Research Article
BibTex RIS Cite

Resveratrol and regular exercise can restore hepatic alterations induced by hypertension in rats

Year 2024, Volume: 28 Issue: 1, 29 - 39, 28.06.2025

Abstract

Hypertension is a common disease that affects many organs including heart, vessel, and kidney. Moreover, chronic hypertension can lead to hepatic impairments accompanied by oxidative and inflammatory disturbances. In present study, the effects of regular exercise and resveratrol on hepatic alterations caused by hypertension were comparatively examined. Hypertension was produced by deoxycorticosterone-acetate and salt application in male Wistar rats for twelve weeks. In the last six weeks, resveratrol was given in the drinking water and, the exercise training was applied on a rat treadmill at 20 m/min, 5 days a week, for 45 minutes. At the end of the treatment, blood and liver samples were collected for molecular and biochemical analysis. Regular exercise reduced the elevation in liver weight, liver weight/body weight ratio and plasma lipid levels, while resveratrol only improved elevated plasma triglyceride and LDL cholesterol in hypertensive rats. Both treatments enhanced the hepatic total antioxidant capacity of hypertensive animals. Resveratrol repressed hypertension-triggered NLRP3 inflammasome activation by reversing the increase in hepatic Nod-like receptor protein 3 (NLRP3), nuclear factor- κB (NF-κB), p-NF- κB, tumor necrosis factor-α (TNF-α) expression and the cleaved-caspase-1/procaspase-1 ratio. Similarly, regular exercise inhibited stimulation of NLRP3 inflammasome in hypertensive liver by suppressing the elevation of NLRP3, p-NF-κB, NF-κB expression and the mature-IL-1β/pro-IL-1β ratio. Both interventions prevented the reduction in the mitophagic biomarker PTEN-induced putative kinase 1 (PINK1) level in the hypertensive groups. These findings revealed that resveratrol supplementation and regular exercise have beneficial effect on hypertension-induced hepatic changes by regulating antioxidant status, NLRP3 inflammasome-induced inflammation and mitophagy.

References

  • [1] Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J. Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation. 2016;134(6):441-450. https://doi.org/10.1161%2FCIRCULATIONAHA.115.018912
  • [2] Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Ärnlöv J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Bärnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castañeda-Orjuela CA, Castillo-Rivas J, Catalá-López F, Choi JY, Christensen H, Cirillo M, Cooper L Jr, Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, El Sayed Zaki M, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25. http://dx.doi.org/10.1016/j.jacc.2017.04.052.
  • [3] Al-Makki A, DiPette D, Whelton PK, Murad MH, Mustafa RA, Acharya S, Beheiry HM, Champagne B, Connell K, Cooney MT, Ezeigwe N, Gaziano TA, Gidio A, Lopez-Jaramillo P, Khan UI, Kumarapeli V, Moran AE, Silwimba MM, Rayner B, Sukonthasan A, Yu J, Saraffzadegan N, Reddy KS, Khan T. Hypertension Pharmacological Treatment in Adults: A World Health Organization Guideline Executive Summary. Hypertension. 2022; 79(1):293-301. http://dx.doi.org/10.1161/HYPERTENSIONAHA.121.18192.
  • [4] Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, Alexander L, Estep K, Hassen Abate K, Akinyemiju TF, Ali R, Alvis-Guzman N, Azzopardi P, Banerjee A, Bärnighausen T, Basu A, Bekele T, Bennett DA, Biadgilign S, Catalá-López F, Feigin VL, Fernandes JC, Fischer F, Gebru AA, Gona P, Gupta R, Hankey GJ, Jonas JB, Judd SE, Khang YH, Khosravi A, Kim YJ, Kimokoti RW. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990-2015. JAMA. 2017; 317(2):165-182. http://dx.doi.org/ 10.1001/jama.2016.19043.
  • [5] Ikuta T, Kanno K, Arihiro K, Matsuda S, Kishikawa N, Fujita K, Tazuma S. Spontaneously hypertensive rats develop pronounced hepatic steatosis induced by choline-deficient diet: Evidence for hypertension as a potential enhancer in non-alcoholic steatohepatitis. Hepatol Res. 2012;42(3):310-320. http://dx.doi.org/10.1111/j.1872-034X.2011.00920.x.
  • [6] Svoboda DS, Kawaja MD. Changes in hepatic protein expression in spontaneously hypertensive rats suggest early stages of non-alcoholic fatty liver disease. J Proteomics. 2012; 75(6):1752-1763. http://dx.doi.org/10.1016/j.jprot.2011.12.011.
  • [7] Bal NB, Han S, Usanmaz SE, Kiremitci S, Sadi G, Uludag O, Demirel-Yilmaz E. Activation of liver X receptors by GW3965 attenuated deoxycorticosterone acetate-salt hypertension-ınduced cardiac functional and structural changes. J Cardiovasc Pharmacol. 2019; 74(2):105-117. http://dx.doi.org/10.1097/FJC.0000000000000693.
  • [8] Bal NB, Han S, Kiremitci S, Uludag MO, Demirel-Yilmaz E. Reversal of deleterious effect of hypertension on the liver by inhibition of endoplasmic reticulum stress. Mol Biol Rep. 2020; 47(3):2243-2252. http://dx.doi.org/10.1007/s11033-020-05329-2.
  • [9] Cesaratto L, Vascotto C, Calligaris S, Tell G. The importance of redox state in liver damage. Ann Hepatol. 2004; 3(3):86-92. https://doi.org/10.1016/S1665-2681(19)32099-X
  • [10] Guzik TJ, Touyz RM. Oxidative stress, ınflammation, and vascular aging in hypertension. Hypertension. 2017; 70(4):660-667. http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.07802.
  • [11] Binda D, Nicod L, Viollon-Abadie C, Rodriguez S, Berthelot A, Coassolo P, Richert L. Strain difference (WKY, SPRD) in the hepatic antioxidant status in rat and effect of hypertension (SHR, DOCA). Ex vivo and in vitro data. Mol Cell Biochem. 2001; 218(1-2):139-146. http://dx.doi.org/10.1023/a:1007268825721.
  • [12] Cediel E, Sanz-Rosa D, Oubina MP, de las Heras N, González Pacheco FR, Vegazo O, Jiménez J, Cachofeiro V, Lahera V. Effect of AT1 receptor blockade on hepatic redox status in SHR: Possible relevance for endothelial function? Am J Physiol Regul Integr Comp Physiol. 2003; 285(3):R674-81. http://dx.doi.org/10.1152/ajpregu.00643.2002.
  • [13] Murray EC, Nosalski R, MacRitchie N, Tomaszewski M, Maffia P, Harrison DG, Guzik TJ. Therapeutic targeting of inflammation in hypertension: from novel mechanisms to translational perspective. Cardiovasc Res. 2021; 117(13):2589-2609. http://dx.doi.org/10.1093/cvr/cvab330.
  • [14] Wang Y, Liu X, Shi H, Yu Y, Yu Y, Li M, Chen R. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin Transl Med. 2020; 10(1):91-106. http://dx.doi.org/10.1002/ctm2.13.
  • [15] De Miguel C, Pelegrín P, Baroja-Mazo A, Cuevas S. Emerging role of the ınflammasome and pyroptosis in hypertension. Int J Mol Sci. 2021;22(3):1064. http://dx.doi.org/10.3390/ijms22031064.
  • [16] Yan Z, Qi Z, Yang X, Ji N, Wang Y, Shi Q, Li M, Zhang J, Zhu Y. The NLRP3 inflammasome: Multiple activation pathways and its role in primary cells during ventricular remodeling. J Cell Physiol. 2021;236(8):5547-5563. http://dx.doi.org/10.1002/jcp.30285.
  • [17] Ma X, McKeen T, Zhang J, Ding WX. Role and mechanisms of mitophagy in liver diseases. Cells. 2020;9(4):837. http://dx.doi.org/10.3390/cells9040837.
  • [18] Mishra SR, Mahapatra KK, Behera BP, Patra S, Bhol CS, Panigrahi DP, Praharaj PP, Singh A, Patil S, Dhiman R, Bhutia SK. Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics. Int J Biochem Cell Biol. 2021; 136:106013. http://dx.doi.org/10.1016/j.biocel.2021.106013.
  • [19] Huang FR, Fang WT, Cheng ZP, Shen Y, Wang DJ, Wang YQ, Sun LN. Imatinib-induced hepatotoxicity via oxidative stress and activation of NLRP3 inflammasome: an in vitro and in vivo study. Arch Toxicol. 2022;96(4):1075-1087. http://dx.doi.org/10.1007/s00204-022-03245-x.
  • [20] Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, Diep H, Kett MM, Samuel CS, Kemp-Harper BK, Robertson AAB, Cooper MA, Peter K, Latz E, Mansell AS, Sobey CG, Drummond GR, Vinh A. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovasc Res. 2019;115(4):776-787. http://dx.doi.org/10.1093/cvr/cvy252.
  • [21] Chen Z, Wu C, Liu Y, Li H, Zhu Y, Huang C, Lin H, Qiao Q, Huang M, Zhu Q, Wang L. ELABELA attenuates deoxycorticosterone acetate/salt-induced hypertension and renal injury by inhibition of NADPH oxidase/ROS/NLRP3 inflammasome pathway. Cell Death Dis. 2020; 11(8):698. http://dx.doi.org/10.1038/s41419-020-02912-0.
  • [22] Bal NB, Bostanci A, Sadi G, Dönmez MO, Uludag MO, Demirel-Yilmaz E. Resveratrol and regular exercise may attenuate hypertension-induced cardiac dysfunction through modulation of cellular stress responses. Life Sci. 2022;296:120424. http://dx.doi.org/10.1016/j.lfs.2022.120424.
  • [23] Santos L. The impact of nutrition and lifestyle modification on health. Eur J Intern Med. 2022; 97:18-25. http://dx.doi.org/10.1016/j.ejim.2021.09.020.
  • [24] Zucker IH, Musch TI. Benefits of exercise training on cardiovascular dysfunction: molecular and integrative. Am J Physiol Heart Circ Physiol. 2018;315(4):H1027-H1031. http://dx.doi.org/10.1152/ajpheart.00516.2018.
  • [25] Cheng CK, Luo JY, Lau CW, Chen ZY, Tian XY, Huang Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol. 2020;177(6):1258-1277. http://dx.doi.org/10.1111/bph.14801.
  • [26] Rai RC, Bagul PK, Banerjee SK. NLRP3 inflammasome drives inflammation in high fructose fed diabetic rat liver: Effect of resveratrol and metformin. Life Sci. 2020; 253:117727. http://dx.doi.org/10.1016/j.lfs.2020.117727.
  • [27] Yang W, Liu L, Wei Y, Fang C, Liu S, Zhou F, Li Y, Zhao G, Guo Z, Luo Y, Li L. Exercise suppresses NLRP3 inflammasome activation in mice with diet-induced NASH: a plausible role of adropin. Lab Invest. 2021;101(3):369-380. http://dx.doi.org/10.1038/s41374-020-00508-y.
  • [28] Bhatt SR, Lokhandwala MF, Banday AA. Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur J Pharmacol. 2011 ;667(1-3):258-64. http://dx.doi.org/10.1016/j.ejphar.2011.05.026.
  • [29] Han S, Bal NB, Sadi G, Usanmaz SE, Uludag MO, Demirel-Yilmaz E. The effects of resveratrol and exercise on age and gender-dependent alterations of vascular functions and biomarkers. Exp Gerontol. 2018;110:191-201. http://dx.doi.org/10.1016/j.exger.2018.06.009.
  • [30] Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, Nieman DC, Swain DP. American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011; 43(7):1334-1359. http://dx.doi.org/10.1249/MSS.0b013e318213fefb.
  • [31] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-275. https://doi.org/10.1016/S0021-9258(19)52451-6.
  • [32] Usanmaz SE, Demirel Yilmaz E. A microplate based spectrophotometric method for the determination of the total antioxidant capacity of human plasma: modified cupric reducing ability assay. Conference: Fundamental and Clinical Pharmacology 2008; 22 Suppl 2: 67.
  • [33] Grujić-Milanović J, Jaćević V, Miloradović Z, Jovović D, Milosavljević I, Milanović SD, Mihailović-Stanojević N. Resveratrol protects cardiac tissue in experimental malignant hypertension due to antioxidant, anti-ınflammatory, and anti-apoptotic properties. Int J Mol Sci. 2021;22(9):5006. http://dx.doi.org/10.3390/ijms22095006.
  • [34] Song Y, Jia H, Hua Y, Wu C, Li S, Li K, Liang Z, Wang Y. The molecular mechanism of aerobic exercise ımproving vascular remodeling in hypertension. Front Physiol. 2022 ;13:792292. http://dx.doi.org/10.3389/fphys.2022.792292.
  • [35] Sookoian S, Pirola CJ. Liver enzymes, metabolomics and genome-wide association studies: from systems biology to the personalized medicine. World J Gastroenterol. 2015;21(3):711-725. http://dx.doi.org/10.3748/wjg.v21.i3.711.
  • [36] Prahalathan P, Kumar S, Raja B. Effect of morin, a flavonoid against DOCA-salt hypertensive rats: A dose dependent study. Asian Pac J Trop Biomed. 2012;2(6):443-8. http://dx.doi.org/10.1016/S2221-1691(12)60073-2.
  • [37] Al-Bishri WM. Favorable effects of flaxseed supplemented diet on liver and kidney functions in hypertensive Wistar rats. J Oleo Sci. 2013;62(9):709-715. http://dx.doi.org/10.5650/jos.62.709.
  • [38] Vinothiya K, Ashokkumar N. Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomed Pharmacother. 2017;87:640-652. http://dx.doi.org/10.1016/j.biopha.2016.12.134.
  • [39] Veeramani C, Al-Numair KS, Chandramohan G, Alsaif MA, Pugalendi KV. Antihyperlipidemic effect of Melothria maderaspatana leaf extracts on DOCA-salt induced hypertensive rats. Asian Pac J Trop Med. 2012;5(6):434-439. http://dx.doi.org/10.1016/S1995-7645(12)60074-1.
  • [40] Wang H, Sun J, Jia Z, Yang T, Xu L, Zhao B, Yu K, Wang R. Nitrooleic acid attenuates lipid metabolic disorders and liver steatosis in DOCA-Salt hypertensive mice. PPAR Res. 2015;2015:480348. http://dx.doi.org/10.1155/2015/480348.
  • [41] Krzemińska J, Wronka M, Młynarska E, Franczyk B, Rysz J. Arterial hypertension-oxidative stress and inflammation. Antioxidants (Basel). 2022;11(1):172. http://dx.doi.org/10.3390/antiox11010172.
  • [42] Li X, Zhang Z, Luo M, Cheng Z, Wang R, Liu Q, Lv D, Yan J, Shang F, Luo S, Xia Y. NLRP3 inflammasome contributes to endothelial dysfunction in angiotensin II-induced hypertension in mice. Microvasc Res. 2022;143:104384. http://dx.doi.org/10.1016/j.mvr.2022.104384.
  • [43] Wang Q, Jia F, Guo C, Wang Y, Zhang X, Cui Y, Song M, Cao Z, Li Y. PINK1/Parkin-mediated mitophagy as a protective mechanism against AFB1-induced liver injury in mice. Food Chem Toxicol. 2022;164:113043. http://dx.doi.org/10.1016/j.fct.2022.113043
  • [44] Zhang NP, Liu XJ, Xie L, Shen XZ, Wu J. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. Lab Invest. 2019; 99(6):749-763. http://dx.doi.org/10.1038/s41374-018-0177-6
  • [45] Yu J, Nagasu H, Murakami T, Hoang H, Broderick L, Hoffman HM, Horng T. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci USA. 2014 ;111(43):15514-15519. http://dx.doi.org/10.1073/pnas.1414859111
There are 45 citations in total.

Details

Primary Language English
Subjects Basic Pharmacology
Journal Section Articles
Authors

Nur Banu Bal 0000-0001-7865-0917

Emine Demirel-yilmaz 0000-0002-2476-6225

Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 1

Cite

APA Bal, N. B., & Demirel-yilmaz, E. (2025). Resveratrol and regular exercise can restore hepatic alterations induced by hypertension in rats. Journal of Research in Pharmacy, 28(1), 29-39.
AMA Bal NB, Demirel-yilmaz E. Resveratrol and regular exercise can restore hepatic alterations induced by hypertension in rats. J. Res. Pharm. June 2025;28(1):29-39.
Chicago Bal, Nur Banu, and Emine Demirel-yilmaz. “Resveratrol and Regular Exercise Can Restore Hepatic Alterations Induced by Hypertension in Rats”. Journal of Research in Pharmacy 28, no. 1 (June 2025): 29-39.
EndNote Bal NB, Demirel-yilmaz E (June 1, 2025) Resveratrol and regular exercise can restore hepatic alterations induced by hypertension in rats. Journal of Research in Pharmacy 28 1 29–39.
IEEE N. B. Bal and E. Demirel-yilmaz, “Resveratrol and regular exercise can restore hepatic alterations induced by hypertension in rats”, J. Res. Pharm., vol. 28, no. 1, pp. 29–39, 2025.
ISNAD Bal, Nur Banu - Demirel-yilmaz, Emine. “Resveratrol and Regular Exercise Can Restore Hepatic Alterations Induced by Hypertension in Rats”. Journal of Research in Pharmacy 28/1 (June 2025), 29-39.
JAMA Bal NB, Demirel-yilmaz E. Resveratrol and regular exercise can restore hepatic alterations induced by hypertension in rats. J. Res. Pharm. 2025;28:29–39.
MLA Bal, Nur Banu and Emine Demirel-yilmaz. “Resveratrol and Regular Exercise Can Restore Hepatic Alterations Induced by Hypertension in Rats”. Journal of Research in Pharmacy, vol. 28, no. 1, 2025, pp. 29-39.
Vancouver Bal NB, Demirel-yilmaz E. Resveratrol and regular exercise can restore hepatic alterations induced by hypertension in rats. J. Res. Pharm. 2025;28(1):29-3.