Research Article
BibTex RIS Cite
Year 2025, Volume: 29 Issue: 3, 1045 - 1058, 04.06.2025
https://doi.org/10.12991/jrespharm.1694200

Abstract

References

  • [1] Sandosh TA, Peter MPJ, Raj JY. Phytochemical analysis of Stylosanthes fruticosa using UV- VIS, FTIR and GC-MS. Res J Chem. 2013; 3:14-23.
  • [2] Wright GD. Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol. 2010; 13:589-594. https://doi.org/10.1016/j.mib.2010.08.005.
  • [3] The Global Infectious Disease Threat and Its Implications for the United States. National intelligence estimate 99-17D. https://www.dni.gov/files/documents/infectiousdiseases_2000.pdf.
  • [4] Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med. 2006; 119: S3-S10. https://doi.org/10.1016/j.amjmed.2006.03.011.
  • [5] Furuya EY, Lowy FD. Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol 2006; 4:36-45. https://doi.org/10.1038/nrmicro1325.
  • [6] Bocanegra-García, V, del Rayo Camacho-Corona M, Ramírez-Cabrera M, Rivera G, Garza-González E. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract. BMC Res Notes. 2009; 2:1-5. https://doi.org/10.1186/1756-0500-2-95.
  • [7] Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed. 2011; 1(2):154-160. https://doi.org/10.1016/S2221-1691(11)60016-6.
  • [8] Carnwath R, Graham EM, Reynolds K, Pollock PJ. The antimicrobial activity of honey against common equine wounds bacterial isolates. Vet J. 2014; 199:110-114. https://doi.org/10.1016/j.tvjl.2013.07.003.
  • [9] Blassa M, Candracci M, Accorsi A, Piacentini MP, Albertini M C, Piatti E. Raw millefiori honey is packed full of antioxidants. Food Chem. 2006; 97:217–222. https://doi.org/10.1016/j.foodchem.2005.03.039.
  • [10] Molan PC. Why honey is effective as a medicine? The scientific explanation of its effects. In: Munn P, Jones R. (Eds). Honey and Healing. International Bee Research Association, UK, 2001.
  • [11] Samarghandian S, Farkhondeh T, Samini F. Honey and health: A review of recent clinical research. Pharmacogn Res. 2017; 9(2):121-127. https://doi.org/10.4103/0974-8490.204647.
  • [12] Omoya FO, Akharaiyi FC. Mixture of honey and ginger extract for antibacterial assessment on some clinical isolates. Int J Pharm Sci Res. 2011; 2:39-47.
  • [13] Ahmad I, Aqil F. In vitro efficacy of bioactive extracts of 15 medicinal plants against ESβL- producing multidrug-resistant enteric bacteria. Microbiol Res. 2007; 162:264-275. https://doi.org/10.1016/j.micres.2006.06.010.
  • [14] Ramamurthy N, Kannan S. Fourier transform infrared spectroscopic analysis of a plant (Calotropis gigantea Linn) from an industrial village, Cuddalore dt, Tamilnadu, India. Rom J Phys. 2007; 17:269-276.
  • [15] Bibi Y, Nisa S, Waheed A, Zia M, Sarwar S, Ahmed S, Chaudhary MF. Evaluation of Viburnum foetens for anticancer and antibacterial potential and phytochemical analysis. Afr J Biotechnol. 2010; 9:5611-5615.
  • [16] Palaniswamy U. Human dietetics and Asian food crops. J Am Soc Hortic Sci. 2001; 11:504–509. https://doi.org/10.21273/HORTTECH.11.4.504.
  • [17] Ajay S, Rahul S, Sumit G, Mishra A, Gaurav A. Comprehensive review: Murraya koenigii Linn. Asian J Pharm Sci. 2011; 1:417-425.
  • [18] Fachriyah E, Wibawa PJ, Awaliyah A. Antibacterial activity of basil oil (Ocimum basilicum L.) and basil oil nanoemulsion. J Phys: Conf Series. 2020; 1524:012060. https://doi.org/10.1088/1742-6596/1524/1/012060.
  • [19] Deogade MS, Pandya T, Prasad KS, Kale K, Tankhiwale N. Antimicrobial activity of Vitex negundo Linn. (Nirgundi) leaves extract. J Res Tradit Med. 2016; 2: 99-102.
  • [20] Hänsel R, Leuckert C, Rimpler H, Schaaf KD. Chemotaxonomische untersuchungen in der gattung Vitex L. Phytochem. 1965; 4:19-27. https://doi.org/10.1016/S0031-9422(00)86142-7.
  • [21] Peng C, Zhu Y, Yan F, Su Y, Zhu Y, Zhang Z, Peng D. The difference of origin and extraction method significantly affects the intrinsic quality of licorice: A new method for quality evaluation of homologous materials of medicine and food. Food Chem. 2021; 340:127907. https://doi.org/10.1016/j.foodchem.2020.127907
  • [22] Das SK, Mukherjee S, Vasudevan DM. Medicinal properties of milk thistle with special reference to silymarin–an overview. Nat Prod Rad. 2008; 7:182-192.
  • [23] Nadkarni K and Nadkarni AK, Indian Materia Medica, Popular Prakashan Pvt. Ltd., Bombay 1976.
  • [24] Gopalan CI, Ramasastri BV, Bal Subramanian SC. Nutritive value of Indian foods. Indian J Food Nutr. 1993; 6:17-18.
  • [25] Radhakrishnan Saikiruba. Antibacterial Activity of Emblica officinalis against bacterial pathogen isolated from bore water. Int J Sci Res. 2020; 9(6): SR20530194135 . https://doi.org/10.21275/SR20530194135.
  • [26] Naik GH, Priyadarsini KI, Bhagirathi RG, Mishra B, Mishra KP, Banavalikar MM, Mohan H. In vitro antioxidant studies and free radical reactions of triphala, an ayurvedic formulation and its constituents. Phytother Res.. 2005; 19:582-586. https://doi.org/10.1002/ptr.1515.
  • [27] Gandhi K, Sharma N, Gautam PB, Sharma R, Mann B, Pandey V. Infrared (IR) Spectroscopy. In: Advanced Analytical Techniques in Dairy Chemistry. Springer, 2022, pp. 177-198.
  • [28] Vijayakumar S, Bhuvaneshwari V, Sumathi A. Antioxidant and anticancer potential of methanolic leaf extract of Moringa concanensis Nimmo against human breast cancer cell line MCF-7. Int J Pharmacogn Pharm. 2017; 9(6):750-754. https://doi.org/10.25258/phyto.v9i6.8172.
  • [29] Arun K, Pingal K, Somasundaram ST. Phenolic composition, antioxidant activity and FT-IR spectroscopic analysis of halophyte Sesuvium portulacastrum L. extract. Int J Biol Sci. 2016; 5:1-13.
  • [30] Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, Sanabria-Ríos DJ. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res. 2021; 82:101093. https://doi.org/10.1016/j.plipres.2021.101093.
  • [31] Kaur G, Kumar V, Goyal A, Tanwar B, Kaur J. Optimization of nutritional beverage developed from radish, sugarcane and herbal extract using response surface methodology. Nutr Food Sci. 2018; 48:733–743. https://doi.org/10.1108/NFS-11-2017-0247.
  • [32] Stuart BH, Infrared spectroscopy: Fundamentals and applications, John Wiley & Sons. 2004.
  • [33] Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol. 2004; 94:223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.
  • [34] Gill AO, Holley RA. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol. 2006; 108:1-9. https://doi.org/10.1016/j.ijfoodmicro.2005.10.009.
  • [35] Bitchagno GTM, Fonkeng LS, Kopa TK, Tala MF, Wabo HK, Tume CB, Kuiate JR. Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae). BMC Complement Med Ther. 2015; 15:265. https://doi.org/10.1186/s12906-015-0790-5.
  • [36] Zeedan G, Abdalhamed AM, Ottai ME, Abdelshafy S, Abdeen E. Antimicrobial, antiviral activity and GC-MS analysis of essential oil extracted from Achillea fragrantissima plant growing in Sinai Peninsula. Egypt J Chem Technol Biotechnol. 2014; S8: 006. https://doi.org/10.4172/1948- 5948.S8-006.
  • [37] Friedman M, Henika PR, Levin CE, Mandrell RE. Antibacterial activities of plant essential oils and their components against Escherichia coli O157: H7 and Salmonella enterica in apple juice. J Agric Food Chem. 2004; 52:6042-6048. https://doi.org/10.1021/jf0495340.
  • [38] Panthi MP, Chaudhary RP. Antibacterial activity of some selected folklore medicinal plants from West Nepal. Sci World 2006; 4:16-21.
  • [39] Pingale Tanvi, Duse Pallavi, Ogale Sunita. Antibacterial and antifungal approaches of Ficus racemose. Pharmacogn J. 2019; 11: 355-357. https://doi.org/10.5530/pj.2019.11.53.
  • [40] Zhou Jun-Xian, Braun Markus Santhosh, Wetterauer Pille, Wetterauer Bernhard, Wink Michael. Antioxidant, cytotoxic, and antimicrobial activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. extracts. Medicines (Basel). 2019;6(2):43. https://doi.org/10.3390/medicines6020043.
  • [41] Tirumalasetti Jayasree, Basavaraju Anuradha, Harini, Praveena. In vitro evaluation of antimicrobial activity of methanolic extract of Murraya Koenigii leaves (curry leaves). Int J Pharm Phytopharm Res. 2014; 4: 123-125.
  • [42] Ali Basma SM, El Sayed Abdelaleim I, Doheem Mahmoud A, Eita Ahmed M Abo, Omar Ahmad A. Effect of milk thistle (Silybum marianum (L.) Gaertn) seed extract on bacterial activities and growth of human liver cancer cells. J Biotechnol Res. 2020; 6: 27-33. https://doi.org/10.32861/jbr.65.27.33.
  • [43] Murali VS, Meena Devi VN, Parvathy P, Murugan M. Phytochemical screening, FTIR spectral analysis, antioxidant and antibacterial activity of leaf extract of Pimenta dioica Linn. Mater Today Proc. 2021; 45(2): 2166-2170. https://doi.org/10.1016/j.matpr.2020.10.038.
  • [44] Sohrabi MR, Davallo M, Tadayyon F, Nabipoor F, Khamneifar A. Simultaneous determination of acetyl salicylic acid and acetaminophen in ACA tablets by FT/IR/ATR spectrometry with multivariate calibration data Treatment. Asian J Chem. 2005; 17:541-547. https://doi.org/10.1007/s10895-006-0115-7.
  • [45] Mohan J, Organic spectroscopy: Principles and Applications, second ed., CRC Press, 2004.
  • [46] Manoj K, Ragothaman G. Effect of mercury, copper and cadmium on the redblood cells of Boleophthalmus dussumieri (CUV). J Postgrad Med. 1997; 43:149-152.
  • [47] Reddy BK, Meena S, Gautam PB, Meena KK, Rai DC. Optical, thermal, FTIR, SEM-EDX and 1H NMR analysis of Chenopodium album (Bathua) powder prepared using different drying techniques. Microchem J. 2024; 201: 110537. http://dx.doi.org/10.2139/ssrn.4672394.
  • [48] Ragavendran P, Sophia D, Arul Raj C, Gopalakrishnan VK. Functional group analysis of various extracts of Aerva lanata (L.,) by FTIR spectrum. Pharmacologyonline. 2011; 1:358-364.
  • [49] Muruganantham S, Anbalagan G, Ramamurthy N. FTIR and SEM-EDS comparative analysis of medicinal plants, Eclipta alba Hassk and Eclipta prostrata Linn. Rom J Biophys. 2009; 19:285-294.
  • [50] Olurinola PF, A Laboratory Manual for Pharmaceutical Microbiology, Idu, Abuja, Nigeria, 1996, 69-105.
  • [51] Al-Sa’ady AT. Antibacterial screening for five local medicinal plants against nosocomial pathogens: Klebsiella pneumonia and Staphylococcus epidermidis. Eurasia J Biosci. 2020; 14: 553-559.

Antibacterial activity and FTIR characterization of herbal plants collected from north-western Himalayas

Year 2025, Volume: 29 Issue: 3, 1045 - 1058, 04.06.2025
https://doi.org/10.12991/jrespharm.1694200

Abstract

The present investigation was carried out to evaluate the antimicrobial impact of seven herbal plants extracts i.e., curry leaf (Murraya koenigii), bana leaf (Vitex negundo), bhavadi leaf (Ocimum basilicum), umre bark (Ficus glomerata), milk thistle seeds (Silybum marianum), mulethi root (Glycyrrhiza glabra), amla powder and amla juice (Emblica officinalis) against six different human pathogenic strains viz. Shigella flexneri, Bacillus cereus, Stenotrophomonas maltophilia, Listeria monocytogenes, Escherichia coli, Staphylococcus aureus. Different extracts were prepared by using the method of aqueous infusions, decoctions and juice. Curry leaves and milk thistle did not show any antimicrobial activity against any strains by well diffusion method as compared to other extracts used in the study. The varying outcomes observed in the antimicrobial activity of the different extracts could be attributed to the different functional groups like ester, alcohol, phenol, alkane, amino, amide, amines, carboxylic acid, ether present in these extracts, as indicated by the Fourier Transform Infrared Spectroscopy (FTIR) analysis. The presence of different functional groups in extracts may have contributed to the differences in efficacy against pathogenic strains. The presence of antibacterial effects of bana, bhavadi, umre, mulethi and amla suggests that it could be used against human pathogenic bacteria and to manage other diseases.

References

  • [1] Sandosh TA, Peter MPJ, Raj JY. Phytochemical analysis of Stylosanthes fruticosa using UV- VIS, FTIR and GC-MS. Res J Chem. 2013; 3:14-23.
  • [2] Wright GD. Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol. 2010; 13:589-594. https://doi.org/10.1016/j.mib.2010.08.005.
  • [3] The Global Infectious Disease Threat and Its Implications for the United States. National intelligence estimate 99-17D. https://www.dni.gov/files/documents/infectiousdiseases_2000.pdf.
  • [4] Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med. 2006; 119: S3-S10. https://doi.org/10.1016/j.amjmed.2006.03.011.
  • [5] Furuya EY, Lowy FD. Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol 2006; 4:36-45. https://doi.org/10.1038/nrmicro1325.
  • [6] Bocanegra-García, V, del Rayo Camacho-Corona M, Ramírez-Cabrera M, Rivera G, Garza-González E. The bioactivity of plant extracts against representative bacterial pathogens of the lower respiratory tract. BMC Res Notes. 2009; 2:1-5. https://doi.org/10.1186/1756-0500-2-95.
  • [7] Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed. 2011; 1(2):154-160. https://doi.org/10.1016/S2221-1691(11)60016-6.
  • [8] Carnwath R, Graham EM, Reynolds K, Pollock PJ. The antimicrobial activity of honey against common equine wounds bacterial isolates. Vet J. 2014; 199:110-114. https://doi.org/10.1016/j.tvjl.2013.07.003.
  • [9] Blassa M, Candracci M, Accorsi A, Piacentini MP, Albertini M C, Piatti E. Raw millefiori honey is packed full of antioxidants. Food Chem. 2006; 97:217–222. https://doi.org/10.1016/j.foodchem.2005.03.039.
  • [10] Molan PC. Why honey is effective as a medicine? The scientific explanation of its effects. In: Munn P, Jones R. (Eds). Honey and Healing. International Bee Research Association, UK, 2001.
  • [11] Samarghandian S, Farkhondeh T, Samini F. Honey and health: A review of recent clinical research. Pharmacogn Res. 2017; 9(2):121-127. https://doi.org/10.4103/0974-8490.204647.
  • [12] Omoya FO, Akharaiyi FC. Mixture of honey and ginger extract for antibacterial assessment on some clinical isolates. Int J Pharm Sci Res. 2011; 2:39-47.
  • [13] Ahmad I, Aqil F. In vitro efficacy of bioactive extracts of 15 medicinal plants against ESβL- producing multidrug-resistant enteric bacteria. Microbiol Res. 2007; 162:264-275. https://doi.org/10.1016/j.micres.2006.06.010.
  • [14] Ramamurthy N, Kannan S. Fourier transform infrared spectroscopic analysis of a plant (Calotropis gigantea Linn) from an industrial village, Cuddalore dt, Tamilnadu, India. Rom J Phys. 2007; 17:269-276.
  • [15] Bibi Y, Nisa S, Waheed A, Zia M, Sarwar S, Ahmed S, Chaudhary MF. Evaluation of Viburnum foetens for anticancer and antibacterial potential and phytochemical analysis. Afr J Biotechnol. 2010; 9:5611-5615.
  • [16] Palaniswamy U. Human dietetics and Asian food crops. J Am Soc Hortic Sci. 2001; 11:504–509. https://doi.org/10.21273/HORTTECH.11.4.504.
  • [17] Ajay S, Rahul S, Sumit G, Mishra A, Gaurav A. Comprehensive review: Murraya koenigii Linn. Asian J Pharm Sci. 2011; 1:417-425.
  • [18] Fachriyah E, Wibawa PJ, Awaliyah A. Antibacterial activity of basil oil (Ocimum basilicum L.) and basil oil nanoemulsion. J Phys: Conf Series. 2020; 1524:012060. https://doi.org/10.1088/1742-6596/1524/1/012060.
  • [19] Deogade MS, Pandya T, Prasad KS, Kale K, Tankhiwale N. Antimicrobial activity of Vitex negundo Linn. (Nirgundi) leaves extract. J Res Tradit Med. 2016; 2: 99-102.
  • [20] Hänsel R, Leuckert C, Rimpler H, Schaaf KD. Chemotaxonomische untersuchungen in der gattung Vitex L. Phytochem. 1965; 4:19-27. https://doi.org/10.1016/S0031-9422(00)86142-7.
  • [21] Peng C, Zhu Y, Yan F, Su Y, Zhu Y, Zhang Z, Peng D. The difference of origin and extraction method significantly affects the intrinsic quality of licorice: A new method for quality evaluation of homologous materials of medicine and food. Food Chem. 2021; 340:127907. https://doi.org/10.1016/j.foodchem.2020.127907
  • [22] Das SK, Mukherjee S, Vasudevan DM. Medicinal properties of milk thistle with special reference to silymarin–an overview. Nat Prod Rad. 2008; 7:182-192.
  • [23] Nadkarni K and Nadkarni AK, Indian Materia Medica, Popular Prakashan Pvt. Ltd., Bombay 1976.
  • [24] Gopalan CI, Ramasastri BV, Bal Subramanian SC. Nutritive value of Indian foods. Indian J Food Nutr. 1993; 6:17-18.
  • [25] Radhakrishnan Saikiruba. Antibacterial Activity of Emblica officinalis against bacterial pathogen isolated from bore water. Int J Sci Res. 2020; 9(6): SR20530194135 . https://doi.org/10.21275/SR20530194135.
  • [26] Naik GH, Priyadarsini KI, Bhagirathi RG, Mishra B, Mishra KP, Banavalikar MM, Mohan H. In vitro antioxidant studies and free radical reactions of triphala, an ayurvedic formulation and its constituents. Phytother Res.. 2005; 19:582-586. https://doi.org/10.1002/ptr.1515.
  • [27] Gandhi K, Sharma N, Gautam PB, Sharma R, Mann B, Pandey V. Infrared (IR) Spectroscopy. In: Advanced Analytical Techniques in Dairy Chemistry. Springer, 2022, pp. 177-198.
  • [28] Vijayakumar S, Bhuvaneshwari V, Sumathi A. Antioxidant and anticancer potential of methanolic leaf extract of Moringa concanensis Nimmo against human breast cancer cell line MCF-7. Int J Pharmacogn Pharm. 2017; 9(6):750-754. https://doi.org/10.25258/phyto.v9i6.8172.
  • [29] Arun K, Pingal K, Somasundaram ST. Phenolic composition, antioxidant activity and FT-IR spectroscopic analysis of halophyte Sesuvium portulacastrum L. extract. Int J Biol Sci. 2016; 5:1-13.
  • [30] Casillas-Vargas G, Ocasio-Malavé C, Medina S, Morales-Guzmán C, Del Valle RG, Carballeira NM, Sanabria-Ríos DJ. Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next-generation of antibacterial agents. Prog Lipid Res. 2021; 82:101093. https://doi.org/10.1016/j.plipres.2021.101093.
  • [31] Kaur G, Kumar V, Goyal A, Tanwar B, Kaur J. Optimization of nutritional beverage developed from radish, sugarcane and herbal extract using response surface methodology. Nutr Food Sci. 2018; 48:733–743. https://doi.org/10.1108/NFS-11-2017-0247.
  • [32] Stuart BH, Infrared spectroscopy: Fundamentals and applications, John Wiley & Sons. 2004.
  • [33] Burt S. Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol. 2004; 94:223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.
  • [34] Gill AO, Holley RA. Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. Int J Food Microbiol. 2006; 108:1-9. https://doi.org/10.1016/j.ijfoodmicro.2005.10.009.
  • [35] Bitchagno GTM, Fonkeng LS, Kopa TK, Tala MF, Wabo HK, Tume CB, Kuiate JR. Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae). BMC Complement Med Ther. 2015; 15:265. https://doi.org/10.1186/s12906-015-0790-5.
  • [36] Zeedan G, Abdalhamed AM, Ottai ME, Abdelshafy S, Abdeen E. Antimicrobial, antiviral activity and GC-MS analysis of essential oil extracted from Achillea fragrantissima plant growing in Sinai Peninsula. Egypt J Chem Technol Biotechnol. 2014; S8: 006. https://doi.org/10.4172/1948- 5948.S8-006.
  • [37] Friedman M, Henika PR, Levin CE, Mandrell RE. Antibacterial activities of plant essential oils and their components against Escherichia coli O157: H7 and Salmonella enterica in apple juice. J Agric Food Chem. 2004; 52:6042-6048. https://doi.org/10.1021/jf0495340.
  • [38] Panthi MP, Chaudhary RP. Antibacterial activity of some selected folklore medicinal plants from West Nepal. Sci World 2006; 4:16-21.
  • [39] Pingale Tanvi, Duse Pallavi, Ogale Sunita. Antibacterial and antifungal approaches of Ficus racemose. Pharmacogn J. 2019; 11: 355-357. https://doi.org/10.5530/pj.2019.11.53.
  • [40] Zhou Jun-Xian, Braun Markus Santhosh, Wetterauer Pille, Wetterauer Bernhard, Wink Michael. Antioxidant, cytotoxic, and antimicrobial activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. extracts. Medicines (Basel). 2019;6(2):43. https://doi.org/10.3390/medicines6020043.
  • [41] Tirumalasetti Jayasree, Basavaraju Anuradha, Harini, Praveena. In vitro evaluation of antimicrobial activity of methanolic extract of Murraya Koenigii leaves (curry leaves). Int J Pharm Phytopharm Res. 2014; 4: 123-125.
  • [42] Ali Basma SM, El Sayed Abdelaleim I, Doheem Mahmoud A, Eita Ahmed M Abo, Omar Ahmad A. Effect of milk thistle (Silybum marianum (L.) Gaertn) seed extract on bacterial activities and growth of human liver cancer cells. J Biotechnol Res. 2020; 6: 27-33. https://doi.org/10.32861/jbr.65.27.33.
  • [43] Murali VS, Meena Devi VN, Parvathy P, Murugan M. Phytochemical screening, FTIR spectral analysis, antioxidant and antibacterial activity of leaf extract of Pimenta dioica Linn. Mater Today Proc. 2021; 45(2): 2166-2170. https://doi.org/10.1016/j.matpr.2020.10.038.
  • [44] Sohrabi MR, Davallo M, Tadayyon F, Nabipoor F, Khamneifar A. Simultaneous determination of acetyl salicylic acid and acetaminophen in ACA tablets by FT/IR/ATR spectrometry with multivariate calibration data Treatment. Asian J Chem. 2005; 17:541-547. https://doi.org/10.1007/s10895-006-0115-7.
  • [45] Mohan J, Organic spectroscopy: Principles and Applications, second ed., CRC Press, 2004.
  • [46] Manoj K, Ragothaman G. Effect of mercury, copper and cadmium on the redblood cells of Boleophthalmus dussumieri (CUV). J Postgrad Med. 1997; 43:149-152.
  • [47] Reddy BK, Meena S, Gautam PB, Meena KK, Rai DC. Optical, thermal, FTIR, SEM-EDX and 1H NMR analysis of Chenopodium album (Bathua) powder prepared using different drying techniques. Microchem J. 2024; 201: 110537. http://dx.doi.org/10.2139/ssrn.4672394.
  • [48] Ragavendran P, Sophia D, Arul Raj C, Gopalakrishnan VK. Functional group analysis of various extracts of Aerva lanata (L.,) by FTIR spectrum. Pharmacologyonline. 2011; 1:358-364.
  • [49] Muruganantham S, Anbalagan G, Ramamurthy N. FTIR and SEM-EDS comparative analysis of medicinal plants, Eclipta alba Hassk and Eclipta prostrata Linn. Rom J Biophys. 2009; 19:285-294.
  • [50] Olurinola PF, A Laboratory Manual for Pharmaceutical Microbiology, Idu, Abuja, Nigeria, 1996, 69-105.
  • [51] Al-Sa’ady AT. Antibacterial screening for five local medicinal plants against nosocomial pathogens: Klebsiella pneumonia and Staphylococcus epidermidis. Eurasia J Biosci. 2020; 14: 553-559.
There are 51 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Diksha Sharma

Radhna Gupta

Vikas Kumar

Abhishek Walia

Publication Date June 4, 2025
Submission Date May 23, 2024
Acceptance Date July 27, 2024
Published in Issue Year 2025 Volume: 29 Issue: 3

Cite

APA Sharma, D., Gupta, R., Kumar, V., Walia, A. (2025). Antibacterial activity and FTIR characterization of herbal plants collected from north-western Himalayas. Journal of Research in Pharmacy, 29(3), 1045-1058. https://doi.org/10.12991/jrespharm.1694200
AMA Sharma D, Gupta R, Kumar V, Walia A. Antibacterial activity and FTIR characterization of herbal plants collected from north-western Himalayas. J. Res. Pharm. June 2025;29(3):1045-1058. doi:10.12991/jrespharm.1694200
Chicago Sharma, Diksha, Radhna Gupta, Vikas Kumar, and Abhishek Walia. “Antibacterial Activity and FTIR Characterization of Herbal Plants Collected from North-Western Himalayas”. Journal of Research in Pharmacy 29, no. 3 (June 2025): 1045-58. https://doi.org/10.12991/jrespharm.1694200.
EndNote Sharma D, Gupta R, Kumar V, Walia A (June 1, 2025) Antibacterial activity and FTIR characterization of herbal plants collected from north-western Himalayas. Journal of Research in Pharmacy 29 3 1045–1058.
IEEE D. Sharma, R. Gupta, V. Kumar, and A. Walia, “Antibacterial activity and FTIR characterization of herbal plants collected from north-western Himalayas”, J. Res. Pharm., vol. 29, no. 3, pp. 1045–1058, 2025, doi: 10.12991/jrespharm.1694200.
ISNAD Sharma, Diksha et al. “Antibacterial Activity and FTIR Characterization of Herbal Plants Collected from North-Western Himalayas”. Journal of Research in Pharmacy 29/3 (June 2025), 1045-1058. https://doi.org/10.12991/jrespharm.1694200.
JAMA Sharma D, Gupta R, Kumar V, Walia A. Antibacterial activity and FTIR characterization of herbal plants collected from north-western Himalayas. J. Res. Pharm. 2025;29:1045–1058.
MLA Sharma, Diksha et al. “Antibacterial Activity and FTIR Characterization of Herbal Plants Collected from North-Western Himalayas”. Journal of Research in Pharmacy, vol. 29, no. 3, 2025, pp. 1045-58, doi:10.12991/jrespharm.1694200.
Vancouver Sharma D, Gupta R, Kumar V, Walia A. Antibacterial activity and FTIR characterization of herbal plants collected from north-western Himalayas. J. Res. Pharm. 2025;29(3):1045-58.