Research Article
BibTex RIS Cite

Secondary metabolites from Scabiosa atropurpurea and their antioxidant and xanthine oxidase inhibitory activities

Year 2024, Volume: 28 Issue: 1, 79 - 88, 28.06.2025

Abstract

Two secoiridoid glycosides, lonicejaposide I (1) and secologanin dimethyl acetal (2), six flavonoids, isoorientin (3) hesperidin (4), apigenin 7-O-neohesperidoside (5), luteolin 7-O-b-D-glucopyranoside (6), kaempferol 3- O-(3'',6''-di-(E)-p-coumaroyl)-b-D-glucopyranoside (7), and kaempferol 3-O-(3''-O-acetyl, 6''-O-(E)-p-coumaroyl)-b-Dglycopyranoside (8), two caffeoylquinic acid derivatives, chlorogenic acid (9) and 3,5-dicaffeoylquinic acid (10) were isolated from the EtOAc and H2O subextracts of the crude MeOH extract prepared from the aerial parts of Scabiosa atropurpurea. Their structures were identified by extensive 1D and 2D NMR experiments as well as ESI-MS analysis. Xanthine oxidase (XO) inhibitory and antioxidant activities of the isolated compounds were evaluated by in vitro tests. Compounds, 3, 5, 6, 9 and 10 showed mild-to-moderate inhibitory effects on XO enzyme. The highest antioxidant activity was found for compound 10 according to results of DPPH, FRAP and CUPRAC assays. This is the first study on the XO inhibitory activities for compounds 1, 2, 5, 7 and 8.

References

  • [1] Pinto DCGA, Rahmouni N, Beghidja N, Silva AMS. Scabiosa Genus: A rich source of bioactive metabolites. Medicines. 2018; 5(4): 110. https://doi.org/10.3390/medicines5040110
  • [2] Lehbili M, AlabdulMagid A, Hubert J, Kabouche A, Voutquenne-Nazabadioko L, Renault JH, Nuzillard JM, Morjani H, Abedini A, Gangloff SC, Kabouche Z. Two new bis-iridoids isolated from Scabiosa stellata and their antibacterial, antioxidant, anti-tyrosinase and cytotoxic activities. Fitoterapia. 2018; 125: 41-48. https://doi.org/10.1016/j.fitote.2017.12.018
  • [3] Bendamene S, Boutaghane N, Bellik Y, Sayagh C, AlabdukMagid A, Harakat D, Kabouche Z, Voutquenne-Nazabadioko L. Semipapposides A-M, triterpenoid bidesmosides saponins from the roots of Scabiosa semipapposa. Phytochemistry. 2020; 180: 112526. https://doi.org/10.1016/j.phytochem.2020.112526
  • [4] BesbesHlila M, Mosbah H, Majouli K, Ben Nejma A, Ben Jannet H, Mastouri M, Aouni M, Selmi B. Antimicrobial activity of Scabiosa arenariaForssk. extracts and pure compounds using bioguided fractionation. Chem Biodivers. 2016; 13(10): 1262-1272. https://doi.org/10.1002/cbdv.201600028
  • [5] Al-Qudah MA, Otoom NK, Al-Jaber HI, Saleh AM, Abu Zarga MH, Afifi FU, Abu Orabi ST. New flavonol glycoside from Scabiosa prolifera L. aerial parts with in vitro antioxidant and cytotoxic activities. Nat Prod Res. 2017; 31(24): 2865-2874. http://doi.org/10.1080/14786419.2017.1305377
  • [6] Kılınç H, Masullo M, D'Urso G, Karayildirim T, Alankus O, Piacente S. Phytochemical investigation of Scabiosa sicula guided by a preliminary HPLC-ESIMSn profiling. Phytochemistry. 2020; 174: 112350. https://doi.org/10.1016/j.phytochem.2020.112350
  • [7] Matthews VA. Scabiosa L. In: Davis PH. (Ed). Flora of Turkey and East Aegean Islands. Edinburgh University Press, Edinburgh, 1972, pp.602-621.
  • [8] Erarslan ZB, Yeşil Y. The anatomical properties of Scabiosa atropurpurea L. (Caprifoliaceae). Istanbul J Pharm. 2018; 48(1): 1-5.https://doi.org/10.5152/IstanbulJPharm.2018.376278
  • [9] Jalloul AB, Garzoli S, Chaar H, elJribi C, Abderrabba M. Seasonal effect on bioactive compounds recovery using aqueous extraction, antioxidant activities, and volatile profiles of different parts of S. maritima (Scabiosa atropurpurea sub. maritima L.). S Afr J Bot. 2023; 152: 63-79. https://doi.org/10.1016/j.sajb.2022.11.031
  • [10] Hrichi S, Chaabane-Banaoues R, Bayar S, Flamini G, Oulad El Majdoub Y, Mangraviti D, Mondello L, El Mzoughi R, Babba H, Mighri Z, Cacciola F. Botanical and genetic identification followed by investigation of chemical composition and biological activities on the Scabiosa atropurpurea L. stem from Tunisian flora. Molecules. 2020; 25(21): 5032. http://doi.org/10.3390/molecules25215032
  • [11] Kılınc H, Masullo M, Lauro G, D'Urso G, Alankus O, Bifulco G, Piacente S. Scabiosa atropurpurea: A rich source of iridoids with α-glucosidase inhibitory activity evaluated by in vitro and in silico studies. Phytochemistry. 2023; 205: 113471. https://doi.org/10.1016/j.phytochem.2022.113471
  • [12] Elhawary SS, Eltantawy ME, Sleem AA, Abdallah HM, Mohamed NM. Investigation of phenolic content and biological activities of Scabiosa atropurpurea L. World ApplSci J. 2011; 15(3): 311-317.
  • [13] Polat E, Alankus-Caliskan Ö, Karayildirim T, Bedir E. Iridoids from Scabiosa atropurpurea L. subsp. maritima Arc. (L.). Biochem Syst Ecol 2010; 38(2): 253-255. https://doi.org/10.1016/j.bse.2010.01.004
  • [14] Umamaheswari M, AsokKumar K, Somasundaram A, Sivashanmugam T, Subhadradevi V, Ravi TK. Xanthine oxidase inhibitory activity of some Indian medical plants. J Ethnopharmacol. 2007; 109(3): 547-551. https://doi.org/10.1016/j.jep.2006.08.020
  • [15] Chen J, Li Q, Ye Y, Ran M, Ruan Z, Jin N. Inhibition of xanthine oxidase by theaflavin: Possible mechanism for anti-hyperuricaemia effect in mice. Process Biochem. 2020; 97: 11-18. https://doi.org/10.1016/j.procbio.2020.06.024
  • [16] Azmi SM, Jamal P, Amid A. Xanthine oxidase inhibitory activity from potential Malaysian medicinal plant as remedies for gout. Int Food Res J. 2012; 19(1): 159-165.
  • [17] Song JU, Jang JW, Kim TH, Park H, Park WS, Jung SH, Kim GT. Structure-based design and biological evaluation of novel 2-(indol-2-yl) thiazole derivatives as xanthine oxidase inhibitors. Bioorg Med Chem Lett. 2016; 26(3): 950-954. https://doi.org/10.1016/j.bmcl.2015.12.055
  • [18] Mohamed Isa SSP, Ablat A, Mohamad J. The Antioxidant and xanthine oxidase inhibitory activity of Plumeria rubra flowers. Molecules. 2018; 23(2): 400. https://doi.org/10.3390/molecules23020400
  • [19] Bardin T. Current management of gout in patients unresponsive or allergic to allopurinol. Jt Bone Spine. 2004; 71(6): 481-485. https://doi.org/10.1016/j.jbspin.2004.07.006
  • [20] Pacher P, Nivorozhkin A, Szabó C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006; 58(1): 87-114. https://doi.org/10.1124/pr.58.1.6
  • [21] Lin S, Zhang G, Liao Y, Pan J, Gong D. Dietary flavonoids as xanthine oxidase inhibitors: Structure–affinity and structure–activity relationships. J Agric Food Chem. 2015; 63(35): 7784-7794. https://doi.org/10.1021/acs.jafc.5b03386
  • [22] Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, Pieters L, Vlietinck AJ, Berghe DV. Structure−activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod. 1998; 61(1): 71-76. https://doi.org/10.1021/np970237h
  • [23] Wan J, Jiang CX, Tang Y, Ma GL, Tong YP, Jin ZX, Zang Y, Osman EE, Li J, Xiong J, Hu JF. Structurally diverse glycosides of secoiridoid, bisiridoid, and triterpene-bisiridoid conjugates from the flower buds of two Caprifoliaceae plants and their ATP-citrate lyase inhibitory activities. Bioorg Chem. 2022; 120: 105630. https://doi.org/10.1016/j.bioorg.2022.105630
  • [24] Kawai H, Kuroyanagi M, Ueno A. Iridoid glucosides from Lonicera japonica THUNB. Chemical Pharm Bull. 1988; 36(9): 3664-3666. https://doi.org/10.1248/cpb.36.3664
  • [25] Çalış I, Birincioǧlu SS, Kırmızıbekmez H, Pfeiffer B, Heilmann J. Secondary metabolites from Asphodelus aestivus. ZNaturforsch B. 2006; 61(10): 1304-1310. https://doi.org/10.1515/znb-2006-1019
  • [26] KadioğluYaman B, Şen O, Salman A, Sipahi H, Kúsz N, Hohmann J, Kirmizimekbez H. Anti-inflammatory effects of Lyciumbarbarum leaf extracts in lipopolysaccharide-induced RAW 264.7 macrophage cells and isolation of secondary metabolites. J Res Pharm. 2019; 23(4): 740-748. https://doi.org/10.12991/jrp.2019.183
  • [27] Zhang H, Li X, Wu K, Wang M, Liu P, Wang X, Deng R. Antioxidant activities and chemical constituents of flavonoids from the flower of Paeonia ostii. Molecules. 2016; 22(1): 5. https://doi.org/10.3390/molecules22010005
  • [28] Akdemir ZS, Tatli II, Bedir E, Khan, IA Antioxidant flavonoids from Verbascum salviifoliumBoiss. Fabad J Pharm Sci. 2003; 28: 71-75.
  • [29] Liu H, Orjala J, Sticher O, Rali T. Acylated flavonol glycosides from leaves of Stenochlaena palustris. J Nat Prod. 1999; 62(1): 70-75. https://doi.org/10.1021/np980179f
  • [30] Christopoulou C, Graikou K, Chinou I. Chemosystematic value of chemical constituents from Scabiosa hymettia (Dipsacaceae). ChemBiodivers. 2008; 5(2): 318-323. https://doi.org/10.1002/cbdv.200890029
  • [31] Indy Tamayose C, Dos Santos EA, Roque N, Costa-Lotufo LV, Pena Ferreira MJ. Caffeoylquinic acids: Separation method, antiradical properties and cytotoxicity. ChemBiodivers. 2019; 16(7): e1900093. https://doi.org/10.1002/cbdv.201900093
  • [32] Ben Toumia I, Sobeh M, Ponassi M, Banelli B, Dameriha A, Wink M, ChekirGhedira L, Rosano C. A methanol extract of Scabiosa atropurpurea enhances doxorubicin cytotoxicity against resistant colorectal cancer cells in vitro. Molecules. 2020; 25(22): 5265. https://doi.org/10.3390/molecules25225265
  • [33] Papalexandrou A, Magiatis P, Perdetzoglou D, Skaltsounis AL, Chinou IB, Harvala C. Iridoids from Scabiosa variifolia (Dipsacaceae) growing in Greece. Biochem Syst Ecol. 2003; 1(31): 91-93.
  • [34] Lehbili M, AlabdulMagid A, Kabouche A, Voutquenne-Nazabadioko L, Morjani H, Harakat D, Kabouche Z. Triterpenoid saponins from Scabiosa stellata collected in North-eastern Algeria. Phytochemistry. 2018; 150: 40-49. https://doi.org/10.1016/j.phytochem.2018.03.005
  • [35] Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants?. Plant Physiol Biochem. 2019; 144: 135-143. https://doi.org/10.1016/j.plaphy.2019.09.039
  • [36] Jiang XW, Bai JP, Zhang Q, Hu XL, Tian X, Zhu J, Liu J, Meng WH, Zhao QC. Caffeoylquinic acid derivatives from the roots of Arctium lappa L.(burdock) and their structure–activity relationships (SARs) of free radical scavenging activities. Phytochem Lett. 2016; 15: 159-163. http://doi.org/10.1016/j.phytol.2015.12.008
  • [37] Zhao JG, Yan QQ, Xue RY, Zhang J, Zhang YQ. Isolation and identification of colourless caffeoyl compounds in purple sweet potato by HPLC-DAD–ESI/MS and their antioxidant activities. Food Chem. 2014; 161: 22-26. https://doi.org/10.1016/j.foodchem.2014.03.079
  • [38] Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996; 20(7): 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  • [39] Pacifico S, D’Abrosca B, Pascarella MT, Letizia M, Uzzo P, Piscopo V, Fiorentino A. Antioxidant efficacy of iridoid and phenylethanoid glycosides from the medicinal plant Teucrium chamaedris in cell-free systems. Bioorg Med Chem. 2009; 17(17): 6173-6179. https://doi.org/10.1016/j.bmc.2009.07.065
  • [40] Huang SW, Qiao JW, Sun X, Gao PY, Li LZ, Liu QB, Sun B, Wu DL, Song SJ. Secoiridoids and lignans from the leaves of DiospyroskakiThunb. with antioxidant and neuroprotective activities. J Funct Food. 2016;24:183-195. https://doi.org/10.1016/j.jff.2016.03.025
  • [41] Wang Y, Zhang G, Pan J, Gong D. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. J Agric Food. 2015; 63(2): 526-534. https://doi.org/10.1021/jf505584m
  • [42] Mehmood A, Ishaq M, Zhao L, Safdar B, Rehman AU, Munir M, Raza A, Nadeem M, Iqbal W, Wang C. Natural compounds with xanthine oxidase inhibitory activity: A review. Chem Biol Drug Des. 2019; 93(4): 387-418. https://doi.org/10.1111/cbdd.13437
  • [43] Li Q, Shi C, Wang M, Zhou M, Liang M, Zhang T, Yuan E, Wang Z, Yao M, Ren J. Tryptophan residue enhances in vitro walnut protein-derived peptides exerting xanthine oxidase inhibition and antioxidant activities. J Funct Foods. 2019; 53: 276-285. https://doi.org/10.1016/j.jff.2018.11.024
  • [44] Qu L, Ruan JY, Jin LJ, Shi WZ, Li XX, Han LF, Zhang Y, Wang T. Xanthine oxidase inhibitory effects of the constituents of Chrysanthemum morifolium stems. Phytochem Lett. 2017; 19: 39-45. http://doi.org/10.1016/j.phytol.2016.11.007
  • [45] Sarawek S, Feistel B, Pischel I, Butterweck V. Flavonoids of Cynara scolymus possess potent xanthinoxidase inhibitory activity in vitro but are devoid of hypouricemic effects in rats after oral application. Planta Med. 2008; 74(03): 221-227. https://doi.org/10.1055/s-2008-1034316
  • [46] Pham AT, Nguyen C, Malterud KE, Diallo D, Wangensteen H. Bioactive flavone-C-glycosides of the African medicinal plant Biophytumumbraculum. Molecules. 2013; 18(9): 10312-10319. https://doi.org/10.3390/molecules180910312
  • [47] An MF, Wang MY, Shen C, Sun ZR, Zhao YL, Wang XJ, Sheng J. Isoorientin exerts a urate-lowering effect through inhibition of xanthine oxidase and regulation of the TLR4-NLRP3 inflammasome signaling pathway. J Nat Med. 2021; 75(1): 129-141. https://doi.org/10.1007/s11418-020-01464-z
  • [48] Li Y, Wan Y, Li R, Xu L, Xie M, Fu G. Solvent extraction of caffeoylquinic acids from Artemisia selengensisTurcz leaves and their in vitro inhibitory activities on xanthine oxidase. Ind Crops Prod. 2018; 118: 296-301.https://doi.org/10.1016/j.indcrop.2018.03.055
  • [49] Kim DS, Lim SB. Semi-continuous subcritical water extraction of flavonoids from Citrus unshiu peel: Their antioxidant and enzyme inhibitory activities. Antioxidants. 2020; 9(5): 360. https://doi.org/10.3390/antiox9050360
  • [50] Kostić DA, Dimitrijević DS, Stojanović GS, Palić IR, Đorđević AS, Ickovski JD. Xanthine oxidase: Isolation, assays of activity, and inhibition. J Chem. 2015; 2015(2): 1-8. https://doi.org/10.1155/2015/294858
  • [51] Yuan M, Liu Y, Xiao A, Leng J, Liao L, Ma L, Liu L. The interaction of dietary flavonoids with xanthine oxidase in vitro: Molecular property-binding affinity relationship aspects. RSC Adv. 2019; 9(19): 10781-10788. https://doi.org/10.1039/c8ra09926j
  • [52] Degirmencioglu HT, Guzelmeric E, Yuksel PI, Kırmızıbekmez H, Deniz I, Yesilada E. A new type of Anatolian propolis: Evaluation of its chemical composition, activity profile and botanical origin. Chem Biodivers. 2019; 16(12): e1900492. https://doi.org/10.1002/cbdv.201900492
  • [53] Berker KI, Güçlü K, Demirata B, Apak R. A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Anal Methods. 2010; 2(11): 1770-1778. https://doi.org/10.1039/C0AY00245C
  • [54] Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004; 52(26): 7970-7081. https://doi.org/10.1021/jf048741x
There are 54 citations in total.

Details

Primary Language English
Subjects Pharmacognosy
Journal Section Articles
Authors

Ceren Öztürk 0009-0008-5642-1601

Nisa Beril Şen 0000-0001-8422-8835

Etil Güzelmeriç 0000-0001-9696-3271

Hasan Kırmızıbekmez 0000-0002-6118-8225

Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 1

Cite

APA Öztürk, C., Şen, N. B., Güzelmeriç, E., Kırmızıbekmez, H. (2025). Secondary metabolites from Scabiosa atropurpurea and their antioxidant and xanthine oxidase inhibitory activities. Journal of Research in Pharmacy, 28(1), 79-88.
AMA Öztürk C, Şen NB, Güzelmeriç E, Kırmızıbekmez H. Secondary metabolites from Scabiosa atropurpurea and their antioxidant and xanthine oxidase inhibitory activities. J. Res. Pharm. June 2025;28(1):79-88.
Chicago Öztürk, Ceren, Nisa Beril Şen, Etil Güzelmeriç, and Hasan Kırmızıbekmez. “Secondary Metabolites from Scabiosa Atropurpurea and Their Antioxidant and Xanthine Oxidase Inhibitory Activities”. Journal of Research in Pharmacy 28, no. 1 (June 2025): 79-88.
EndNote Öztürk C, Şen NB, Güzelmeriç E, Kırmızıbekmez H (June 1, 2025) Secondary metabolites from Scabiosa atropurpurea and their antioxidant and xanthine oxidase inhibitory activities. Journal of Research in Pharmacy 28 1 79–88.
IEEE C. Öztürk, N. B. Şen, E. Güzelmeriç, and H. Kırmızıbekmez, “Secondary metabolites from Scabiosa atropurpurea and their antioxidant and xanthine oxidase inhibitory activities”, J. Res. Pharm., vol. 28, no. 1, pp. 79–88, 2025.
ISNAD Öztürk, Ceren et al. “Secondary Metabolites from Scabiosa Atropurpurea and Their Antioxidant and Xanthine Oxidase Inhibitory Activities”. Journal of Research in Pharmacy 28/1 (June 2025), 79-88.
JAMA Öztürk C, Şen NB, Güzelmeriç E, Kırmızıbekmez H. Secondary metabolites from Scabiosa atropurpurea and their antioxidant and xanthine oxidase inhibitory activities. J. Res. Pharm. 2025;28:79–88.
MLA Öztürk, Ceren et al. “Secondary Metabolites from Scabiosa Atropurpurea and Their Antioxidant and Xanthine Oxidase Inhibitory Activities”. Journal of Research in Pharmacy, vol. 28, no. 1, 2025, pp. 79-88.
Vancouver Öztürk C, Şen NB, Güzelmeriç E, Kırmızıbekmez H. Secondary metabolites from Scabiosa atropurpurea and their antioxidant and xanthine oxidase inhibitory activities. J. Res. Pharm. 2025;28(1):79-88.