Research Article
BibTex RIS Cite
Year 2020, Volume: 24 Issue: 2, 297 - 309, 27.06.2025
https://doi.org/10.35333/jrp.2020.146

Abstract

References

  • [1] Guner A, Ozhatay N, Ekim T, Baser KHC. Flora of Turkey and the East Aegean Islands 11. Edinburgh, Edinburgh University Press, UK 2000.
  • [2] Baytop T. Tükçe Bitki Adları Sözlüğü/ Dictionary of Plant Names in Turkish. Türk Tarih Kurumu Basımevi, Ankara 1994.
  • [3] Ertas A, Boga M, Hasimi N, Yilmaz MA. Fatty acid and essential oil compositions of Trifolium angustifoliumvar. angustifoliumwith antioxidant, anticholinesterase and antimicrobialactivities. Iran J Pharm Sci. 2015a; 14(1): 233-241.
  • [4] Ertas A, Boga, M, Yilmaz MA, Yesil Y, Temel H, Hasimi N, Gazioglu I, Ozturk M, Ugurlu P. A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Ind Crops Prod. 2015b; 67: 336-345. [CrossRef]
  • [5] Martinez-Cruz O, Paredes-Lopez O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra-high performance liquid chromatography. J Chromatogr A. 2014; 1346: 43-48. [CrossRef]
  • [6] Erdoğan-Orhan I, Sezer-Senol F, Ozturk N, Akaydin G, Sener B. Profiling of in vitro neurobiological effects and phenolic acids of selected endemic Salvia species. Food Chem. 2012; 132(3): 1360-1367. [CrossRef]
  • [7] Topçu G, Ertas A, Kolak U, Ozturk M, Ulubelen A. Antioxidant activity tests on novel triterpenoids from Salvia macrochlamys. Arkivoc. 2007; 7: 195–208.
  • [8] Fırat M. Ferhenga Navên Riwekên Bi Kurdî/Kürtçe Bitki Adları Sözlüğü/ Dictionary of Plant Names in Kurdish. Kalkan Ofset. Ankara 2013.
  • [9] Abugassa IO, Bashir AT, Doubali K, Etwir RH, Abu-Enawel M, Abugassa SO. Characterization of trace elements in medicinal herbs by instrumental neutron activation analysis. J Radioanal Nucl Chem. 2008; 278: 559–563. [CrossRef]
  • [10] Karadas C, Kara D. Chemometric approach to evaluate trace metal concentrations in some spices and herbs. Food Chem. 2012; 130: 196–202. [CrossRef]
  • [11] Tokalıoglu S. Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem. 2012; 134: 2504–2508. [CrossRef]
  • [12] Klaric DA, Klaric I, Mornar A, Velic D, Velic, N. Blackberry wines mineral and heavy metal content determination after dry ashing: multivariate data analysis as a tool for fruit wine quality control. Int J Food Sci Nutr. 2016; 67(5): 514-523. [CrossRef]
  • 13] Maiga A, Diallo D, Bye R. Paulsen BS. Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agr Food Chem. 2005; 53: 2316–2321. [CrossRef]
  • [14] Basgel S, Erdemoglu SB. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ. 2006; 359: 82–89. [CrossRef]
  • [15] Giacomino A, Abollino O, Casanova C, La Gioia C, Magi E, Malandrino M. Determination of the total and bioaccessible contents of essential and potentially toxic elements in ayurvedic formulations purchased from different commercial channels. Microchem J. 2015; 120: 6–17. [CrossRef]
  • [16] Bin C, Xiaouru W, Lee FSC. Pyrolysis coupled with atomi absorption spectrometry for determination of mercury in Chinese medicinal materials. Anal Chim Acta. 2001; 447: 161–9. [CrossRef]
  • [17] Sołtyk K, Fijałek Z. Inductively-coupled plasma mass spectrometric (ICP-MS) and graphite-furnace atomic absorption spectrometric (GF-AAS) determinations of arsenic, cadmium and lead impurities in medicinal herbal raw materials. Chem Anal. 2000; 45: 879–886.
  • [18] Abou-Arab AAK, Abou Donia MA. Heavy metals in Egyptian spices and medicinal plants and the effect of processing on their levels. J Agr Food Chem. 2000; 48(6): 2300–2304. [CrossRef]
  • [19] Chizzola R, Michitsch H, Franz C. Monitoring of metallic micronutrients and heavy metals in herbs, spices and medicinal plants from Austria. Eur Food Res Technol. 2003; 216: 407–411. [CrossRef]
  • [20] Mendil D, Karatas M, Tuzen M. Separation and preconcentration of Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) ions with coprecipitation method without carrier element and their determination in food and water samples. Food Chem. 2015; 177: 320–324. [CrossRef]
  • [21] Szymczycha-Madeja A, Welna M, Pohl P. Comparison and Validation of Different Alternative Sample Preparation Procedures of Tea Infusions Prior to Their Multi-Element Analysis by FAAS and ICP OES. Food Anal Methods. 2016; 9: 1398–1411. [CrossRef]
  • [22] Shen Y, Zheng C, Jiang X, Wu X, Hou X. Integration of hydride generation and photochemical vapor generation for multi-element analysis of traditional Chinese medicine by ICP-OES. Microchem J. 2015; 123: 164–169. [CrossRef]
  • [23] Szymczycha-Madeja A, Welna M, Pohl P. Determination of essential and non-essential elements in green and black teas by FAAS and ICP-OES simplified–multivariate classification of different tea products. Microchem J. 2015; 121: 122–129. [CrossRef]
  • [24] AL-Oud SS. Heavy metal contents in tea and herb leaves. Pak J Biol Sci. 2003; 6(3): 208–212.
  • [25] Nookabkaew S, Rangkadilok N, Satayavivad J. Determination of trace elements in herbal tea products and their infusions consumed in Thailand. J Agr Food Chem. 2006; 54: 6939–6944. [CrossRef]
  • [26] Bora T, Aksoy C, Tunay Z, Aydın F. Determination of trace elements in illicit spice samples by using ICP-MS. Microchem J. 2015, 123, 179–184. [CrossRef]
  • [27] Nia Z, Zhenchao C, Ruiliang B, Fubin T. Determination of Trace Elements in Dendrobium Officinale Cultivated in Various Conditions. Anal Lett. 2018; 51 (5): 648–658. [CrossRef]
  • [28] Diraman H, Cam M, Ozder Y. Yabancı Ülke Kökenli Natürel Zeytinyağlarının Yağ Asitleri ve Triaçilgliserol Bileşenlerine Göre Kemometrik Sınıflandırılması, Gıda Teknolojileri Elektronik Dergisi, Cilt: 4, No: 2:22-34, 2009.
  • [29] Vlaisavljevic S, Martinez MC, Stojanovic A, Martinez-Huelamo M, Grung B, Raventos RML. Characterisation of bioactive compounds and assessment of antioxidant activity of different traditional Lycopersicum esculentum L. varieties: chemometric analysis. Int J Food Sci Nutr. 2019; 70(7): 813–824. [CrossRef]
  • [30] Belitz H, Grosch W, Schieberle P. Food Chemistry (3rd ed.) Springer, Berlin 2009.
  • [31] WHO. International Programme On Chemical Safety. Assessing Human Health Risks of Chemicals: Derivation Of Guidance Values For Health-Based Exposure Limits. World Health Organization, (Environmental Health Criteria 170), Geneva 1994.

Trace element analysis in some Salvia species by inductively coupled plasma-mass spectrometry (ICP-MS) and chemometric approach

Year 2020, Volume: 24 Issue: 2, 297 - 309, 27.06.2025
https://doi.org/10.35333/jrp.2020.146

Abstract

In this study, the stems, leaves, flowers, roots and mixed all parts of five Salvia species were analyzed for their trace element (Li, Be, V, Cr, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Ag, Cd, Cs, Ba, Hg, Tl, Pb, and U) contents using ICP-MS. The seeds, roots leaves, flowers, and mixed parts of each species were digested by concentrated nitric acid and hydrogen peroxide in a microwave by before ICP-MS the analysis. The accuracy and precision of the method were evaluated by CRM 1573a Tomato Leaves. Trace element contents in different parts of each sample were compared. Concentration of toxic elements (As, Cd, Hg and Pb) were lower than those declared by WHO, except Cr content. Cr content in the root sections of Salvia suffruticosa (SFR), S. hydrangea (SHR), S. trichoclada (STR), S. xanthocheila (SXR), leaf samples of S. kronenburgii (SKL) and S. xanthocheila (SXL). also the Cr content in the leaf sections of Salvia kronenburgii (SKL) Salvia xanthocheila (SXL) was found high. When consider the daily metal (Zn, Cu, Sr, Ba and Ni ) needs It was concluded that these Salvia species can be nutritive sources. In addition, Salvia samples were classified by utilizing chemometric techniques such as Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). While the first two main components explained 55.30% of the total variance, the first six main components explained 89.60% of total variance

References

  • [1] Guner A, Ozhatay N, Ekim T, Baser KHC. Flora of Turkey and the East Aegean Islands 11. Edinburgh, Edinburgh University Press, UK 2000.
  • [2] Baytop T. Tükçe Bitki Adları Sözlüğü/ Dictionary of Plant Names in Turkish. Türk Tarih Kurumu Basımevi, Ankara 1994.
  • [3] Ertas A, Boga M, Hasimi N, Yilmaz MA. Fatty acid and essential oil compositions of Trifolium angustifoliumvar. angustifoliumwith antioxidant, anticholinesterase and antimicrobialactivities. Iran J Pharm Sci. 2015a; 14(1): 233-241.
  • [4] Ertas A, Boga, M, Yilmaz MA, Yesil Y, Temel H, Hasimi N, Gazioglu I, Ozturk M, Ugurlu P. A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Ind Crops Prod. 2015b; 67: 336-345. [CrossRef]
  • [5] Martinez-Cruz O, Paredes-Lopez O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra-high performance liquid chromatography. J Chromatogr A. 2014; 1346: 43-48. [CrossRef]
  • [6] Erdoğan-Orhan I, Sezer-Senol F, Ozturk N, Akaydin G, Sener B. Profiling of in vitro neurobiological effects and phenolic acids of selected endemic Salvia species. Food Chem. 2012; 132(3): 1360-1367. [CrossRef]
  • [7] Topçu G, Ertas A, Kolak U, Ozturk M, Ulubelen A. Antioxidant activity tests on novel triterpenoids from Salvia macrochlamys. Arkivoc. 2007; 7: 195–208.
  • [8] Fırat M. Ferhenga Navên Riwekên Bi Kurdî/Kürtçe Bitki Adları Sözlüğü/ Dictionary of Plant Names in Kurdish. Kalkan Ofset. Ankara 2013.
  • [9] Abugassa IO, Bashir AT, Doubali K, Etwir RH, Abu-Enawel M, Abugassa SO. Characterization of trace elements in medicinal herbs by instrumental neutron activation analysis. J Radioanal Nucl Chem. 2008; 278: 559–563. [CrossRef]
  • [10] Karadas C, Kara D. Chemometric approach to evaluate trace metal concentrations in some spices and herbs. Food Chem. 2012; 130: 196–202. [CrossRef]
  • [11] Tokalıoglu S. Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem. 2012; 134: 2504–2508. [CrossRef]
  • [12] Klaric DA, Klaric I, Mornar A, Velic D, Velic, N. Blackberry wines mineral and heavy metal content determination after dry ashing: multivariate data analysis as a tool for fruit wine quality control. Int J Food Sci Nutr. 2016; 67(5): 514-523. [CrossRef]
  • 13] Maiga A, Diallo D, Bye R. Paulsen BS. Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agr Food Chem. 2005; 53: 2316–2321. [CrossRef]
  • [14] Basgel S, Erdemoglu SB. Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ. 2006; 359: 82–89. [CrossRef]
  • [15] Giacomino A, Abollino O, Casanova C, La Gioia C, Magi E, Malandrino M. Determination of the total and bioaccessible contents of essential and potentially toxic elements in ayurvedic formulations purchased from different commercial channels. Microchem J. 2015; 120: 6–17. [CrossRef]
  • [16] Bin C, Xiaouru W, Lee FSC. Pyrolysis coupled with atomi absorption spectrometry for determination of mercury in Chinese medicinal materials. Anal Chim Acta. 2001; 447: 161–9. [CrossRef]
  • [17] Sołtyk K, Fijałek Z. Inductively-coupled plasma mass spectrometric (ICP-MS) and graphite-furnace atomic absorption spectrometric (GF-AAS) determinations of arsenic, cadmium and lead impurities in medicinal herbal raw materials. Chem Anal. 2000; 45: 879–886.
  • [18] Abou-Arab AAK, Abou Donia MA. Heavy metals in Egyptian spices and medicinal plants and the effect of processing on their levels. J Agr Food Chem. 2000; 48(6): 2300–2304. [CrossRef]
  • [19] Chizzola R, Michitsch H, Franz C. Monitoring of metallic micronutrients and heavy metals in herbs, spices and medicinal plants from Austria. Eur Food Res Technol. 2003; 216: 407–411. [CrossRef]
  • [20] Mendil D, Karatas M, Tuzen M. Separation and preconcentration of Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) ions with coprecipitation method without carrier element and their determination in food and water samples. Food Chem. 2015; 177: 320–324. [CrossRef]
  • [21] Szymczycha-Madeja A, Welna M, Pohl P. Comparison and Validation of Different Alternative Sample Preparation Procedures of Tea Infusions Prior to Their Multi-Element Analysis by FAAS and ICP OES. Food Anal Methods. 2016; 9: 1398–1411. [CrossRef]
  • [22] Shen Y, Zheng C, Jiang X, Wu X, Hou X. Integration of hydride generation and photochemical vapor generation for multi-element analysis of traditional Chinese medicine by ICP-OES. Microchem J. 2015; 123: 164–169. [CrossRef]
  • [23] Szymczycha-Madeja A, Welna M, Pohl P. Determination of essential and non-essential elements in green and black teas by FAAS and ICP-OES simplified–multivariate classification of different tea products. Microchem J. 2015; 121: 122–129. [CrossRef]
  • [24] AL-Oud SS. Heavy metal contents in tea and herb leaves. Pak J Biol Sci. 2003; 6(3): 208–212.
  • [25] Nookabkaew S, Rangkadilok N, Satayavivad J. Determination of trace elements in herbal tea products and their infusions consumed in Thailand. J Agr Food Chem. 2006; 54: 6939–6944. [CrossRef]
  • [26] Bora T, Aksoy C, Tunay Z, Aydın F. Determination of trace elements in illicit spice samples by using ICP-MS. Microchem J. 2015, 123, 179–184. [CrossRef]
  • [27] Nia Z, Zhenchao C, Ruiliang B, Fubin T. Determination of Trace Elements in Dendrobium Officinale Cultivated in Various Conditions. Anal Lett. 2018; 51 (5): 648–658. [CrossRef]
  • [28] Diraman H, Cam M, Ozder Y. Yabancı Ülke Kökenli Natürel Zeytinyağlarının Yağ Asitleri ve Triaçilgliserol Bileşenlerine Göre Kemometrik Sınıflandırılması, Gıda Teknolojileri Elektronik Dergisi, Cilt: 4, No: 2:22-34, 2009.
  • [29] Vlaisavljevic S, Martinez MC, Stojanovic A, Martinez-Huelamo M, Grung B, Raventos RML. Characterisation of bioactive compounds and assessment of antioxidant activity of different traditional Lycopersicum esculentum L. varieties: chemometric analysis. Int J Food Sci Nutr. 2019; 70(7): 813–824. [CrossRef]
  • [30] Belitz H, Grosch W, Schieberle P. Food Chemistry (3rd ed.) Springer, Berlin 2009.
  • [31] WHO. International Programme On Chemical Safety. Assessing Human Health Risks of Chemicals: Derivation Of Guidance Values For Health-Based Exposure Limits. World Health Organization, (Environmental Health Criteria 170), Geneva 1994.
There are 31 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Zeki Tunay

İsmail Yener

Elif Varhan Oral

Aslı Barla Demirkoz

Özge Tokul-ölmez

Mehmet Fırat

Mehmet Öztürk

Işıl Aydın

Fırat Aydın

Abdulselam Ertaş

Publication Date June 27, 2025
Published in Issue Year 2020 Volume: 24 Issue: 2

Cite

APA Tunay, Z., Yener, İ., Varhan Oral, E., Barla Demirkoz, A., et al. (2025). Trace element analysis in some Salvia species by inductively coupled plasma-mass spectrometry (ICP-MS) and chemometric approach. Journal of Research in Pharmacy, 24(2), 297-309. https://doi.org/10.35333/jrp.2020.146
AMA Tunay Z, Yener İ, Varhan Oral E, Barla Demirkoz A, Tokul-ölmez Ö, Fırat M, Öztürk M, Aydın I, Aydın F, Ertaş A. Trace element analysis in some Salvia species by inductively coupled plasma-mass spectrometry (ICP-MS) and chemometric approach. J. Res. Pharm. June 2025;24(2):297-309. doi:10.35333/jrp.2020.146
Chicago Tunay, Zeki, İsmail Yener, Elif Varhan Oral, Aslı Barla Demirkoz, Özge Tokul-ölmez, Mehmet Fırat, Mehmet Öztürk, Işıl Aydın, Fırat Aydın, and Abdulselam Ertaş. “Trace Element Analysis in Some Salvia Species by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Chemometric Approach”. Journal of Research in Pharmacy 24, no. 2 (June 2025): 297-309. https://doi.org/10.35333/jrp.2020.146.
EndNote Tunay Z, Yener İ, Varhan Oral E, Barla Demirkoz A, Tokul-ölmez Ö, Fırat M, Öztürk M, Aydın I, Aydın F, Ertaş A (June 1, 2025) Trace element analysis in some Salvia species by inductively coupled plasma-mass spectrometry (ICP-MS) and chemometric approach. Journal of Research in Pharmacy 24 2 297–309.
IEEE Z. Tunay, “Trace element analysis in some Salvia species by inductively coupled plasma-mass spectrometry (ICP-MS) and chemometric approach”, J. Res. Pharm., vol. 24, no. 2, pp. 297–309, 2025, doi: 10.35333/jrp.2020.146.
ISNAD Tunay, Zeki et al. “Trace Element Analysis in Some Salvia Species by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Chemometric Approach”. Journal of Research in Pharmacy 24/2 (June 2025), 297-309. https://doi.org/10.35333/jrp.2020.146.
JAMA Tunay Z, Yener İ, Varhan Oral E, Barla Demirkoz A, Tokul-ölmez Ö, Fırat M, Öztürk M, Aydın I, Aydın F, Ertaş A. Trace element analysis in some Salvia species by inductively coupled plasma-mass spectrometry (ICP-MS) and chemometric approach. J. Res. Pharm. 2025;24:297–309.
MLA Tunay, Zeki et al. “Trace Element Analysis in Some Salvia Species by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Chemometric Approach”. Journal of Research in Pharmacy, vol. 24, no. 2, 2025, pp. 297-09, doi:10.35333/jrp.2020.146.
Vancouver Tunay Z, Yener İ, Varhan Oral E, Barla Demirkoz A, Tokul-ölmez Ö, Fırat M, Öztürk M, Aydın I, Aydın F, Ertaş A. Trace element analysis in some Salvia species by inductively coupled plasma-mass spectrometry (ICP-MS) and chemometric approach. J. Res. Pharm. 2025;24(2):297-309.