Research Article
BibTex RIS Cite

Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease

Year 2023, Volume: 27 Issue: 6, 2199 - 2209, 28.06.2025

Abstract

Many molecular modeling methods have been used for the discovery of new drugs and compounds. Human acetylcholinesterase (AchE), an important target for therapeutic drugs, is docked with AutoDock Vina software embedded in the UCSF Chimera, together with current drug ligands used in the treatment of Alzheimer’s disease and phytochemicals that slow the onset and progression of the disease. Considering protein ligand interactions, affinities and molecular properties, the variance map of the simulated quercetin-AchE complex yielded reasonable results with the molecular dynamics simulation program iMod server, and it can be said that this structure has the potential to act as an inhibitor.

References

  • [1] D'Onofrio G, Sancarlo D, Ruan Q, Yu Z, Panza F, Daniele A, Greco A, Seripa D. Phytochemicals in the Treatment of Alzheimer's Disease: A Systematic Review. Curr Drug Targets. 2017;18(13):1487-1498. doi:10.2174/1389450117666161102121553.
  • [2] Marucci G, Buccioni M, Ben DD, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer's disease. Neuropharmacology. 2021 Jun 1;190:108352. doi: 10.1016/j.neuropharm.2020.108352.
  • [3] Kim MH, Kim SH, Yang WM. Mechanisms of action of phytochemicals from medicinal herbs in the treatment of Alzheimer's disease. Planta Med. 2014 Oct;80(15):1249-58. doi: 10.1055/s-0034-1383038.
  • [4] Al-Shabib NA, Khan JM, Malik A, Alsenaidy A, Rehman MT, AlAjmi MF, Alsenaidy AM, Husain FM, Khan RH. Molecular insight into binding behavior of polyphenol (rutin) with beta lactoglobulin: Spectroscopic, molecular docking and MD simulation studies. 2018; 269: 511-520. https://doi.org/10.1016/j.molliq.2018.07.122.
  • [5] Kelleci Çelik F, Karaduman G. In silico QSAR modeling to predict the safe use of antibiotics during pregnancy. Drug Chem Toxicol. 2022 Aug 22:1-10. doi: 10.1080/01480545.2022.2113888.
  • [6] Shah MS, Najam-Ul-Haq M, Shah HS, Farooq Rizvi SU, Iqbal J. Quinoline containing chalcone derivatives as cholinesterase inhibitors and their in silico modeling studies. Comput Biol Chem. 2018 Oct;76:310-317. doi: 10.1016/j.compbiolchem.2018.08.003.
  • [7] Singh SP, Gupta D. Discovery of potential inhibitor against human acetylcholinesterase: a molecular docking and molecular dynamics investigation. Comput Biol Chem. 2017 Jun;68:224-230. doi: 10.1016/j.compbiolchem.2017.04.002.
  • [8] Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, Ashraf M, Shahid M, Seo SY. 2-Furoic piperazide derivatives as promising drug candidates of type 2 diabetes and Alzheimer's diseases: In vitro and in silico studies. Comput Biol Chem. 2018 Dec;77:72-86. doi: 10.1016/j.compbiolchem.2018.09.007.
  • [9] Manouchehrizadeh E, Mostoufi A, Tahanpesar E, Fereidoonnezhad M. Alignment-independent 3D-QSAR and molecular docking studies of tacrine-4-oxo-4H-Chromene hybrids as anti-Alzheimer's agents. Comput Biol Chem. 2019 Jun;80:463-471. doi: 10.1016/j.compbiolchem.2019.05.010.
  • [10] Pourshojaei Y, Abiri A, Eskandari R, Dourandish F, Eskandari K, Asadipour A. Synthesis, biological evaluation, and computational studies of novel fused six-membered O-containing heterocycles as potential acetylcholinesterase inhibitors. Comput Biol Chem. 2019 Jun;80:249-258. doi: 10.1016/j.compbiolchem.
  • [11] de Souza LG, Moraes PF, Leão RAC, Costa PRR, Soares RO, Pascutti PG, Figueroa-Villar JD, Rennó MN. Theoretical studies and NMR assay of coumarins and neoflavanones derivatives as potential inhibitors of acetylcholinesterase. Comput Biol Chem. 2020 May 29;87:107293. doi: 10.1016/j.compbiolchem.2020.107293.
  • [12] Kumar V, Saha A, Roy K. In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer's disease. Comput Biol Chem. 2020 Oct;88:107355. doi: 10.1016/j.compbiolchem.2020.107355.
  • [13] Bousada GM, de Sousa BL, Furlani G, Agrizzi AP, Ferreira PG, Leite JPV, Mendes TAO, Varejão EVV, Pilau EJ, Dos Santos MH. Tyrosol 1,2,3-triazole analogues as new acetylcholinesterase (AChE) inhibitors. Comput Biol Chem. 2020 Oct;88:107359. doi: 10.1016/j.compbiolchem.
  • [14] Anwar F, Saleem U, Ahmad B, Ashraf M, Rehman AU, Froeyen M, Kee LY, Abdullah I, Mirza MU, Ahmad S. New naphthalene derivative for cost-effective AChE inhibitors for Alzheimer's treatment: In silico identification, in vitro and in vivo validation. Comput Biol Chem. 2020 Dec;89:107378. doi: 10.1016/j.compbiolchem.2020.107378.
  • [15] Morris GM and Lim-Wilby M. Molecular Docking. In Molecular modeling of proteins. Humana Press. 2008; pp 365-382.
  • [16] Çelik S, Demirag AD, Coşgun AO, Özel A, Akyüz S. Computational Investigation of the Interaction Mechanism of Some anti-Alzheimer Drugs with the Acetylcholinesterase Enzyme. OJN. 2023; 8(1): 11-21. doi:10.56171/ojn.1109606.
  • [17] Ruangritchankul S, Chantharit P, Srisuma S, Gray LC. Adverse Drug Reactions of Acetylcholinesterase Inhibitors in Older People Living with Dementia: A Comprehensive Literature Review. Ther Clin Risk Manag. 2021 Sep 4;17:927-949. doi: 10.2147/TCRM.S323387.
  • [18] Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012 Nov 26;55(22):10282-86. doi: 10.1021/jm300871x.
  • [19] Xu Y, Colletier JP, Weik M, Jiang H, Moult J, Silman I, Sussman JL. Flexibility of aromatic residues in the active-site gorge of acetylcholinesterase: X-ray versus molecular dynamics. Biophys J. 2008 Sep;95(5):2500-11. doi: 10.1529/biophysj.108.129601
  • [20] Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-Target-Directed Ligands as an Effective Strategy for the Treatment of Alzheimer's Disease. Curr Med Chem. 2022;29(10):1757-1803. doi: 10.2174/0929867328666210512005508.
  • [21] Xie Y, Yang W, Chen X, Xiao J. Inhibition of flavonoids on acetylcholine esterase: binding and structure-activity relationship. Food Funct. 2014 Oct;5(10):2582-9. doi: 10.1039/c4fo00287c. [22] Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004 Dec;1(4):337-41. doi: 10.1016/j.ddtec.2004.11.007.
  • [23] Misik J, Nepovimova E, Pejchal J, Kassa J, Korabecny J, Soukup O. Cholinesterase Inhibitor 6-Chlorotacrine - In Vivo Toxicological Profile and Behavioural Effects. Curr Alzheimer Res. 2018;15(6):552-560. doi: 10.2174/1567205015666171212105412.
  • [24] Sullivan M, Follis RH Jr, Hilgartner M. Toxicology of podophyllin. Proc Soc Exp Biol Med. 1951 Jun;77(2):269-72. doi: 10.3181/00379727-77-18746.
  • [25] Michael McClain R, Wolz E, Davidovich A, Pfannkuch F, Edwards JA, Bausch J. Acute, subchronic and chronic safety studies with genistein in rats. Food Chem Toxicol. 2006 Jan;44(1):56-80. doi: 10.1016/j.fct.2005.05.021.
  • [26] Michael McClain R, Wolz E, Davidovich A, Bausch J. Genetic toxicity studies with genistein. Food Chem Toxicol. 2006 Jan;44(1):42-55. doi: 10.1016/j.fct.2005.06.004.
  • [27] Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012 Nov 26;55(22):10282-6. doi: 10.1021/jm300871x.
  • [28] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004 Oct;25(13):1605-12. doi: 10.1002/jcc.20084.
  • [29] Goddard TD, Huang CC, Ferrin TE. Visualizing density maps with UCSF Chimera. J Struct Biol. 2007 Jan;157(1):281-7. doi: 10.1016/j.jsb.2006.06.010.
  • [30] Butt SS, Badshah Y, Shabbir M, Rafiq M. Molecular Docking Using Chimera and AutDock Vina Software for Nonbioinformaticians JMIR Bioinform Biotech 2020;1(1):e14232 doi: 10.2196/14232.
  • [31] Del Águila Conde M, Febbraio F. Risk assessment of honey bee stressors based on in silico analysis of molecular interactions. EFSA J. 2022 Dec 14;20(Suppl 2):e200912. doi: 10.2903/j.efsa.2022.
  • [32] Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015 Jul 22;20(7):13384-421. doi: 10.3390/molecules200713384.
  • [33] Sandeep G, Nagasree KP, Hanisha M, Kumar MM. AUDocker LE: A GUI for virtual screening with AUTODOCK Vina. BMC Res Notes. 2011 Oct 25;4:445. doi: 10.1186/1756-0500-4-445.
  • [34] Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, Schroeder M. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021 Jul 2;49(W1):W530-W534. doi: 10.1093/nar/gkab294.
  • [35] Schöning-Stierand K, Diedrich K, Ehrt C, Flachsenberg F, Graef J, Sieg J, Penner P, Poppinga M, Ungethüm A, Rarey M. ProteinsPlus: a comprehensive collection of web-based molecular modeling tools. Nucleic Acids Res. 2022 Jul 5;50(W1):W611-W615. doi: 10.1093/nar/gkac305.
  • [36] Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7:42717. doi: 10.1038/srep42717.
  • [37] Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. J Struct Biol. 1996 Jan-Feb;116(1):71-6. doi: 10.1006/jsbi.1996.0013.
There are 36 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Şaban Kalay 0000-0002-9363-0073

Hatice Akkaya 0000-0001-7276-6919

Publication Date June 28, 2025
Published in Issue Year 2023 Volume: 27 Issue: 6

Cite

APA Kalay, Ş., & Akkaya, H. (2025). Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease. Journal of Research in Pharmacy, 27(6), 2199-2209.
AMA Kalay Ş, Akkaya H. Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease. J. Res. Pharm. July 2025;27(6):2199-2209.
Chicago Kalay, Şaban, and Hatice Akkaya. “Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease”. Journal of Research in Pharmacy 27, no. 6 (July 2025): 2199-2209.
EndNote Kalay Ş, Akkaya H (July 1, 2025) Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease. Journal of Research in Pharmacy 27 6 2199–2209.
IEEE Ş. Kalay and H. Akkaya, “Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease”, J. Res. Pharm., vol. 27, no. 6, pp. 2199–2209, 2025.
ISNAD Kalay, Şaban - Akkaya, Hatice. “Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease”. Journal of Research in Pharmacy 27/6 (July 2025), 2199-2209.
JAMA Kalay Ş, Akkaya H. Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease. J. Res. Pharm. 2025;27:2199–2209.
MLA Kalay, Şaban and Hatice Akkaya. “Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease”. Journal of Research in Pharmacy, vol. 27, no. 6, 2025, pp. 2199-0.
Vancouver Kalay Ş, Akkaya H. Molecular Modelling of Some Ligands Against Acetylcholinesterase to Treat Alzheimer’s Disease. J. Res. Pharm. 2025;27(6):2199-20.