Research Article
BibTex RIS Cite
Year 2020, Volume: 24 Issue: 2, 218 - 224, 27.06.2025
https://doi.org/10.35333/jrp.2020.138

Abstract

References

  • [1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424. [CrossRef]
  • [2] Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK. Medicinal plants and cancer chemoprevention. Curr Drug Metab. 2008; 9(7): 581-591. [CrossRef]
  • [3] Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 2018; 19(11): 3533. [CrossRef]
  • [4] Hosoda N, Yatazawa M. Sterols, steroidal sapogenin and steroidal alkaloid in callus culture of Solanum laciniatum ait. Agric Biol Chem. 1979; 43(4): 821-825. [CrossRef]
  • [5] Indrayanto G. PhD Thesis. Steroide und triterpene in zellkulturen: untersuchungen mit zellkulturen von Solanum laciniatum Ait., Solanum Wrightii Bth. und Costus speciosus (Koen) Sm. Universität Tübingen, Germany, 1983.
  • [6] Suardi ML, Bernasconi S, Pelizzoni F, Racchi ML. In vitro cultures of Solanum malacoxylon Sendt.: nutritional requirements and sterol production. Plant Cell Tissue Organ Cult. 1994; 36(1): 9-14. [CrossRef]
  • [7] Sutarjadi I, Indrayanto G. Sterols in callus cultures of Solanum mammosum. Planta Med. 1986; 52(5): 413. [CrossRef]
  • [8] Indrayanto G, Sondakh R, Utami W, Syahrani A. Solanum mammosum: in vitro cultures and the production of secondary metabolites. In: Bajaj YPS. (ed). Biotechnology in Agriculture and Forestry. vol. 41. Medicinal and Aromatic Plants. vol. X. Springer, Berlin, 1998, pp. 394-414.
  • [9] Juliana S, Suciati, Indrayanto G. Sterol and triterpene profiles of the callus culture of Solanum mammosum. Makara J Sci. 2019; 23(2): 72-78. [CrossRef]
  • [10] Vanek T, Macek T, Benes I, Novotny L. Occurrence of betulinic acid in different callus cultures of Solanum aviculare. Phytochemistry. 1985; 24(12): 3064–3065. [CrossRef]
  • [11] Ikuta A, Kamiya K, Satake T, Saiki Y. Triterpenoids from callus cultures of Paeonia species. Phytochemistry. 1995; 38(5): 1203–1207. [CrossRef]
  • [12] Hayashi H, Hiraoka N, Ikeshiro Y. Differential regulation of soyasaponin and betulinic acid production by yeast extract in cultured licorice cells. Plant Biotechnol. 2005; 22(3): 241–244. [CrossRef]
  • [13] Srivastava P, Kasoju N, Bora U, Chaturvedi R. Accumulation of betulinic, oleanolic and ursolic acids in in vitro cell cultures of Lantana camara L. and their significant cytotoxic effects on HeLa cell lines. Biotechnol Bioproc E. 2010; 15(6): 1038–1046. [CrossRef]
  • [14] Yin Z, Shangguan X, Chen J, Zhao Q, Li D.) Growth and triterpenic acid accumulation of Cyclocarya paliurus cell suspension cultures. Biotechnol Bioproc E. 2013; 18 (3): 606–614. [CrossRef]
  • [15] Dzubak P, HajduchM, Vydra D, HustovaA, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006; 23(3):394–411. [CrossRef]
  • [16] Chowdhury AR, Mandal S, Goswami A, Ghosh M, Mandal L, Chakraborty D, Ganguly A, Tripathi G, Mukhopadhyay S, Bandyopadhyay S, Majumderi H. Dihydrobetulinic acid induces apoptosis in Leishmania donovani by targeting DNA topoisomerase I and II: implications in antileishmanial therapy. Mol Med. 2003; 9(1-2): 26–36. [CrossRef]
  • [17] Santos RC, Salvador JAR, Marín S, Cascante M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg Med Chem. 2009; 7(17):6241–6250. [CrossRef]
  • [18] Liby K, Honda T, Williams CR, Risingsong R, Royce DB, Suh N, Dinkova-Kostova AT, Stephenson KK, Talalay P, Sundararajan C, Gribble GW, Sporn MB. Novel semisynthetic analogues of betulinic acid with diverse cytoprotective, antiproliferative and proapoptotic activities. Mol Cancer Ther. 2007; 6(7): 2113–2119. [CrossRef]
  • [19] Puniani E, Cayer C, Kent P, Mullally M, Sánchez-Vindas P, Álvarez LP, Cal V,Merali Z, Arnason JT, Durst T. Ethnopharmacology of Souroubea sympetala and Souroubea gilgii (Marcgraviaceae) and identification of betulinic acid as an anxiolytic principle. Phytochemistry. 2015; 113: 73-78. [CrossRef]
  • [20] Cichewicz RH, Kouzi SA. Chemistry, biological activity and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev. 2004; 24(1): 90–114. [CrossRef]
  • [21] Fulda S, Jeremias I, Steiner HH, Pietsch T, Debatin KM. Betulinic acid: a new cytotoxic agent against malignant brain-tumor cells. Int J Cancer. 1999; 82(3): 435–441. [CrossRef]
  • [22] Laszczyk MN. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med. 2009; 75(15): 1549–1560. [CrossRef]
  • [23] Periasamy G, Teketelew G, Gebrelibanos M, Sintayehu B, Gebrehiwot M, Karim A, Geremedhin G. Betulinic acid and its derivatives as anti-cancer agent: a review. Arch Appl Sci Res. 2014; 6(3): 47–58.
  • [24] McCauley J, Zivanovic A, Skropeta, D. Bioassays for anticancer activities. Methods Mol Biol. 2013; 1055: 191-205. [CrossRef]
  • [25] Artun FT, Karagoz A, Ozcan G, Melikoglu G, Anil S, Kultur S, Sutlupinar N. In vitro anticancer and cytotoxic activities of some plant extracts on HeLa and Vero cell lines. J BIJON. 2016; 21(3): 720-725.
  • [26] Karan BN, Maity TK, Pal BC, Singha T, Jana S. Betulinic acid, the first lupane-type triterpenoid isolated via bioactivity-guided fractionation, and identified by spectroscopic analysis from leaves of Nyctanthes arbor-tristis: its potential biological activities in vitro assays. Nat Prod Res. 2019; 33(22): 3287-3292. [CrossRef]
  • [27] Khan MA, Ahamad T, Saquib M, Hussain MK, Khan MF. Unmodified household coffee maker assisted extraction and purification of anticancer agents from Dillenia indica fruits. Nat Prod Res. 2019; 28: 1-4. [CrossRef]
  • [28] Xu T, Pang Q, Wang Y, Yan X. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int J Mol Med. 2017; 40(6): 1669-1678. [CrossRef]
  • [29] Murthy K, Mishra S. TLC determination of betulinic acid from Nymphodies macrospermum: A new botanical source for tagara. Chroma. 2008; 68: 877-880. [CrossRef]
  • [30] Mukherjee D, Kumar NS, Khatua T, Mukherjee PK. Rapid validated HPTLC method for estimation of betulinic acid in Nelumbo nucifera (Nymphaeaceae) rhizome extract. Phytochem Anal. 2010; 21(6): 556-60. [CrossRef]
  • [31] Yuwono M, Indrayanto G. Validation of chromatographic methods of analysis. In: Brittain HG (ed). Profiles of Drug Substances, Excipients and Related Methodology. Academic Press, London, 2005, pp. 243-259. [CrossRef]
  • [32] Pandey H, Pandey P, Singh S, Gupta R, Banerjee S. Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation. Protoplasma. 2015; 252(2): 647-655. [CrossRef]
  • [33] Fresney, R.I, Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, John Wiley and Sons, New Jersey, USA 2010.

In vitro anticancer property of Solanum mammosum callus culture against HeLa and Vero cell lines

Year 2020, Volume: 24 Issue: 2, 218 - 224, 27.06.2025
https://doi.org/10.35333/jrp.2020.138

Abstract

Breast cancer and cervical cancer were ranked first and fourth of the leading cause of death of women in the world. One of natural compounds that was reported on having cytotoxic activity against various cancer cells with high selectivity is betulinic acid. In our previous study, it was found that the acetone extract of Solanum mammosum callus culture contains betulinic acid. The aims of the current study were firstly to investigate the anticancer activity of the acetone extract of S. mammosum as well as betulinic acid, and secondly to quantitatively determine the betulinic acid content in the acetone extract of S. mammosum culture. The anticancer activity was carried out using the MTT method against HeLa and Vero cells. The determination of betulinic acid content was done using the TLC densitometry method. The results showed that the acetone extract of S. mammosum gave anticancer activity against HeLa cancer cells with IC50 value of 120.5 μg/mL, however, it was less active compared to betulinic acid with IC50 of 19.3 μg/mL. Both samples were found to be non-toxic on Vero normal cells. Based on TLC densitometry, the acetone extract of S. mammosum contain 1.2% w/w betulinic acid.

References

  • [1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424. [CrossRef]
  • [2] Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, Bedi YS, Taneja SC, Bhat HK. Medicinal plants and cancer chemoprevention. Curr Drug Metab. 2008; 9(7): 581-591. [CrossRef]
  • [3] Lichota A, Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int J Mol Sci. 2018; 19(11): 3533. [CrossRef]
  • [4] Hosoda N, Yatazawa M. Sterols, steroidal sapogenin and steroidal alkaloid in callus culture of Solanum laciniatum ait. Agric Biol Chem. 1979; 43(4): 821-825. [CrossRef]
  • [5] Indrayanto G. PhD Thesis. Steroide und triterpene in zellkulturen: untersuchungen mit zellkulturen von Solanum laciniatum Ait., Solanum Wrightii Bth. und Costus speciosus (Koen) Sm. Universität Tübingen, Germany, 1983.
  • [6] Suardi ML, Bernasconi S, Pelizzoni F, Racchi ML. In vitro cultures of Solanum malacoxylon Sendt.: nutritional requirements and sterol production. Plant Cell Tissue Organ Cult. 1994; 36(1): 9-14. [CrossRef]
  • [7] Sutarjadi I, Indrayanto G. Sterols in callus cultures of Solanum mammosum. Planta Med. 1986; 52(5): 413. [CrossRef]
  • [8] Indrayanto G, Sondakh R, Utami W, Syahrani A. Solanum mammosum: in vitro cultures and the production of secondary metabolites. In: Bajaj YPS. (ed). Biotechnology in Agriculture and Forestry. vol. 41. Medicinal and Aromatic Plants. vol. X. Springer, Berlin, 1998, pp. 394-414.
  • [9] Juliana S, Suciati, Indrayanto G. Sterol and triterpene profiles of the callus culture of Solanum mammosum. Makara J Sci. 2019; 23(2): 72-78. [CrossRef]
  • [10] Vanek T, Macek T, Benes I, Novotny L. Occurrence of betulinic acid in different callus cultures of Solanum aviculare. Phytochemistry. 1985; 24(12): 3064–3065. [CrossRef]
  • [11] Ikuta A, Kamiya K, Satake T, Saiki Y. Triterpenoids from callus cultures of Paeonia species. Phytochemistry. 1995; 38(5): 1203–1207. [CrossRef]
  • [12] Hayashi H, Hiraoka N, Ikeshiro Y. Differential regulation of soyasaponin and betulinic acid production by yeast extract in cultured licorice cells. Plant Biotechnol. 2005; 22(3): 241–244. [CrossRef]
  • [13] Srivastava P, Kasoju N, Bora U, Chaturvedi R. Accumulation of betulinic, oleanolic and ursolic acids in in vitro cell cultures of Lantana camara L. and their significant cytotoxic effects on HeLa cell lines. Biotechnol Bioproc E. 2010; 15(6): 1038–1046. [CrossRef]
  • [14] Yin Z, Shangguan X, Chen J, Zhao Q, Li D.) Growth and triterpenic acid accumulation of Cyclocarya paliurus cell suspension cultures. Biotechnol Bioproc E. 2013; 18 (3): 606–614. [CrossRef]
  • [15] Dzubak P, HajduchM, Vydra D, HustovaA, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 2006; 23(3):394–411. [CrossRef]
  • [16] Chowdhury AR, Mandal S, Goswami A, Ghosh M, Mandal L, Chakraborty D, Ganguly A, Tripathi G, Mukhopadhyay S, Bandyopadhyay S, Majumderi H. Dihydrobetulinic acid induces apoptosis in Leishmania donovani by targeting DNA topoisomerase I and II: implications in antileishmanial therapy. Mol Med. 2003; 9(1-2): 26–36. [CrossRef]
  • [17] Santos RC, Salvador JAR, Marín S, Cascante M. Novel semisynthetic derivatives of betulin and betulinic acid with cytotoxic activity. Bioorg Med Chem. 2009; 7(17):6241–6250. [CrossRef]
  • [18] Liby K, Honda T, Williams CR, Risingsong R, Royce DB, Suh N, Dinkova-Kostova AT, Stephenson KK, Talalay P, Sundararajan C, Gribble GW, Sporn MB. Novel semisynthetic analogues of betulinic acid with diverse cytoprotective, antiproliferative and proapoptotic activities. Mol Cancer Ther. 2007; 6(7): 2113–2119. [CrossRef]
  • [19] Puniani E, Cayer C, Kent P, Mullally M, Sánchez-Vindas P, Álvarez LP, Cal V,Merali Z, Arnason JT, Durst T. Ethnopharmacology of Souroubea sympetala and Souroubea gilgii (Marcgraviaceae) and identification of betulinic acid as an anxiolytic principle. Phytochemistry. 2015; 113: 73-78. [CrossRef]
  • [20] Cichewicz RH, Kouzi SA. Chemistry, biological activity and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev. 2004; 24(1): 90–114. [CrossRef]
  • [21] Fulda S, Jeremias I, Steiner HH, Pietsch T, Debatin KM. Betulinic acid: a new cytotoxic agent against malignant brain-tumor cells. Int J Cancer. 1999; 82(3): 435–441. [CrossRef]
  • [22] Laszczyk MN. Pentacyclic triterpenes of the lupane, oleanane and ursane group as tools in cancer therapy. Planta Med. 2009; 75(15): 1549–1560. [CrossRef]
  • [23] Periasamy G, Teketelew G, Gebrelibanos M, Sintayehu B, Gebrehiwot M, Karim A, Geremedhin G. Betulinic acid and its derivatives as anti-cancer agent: a review. Arch Appl Sci Res. 2014; 6(3): 47–58.
  • [24] McCauley J, Zivanovic A, Skropeta, D. Bioassays for anticancer activities. Methods Mol Biol. 2013; 1055: 191-205. [CrossRef]
  • [25] Artun FT, Karagoz A, Ozcan G, Melikoglu G, Anil S, Kultur S, Sutlupinar N. In vitro anticancer and cytotoxic activities of some plant extracts on HeLa and Vero cell lines. J BIJON. 2016; 21(3): 720-725.
  • [26] Karan BN, Maity TK, Pal BC, Singha T, Jana S. Betulinic acid, the first lupane-type triterpenoid isolated via bioactivity-guided fractionation, and identified by spectroscopic analysis from leaves of Nyctanthes arbor-tristis: its potential biological activities in vitro assays. Nat Prod Res. 2019; 33(22): 3287-3292. [CrossRef]
  • [27] Khan MA, Ahamad T, Saquib M, Hussain MK, Khan MF. Unmodified household coffee maker assisted extraction and purification of anticancer agents from Dillenia indica fruits. Nat Prod Res. 2019; 28: 1-4. [CrossRef]
  • [28] Xu T, Pang Q, Wang Y, Yan X. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int J Mol Med. 2017; 40(6): 1669-1678. [CrossRef]
  • [29] Murthy K, Mishra S. TLC determination of betulinic acid from Nymphodies macrospermum: A new botanical source for tagara. Chroma. 2008; 68: 877-880. [CrossRef]
  • [30] Mukherjee D, Kumar NS, Khatua T, Mukherjee PK. Rapid validated HPTLC method for estimation of betulinic acid in Nelumbo nucifera (Nymphaeaceae) rhizome extract. Phytochem Anal. 2010; 21(6): 556-60. [CrossRef]
  • [31] Yuwono M, Indrayanto G. Validation of chromatographic methods of analysis. In: Brittain HG (ed). Profiles of Drug Substances, Excipients and Related Methodology. Academic Press, London, 2005, pp. 243-259. [CrossRef]
  • [32] Pandey H, Pandey P, Singh S, Gupta R, Banerjee S. Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation. Protoplasma. 2015; 252(2): 647-655. [CrossRef]
  • [33] Fresney, R.I, Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications, John Wiley and Sons, New Jersey, USA 2010.
There are 33 citations in total.

Details

Primary Language English
Subjects Pharmacognosy
Journal Section Articles
Authors

Suciati Suciati

Lusiana Arifianti

Andiena Elsafira

Lovely Q. Ilmiah

Publication Date June 27, 2025
Published in Issue Year 2020 Volume: 24 Issue: 2

Cite

APA Suciati, S., Arifianti, L., Elsafira, A., Q. Ilmiah, L. (2025). In vitro anticancer property of Solanum mammosum callus culture against HeLa and Vero cell lines. Journal of Research in Pharmacy, 24(2), 218-224. https://doi.org/10.35333/jrp.2020.138
AMA Suciati S, Arifianti L, Elsafira A, Q. Ilmiah L. In vitro anticancer property of Solanum mammosum callus culture against HeLa and Vero cell lines. J. Res. Pharm. June 2025;24(2):218-224. doi:10.35333/jrp.2020.138
Chicago Suciati, Suciati, Lusiana Arifianti, Andiena Elsafira, and Lovely Q. Ilmiah. “In Vitro Anticancer Property of Solanum Mammosum Callus Culture Against HeLa and Vero Cell Lines”. Journal of Research in Pharmacy 24, no. 2 (June 2025): 218-24. https://doi.org/10.35333/jrp.2020.138.
EndNote Suciati S, Arifianti L, Elsafira A, Q. Ilmiah L (June 1, 2025) In vitro anticancer property of Solanum mammosum callus culture against HeLa and Vero cell lines. Journal of Research in Pharmacy 24 2 218–224.
IEEE S. Suciati, L. Arifianti, A. Elsafira, and L. Q. Ilmiah, “In vitro anticancer property of Solanum mammosum callus culture against HeLa and Vero cell lines”, J. Res. Pharm., vol. 24, no. 2, pp. 218–224, 2025, doi: 10.35333/jrp.2020.138.
ISNAD Suciati, Suciati et al. “In Vitro Anticancer Property of Solanum Mammosum Callus Culture Against HeLa and Vero Cell Lines”. Journal of Research in Pharmacy 24/2 (June 2025), 218-224. https://doi.org/10.35333/jrp.2020.138.
JAMA Suciati S, Arifianti L, Elsafira A, Q. Ilmiah L. In vitro anticancer property of Solanum mammosum callus culture against HeLa and Vero cell lines. J. Res. Pharm. 2025;24:218–224.
MLA Suciati, Suciati et al. “In Vitro Anticancer Property of Solanum Mammosum Callus Culture Against HeLa and Vero Cell Lines”. Journal of Research in Pharmacy, vol. 24, no. 2, 2025, pp. 218-24, doi:10.35333/jrp.2020.138.
Vancouver Suciati S, Arifianti L, Elsafira A, Q. Ilmiah L. In vitro anticancer property of Solanum mammosum callus culture against HeLa and Vero cell lines. J. Res. Pharm. 2025;24(2):218-24.