed models were precise enough to predict the antioxidant activities. The combination of FTIR spectroscopy and PLSR offered the accurate and precise models for the prediction of antioxidant activities of studied extracts and fractions of studied plants.

References

  • [1] Salmerron-Manzano E, Garrido-cardenas JA, Manzano-agugliaro F. Worldwide research trends on medicinal plants. Int J Environ Res Public Health. 2020; 17: 1–20. http://dx.doi.org/10.3390/ijerph17103376.
  • [2] Astuti KI, Wulandari LD, Susiani EF. Antidiarrheal activity of ethanolic extract of Vernonia amygdalina Del Leaves againts male mice ınduced http://dx.doi.org/10.33084/bjop.v2i1.707. by oleum Ricini. Borneo J Pharm. 2019; 2(1): 10–14.
  • [3] Adedapo A, Ogunmiluyi I, Adeoye A, Ofuegbe B, Emikpe. Evaluation of the medicinal potential of the methanol leaf extract of Chromolaena odorata in some laboratory animals. J Med Plants Stud. 2016; 4(3): 29–37.
  • [4] Meira M, Silva EP da, David JM, David JP, David. Review of the genus Ipomoea : Traditional uses, chemistry and biological activities. Rev Bras Farmacogn. 2012; 22(3): 682-713. https://dx.doi.org/10.1590/S0102 695X2012005000025.
  • [5] Semwal P, Painuli S, Painuli KM, Antika G, Tumer TB, Thapliyal A, Setzer WN, Martorell M, Alshehri MM, Taheri Y, Daştan SD, Ayatollahi SA, Petkoska AT, Sharifi-Rad J, Cho WC. Diplazium esculentum (Retz.) Sw.: Ethnomedicinal, phytochemical, and pharmacological overview of the Himalayan ferns. Oxid Med Cell Longev. 2021;2021:1917890. https://dx.doi.org/10.1155/2021/1917890.
  • [6] Boukhers I, Boudard F, Morel S, Servent A, Portet K, Guzman C, Vitou M, Kongolo J, Michel A, Poucheret P. Nutrition, healthcare benefits and phytochemical properties of Cassava (Manihot esculenta) leaves sourced from three (Reunion, https://doi.org/10.3390/foods11142027. Guinea, and Costa Rica). Foods. 2022;11(14):2027.
  • [7] Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel). 2020; 9(9): 252. https://dx.doi.org/10.3390/biology9090252.
  • [8] Kaushik B, Sharma J, Yadav K, Kumar P, Shourie A. Phytochemical properties and pharmacological role of plants: secondary metabolites. Biosci Biotechnol Res Asia. 2021; 18(1): 23–35. http://dx.doi.org/10.13005/bbra/2894.
  • [9] Shakya AK. Medicinal plants: Future source of new drugs Medicinal plants: Future source of new drugs. Int J Herb Med. 2016; 4(4): 59-64.
  • [10] Rajkumar G, Panambara PAHR, Sanmugarajah V. Comparative analysis of qualitative and quantitative phytochemical evaluation of selected leaves of medicinal plants in Jaffna, Sri Lanka. Borneo J Pharm. 2022; 5(2): 93 103. https://dx.doi.org/10.33084/bjop.v5i2.3091.
  • [11] Rubio CP, Hernández-ruiz J, Martinez-subiela S, Tvarijonaviciute A, Ceron JJ. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: An update. BMC Vet Res. 2016; 12(1): 166. https://dx.doi.org/10.1186/s12917-016-0792-7.
  • [12] Widodo H, Sismindari S, Asmara W, Rohman A. Antioxidant activity, total phenolic and flavonoid contents of selected medicinal plants used for liver diseases and its classification with chemometrics. J Appl Pharm Sci. 2019; 9(06): 99–105. https://dx.doi.org/10.7324/JAPS.2019.90614.
  • [13] Pasqualetti V, Locato V, Fanali C, Mulinacci N, Cimini S, Morgia AM, Pasqua G, Gara LD. Comparison between in vitro chemical and ex vivo biological assays to evaluate antioxidant capacity of botanical extracts. Antioxidants (Basel). 2021;10(7):1136. https://dx.doi.org/10.3390/antiox10071136.
  • [14] Kotha RR, Tareq FS, Yildiz E, Luthria DL. Oxidative stress and antioxidants — A critical review on in vitro antioxidant assays. Antioxidants (Basel). 2022;11(12):2388. https://dx.doi.org/10.3390/antiox11122388.
  • [15] Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, Chang CM. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules. 2022;27(4):1326. https://doi.org/10.3390/molecules27041326.
  • [16] Nisa FZ, Astuti M, Haryana SM, Murdiati A. Antioxidant activity and total flavonoid of Carica papaya L. leaves with different varieties, maturity and solvent. Agritech. 2019; 39(1): 54–59. https://dx.doi.org/10.22146/agritech.12813.
  • [17] Yamin Y, Sabarudin S, Zubaydah WOS, Sahumena MH, Arba M, Elnawati E, Andriani R, Suryani S. Determination of antiradical activity, total phenolic and flavonoid contents of Kamena-mena (Clerodendrum paniculatum. L) leaves. Trop J Nat Prod Res. 2021; 5(2): 287–293. https://dx.doi.org/10.26538/tjnpr/v5i2.12.
  • [18] Rohman A, Ghazali MAB, Windarsih A, Irnawati, Riyanto S, Yusof FM, Mustafa M. Comprehensive review on application of FTIR Spectroscopy coupled with chemometrics for authentication analysis of fats and oils in the food products. Molecules. 2020;25(22):5485. https://doi.org/10.3390/molecules25225485
  • [19] Maouardi M El, Kharbach M, Cherrah Y, Braekeleer K De, Bouklouze A, Heyden Y Vander. Quality control and authentication of Argan Oils : Application of advanced analytical techniques. Molecules. 2023;28(4):1818. https://doi.org/10.3390/molecules28041818.
  • [20] Kusumadewi AP, Martien R, Pramono S, Setyawan AA, Windarsih A, Rohman A. Application of FTIR spectroscopy and chemometrics for correlation of antioxidant activities, phenolics and flavonoid contents of IndonesianCurcumaxanthorrhiza.IntJFoodProp.2022;25(1):2364–2372.https://dx.doi.org/10.1080/10942912.2022.2134418.
  • [21] Rafi M, Jannah R, Heryanto R, Kautsar A, Septaningsih DA. UV-Vis spectroscopy and chemometrics as a tool for identification and discrimination of four Curcuma species. Int Food Res J. 2018; 25(2): 643–648.
  • [22] Spiteri M, Rogers KM, Jamin E, Thomas F, Guyader S, Lees M, Rutledge DN. Combination of 1H NMR and chemometrics to discriminate manuka honey from other floral honey types from Oceania. Food Chem. 2017; 217: 766–772. https://dx.doi.org/10.1016/j.foodchem.2016.09.027.
  • [23] Marjoni M, Zulfisa A. Antioxidant activity of methanol extract/fractions of Senggani Leaves (Melastoma candidum D. Don). Pharm Anal Acta. 2017; 08(08): 1–6. https://dx.doi.org/10.4172/2153-2435.1000557.
  • [24] Yamin, Ruslin, Sartinah A, Ihsan S, Kasmawati H, Suryani, Andriyani R, Asma, Adjeng ANT, Arba M. Radical scavenging assay and determination flavonoid and phenolic total of extract and fractions of Raghu bark (Dracontomelon dao (Blanco) Merr). Res J Pharm Technol. 2020; 13(5): 2335–2339. https://dx.doi.org/10.5958/0974 360X.2020.00420.5.
  • [25] Zubaydah WOS, Sahumena MH, Fatimah WON, Sabarudin, Arba M, Yamin. Determination of antiradical activity and phenolic and flavonoid contents of extracts and fractions of jackfruit (Artocarpus heterophyllus Lamk ) seeds. Food Res. 2021; 5(3): 36–43. https://dx.doi.org/10.26656/fr.2017.5(3).563.
  • [26] Lin CZ, Zhu CC, Hu M, Wu AZ, Bairu ZD, Kangsa SQ. Structure-activity relationships of antioxidant activity in vitro about flavonoids isolated from Pyrethrum tatsienense. J Intercult Ethnopharmacol. 2014;3(3):123-127. https://dx.doi.org/10.5455/jice.20140619030232.
  • [27] Zakaria SR, Saim N, Osman R, Haiyee ZA, Juahir H. Combination of sensory, chromatographic, and chemometrics analysis of volatile organic compounds for the discrimination of authentic and unauthentic Harumanis Mangoes. Molecules. 2018;23(9):2365. https://doi.org/10.3390/molecules23092365.
  • [28] Kumar K. Principal Component Analysis: Most Favourite Tool in Chemometrics. Resonance. 2017; 22(August): 74759. [29] Arifah MF, Rohman A. A chemometric approach to chromatography for authentication milk product. Indonesian J Chemom Pharm Anal. 2021; 1(3): 121–132.
  • [30] Shiyan S, Zubaidah, Pratiwi G. Chemometric approach to assess response correlation and its classification in simplex centroid design for pre-optimization stage of catechin-SNEDDS. Res J Pharm Technol. 2021; 14(11): 5863 5870. https://dx.doi.org/10.52711/0974-360X.2021.01020.
  • [31] Santos HTL dos, Oliveira AM de, Melo PG de, Freitas W, Freitas APR de. Chemometrics : Theory and Application. In: Multivariate Analysis in Management, Engineering and the Sciences. IntechOpen Limited, United Kingdom, 2013, pp. 121–32.
  • [32] Cao Z, Wang Z, Shang Z, Zhao J. Classification and identification of Rhodobryum roseum Limpr. and its adulterants based on fourier-transform infrared spectroscopy (FTIR) and chemometrics. PLoS One. 2017;12(2):e0172359. https://dx.doi.org/10.1371/journal.pone.0172359.
  • [33] Wang YY, Li JQ, Liu HG, Wang YZ. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR FTIR) combined with chemometrics methods for the classification of Lingzhi species. Molecules. 2019;24(12):2210. https://doi.org/10.3390/molecules24122210.
  • [34] da Silva HRG, Quintella CM, Meira M. Separation and ıdentification of functional groups of molecules responsible for fluorescence of Biodiesel Using FTIR Spectroscopy and principal component analysis. J Braz Chem Soc. 2017; 28(12): 2348–2356. https://dx.doi.org/10.21577/0103-5053.20170088. [35] Bharti D, Kim D, Cerqueira MA, Mohanty B, Habibullah S, Banerjee I, Pal K. Effect of biodegradable hydrophilic and hydrophobic emulsifiers on the oleogels containing sunflower wax and sunflower oil. Gels. 2021; 7 (3): 133. https://dx.doi.org/10.3390/gels7030133.
  • [36] Lim SY, Sokhini M, Mutalib A, Khaza H, Kiat S. Detection of fresh palm oil adulteration with recycled cooking oil using fatty acid composition and FTIR spectral analysis. Int J Food Prop. 2018; 21(1): 2428–2451. https://dx.doi.org/10.1080/10942912.2018.1522332.
  • [37] Djande CYH, Piater LA, Steenkamp PA, Tugizimana F. A metabolomics approach and chemometric tools for differentiation of barley cultivars and biomarker discovery. Metabolites. 2021;11(9):578. https://doi.org/10.3390/metabo11090578.
  • [38] Sharma S, Vig AP. Preliminary phytochemical screening and in vitro antioxidant activities of Parkinsonia aculeata Linn. Biomed Res Int. 2014; 2014: 756184. https://dx.doi.org/10.1155/2014/756184.
  • [39] Sabarudin, Ruslin, Zubaydah WOS, Sartinah A, Buton S, Yamin. Antiradical activity, total phenolic, and total flavonoids extract and fractions of pumpkin (Cucurbita moshata Duch) leaves. Food Res. 2021; 5(2): 348–353. https://dx.doi.org/10.26656/fr.2017.5(2).529.
  • [40] Ruslin, Sahumena MH, Andriani R, Manangkara M, Mistriyani, Yamin. In vitro antioxidant activity test and determination of phenolic and flavonoid content of Moringa oleifera pulp and seeds. Food Res. 2021; 5(4): 59–65. https://dx.doi.org/10.26656/fr.2017.5(4).033.
There are 38 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Ruslin Ruslin

Yamin Yamin

Irnawati Irnawati

Anjar Windarsih

Abdul Rohman

Publication Date July 5, 2025
Submission Date April 1, 2024
Acceptance Date August 8, 2024
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Ruslin, R., Yamin, Y., Irnawati, I., Windarsih, A., et al. (2025). FTIR spectra-based fingerprinting and chemometrics for rapid investigation of antioxidant activities of medicinal plants. Journal of Research in Pharmacy, 29(4), 1522-1531. https://doi.org/10.12991/jrespharm.1734641
AMA Ruslin R, Yamin Y, Irnawati I, Windarsih A, Rohman A. FTIR spectra-based fingerprinting and chemometrics for rapid investigation of antioxidant activities of medicinal plants. J. Res. Pharm. July 2025;29(4):1522-1531. doi:10.12991/jrespharm.1734641
Chicago Ruslin, Ruslin, Yamin Yamin, Irnawati Irnawati, Anjar Windarsih, and Abdul Rohman. “FTIR Spectra-Based Fingerprinting and Chemometrics for Rapid Investigation of Antioxidant Activities of Medicinal Plants”. Journal of Research in Pharmacy 29, no. 4 (July 2025): 1522-31. https://doi.org/10.12991/jrespharm.1734641.
EndNote Ruslin R, Yamin Y, Irnawati I, Windarsih A, Rohman A (July 1, 2025) FTIR spectra-based fingerprinting and chemometrics for rapid investigation of antioxidant activities of medicinal plants. Journal of Research in Pharmacy 29 4 1522–1531.
IEEE R. Ruslin, Y. Yamin, I. Irnawati, A. Windarsih, and A. Rohman, “FTIR spectra-based fingerprinting and chemometrics for rapid investigation of antioxidant activities of medicinal plants”, J. Res. Pharm., vol. 29, no. 4, pp. 1522–1531, 2025, doi: 10.12991/jrespharm.1734641.
ISNAD Ruslin, Ruslin et al. “FTIR Spectra-Based Fingerprinting and Chemometrics for Rapid Investigation of Antioxidant Activities of Medicinal Plants”. Journal of Research in Pharmacy 29/4 (July 2025), 1522-1531. https://doi.org/10.12991/jrespharm.1734641.
JAMA Ruslin R, Yamin Y, Irnawati I, Windarsih A, Rohman A. FTIR spectra-based fingerprinting and chemometrics for rapid investigation of antioxidant activities of medicinal plants. J. Res. Pharm. 2025;29:1522–1531.
MLA Ruslin, Ruslin et al. “FTIR Spectra-Based Fingerprinting and Chemometrics for Rapid Investigation of Antioxidant Activities of Medicinal Plants”. Journal of Research in Pharmacy, vol. 29, no. 4, 2025, pp. 1522-31, doi:10.12991/jrespharm.1734641.
Vancouver Ruslin R, Yamin Y, Irnawati I, Windarsih A, Rohman A. FTIR spectra-based fingerprinting and chemometrics for rapid investigation of antioxidant activities of medicinal plants. J. Res. Pharm. 2025;29(4):1522-31.