Review
BibTex RIS Cite

Beyond the heart - Exploring the therapeutic potential of PDE3 inhibitors

Year 2023, Volume: 27 Issue: 6, 2218 - 2241, 28.06.2025

Abstract

Phosphodiesterases (PDEs) consist of an enzyme family of eleven groups responsible for the hydrolytic breakdown of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). cAMP and cGMP are important secondary messengers that regulate physiological functions. The widespread expression of PDE3 in tissues and organs makes it an attractive therapeutic target. For decades, PDE3 inhibitors have been acknowledged as significant pharmaceutical agents in the treatment of cardiovascular disorders due to their inotropic and vasodilatory actions. Emerging data, however, suggests that the potential therapeutic application of PDE3 inhibitors has gone beyond their traditional cardiovascular applications. This comprehensive review aims to explore the non-cardiovascular developments related to PDE3 inhibitors, exploring their mechanism of action, and clinical trials.

References

  • [1] Schudt C, Hatzelmann A, Beume R, Tenor H. Phosphodiesterase inhibitors: history of pharmacology. In: Francis SH, Conti M, Houslay MD, (Eds). Phosphodiesterases as drug targets. Springer, Heidelberg, London, 2011, pp. 1–46.
  • [2] Schick MA, Schlegel N. Clinical Implication of Phosphodiesterase-4-Inhibition. Int J Mol Sci. 2022; 23(3): 1209. https://doi.org/10.3390/ijms23031209
  • [3] Li G, He D, Cai X, Guan W, Zhang Y, Wu J-Q, Yao, H. Advances in the development of phosphodiesterase-4 inhibitors. Eur J Med Chem 2023; 250: 115195. https://doi.org/10.1016/j.ejmech.2023.115195
  • [4] Ke H, Wang H, Ye M. Structural insight into the substrate specificity of phosphodiesterases. In: Francis SH, Conti M, Houslay MD, (Eds). Phosphodiesterases as drug targets. Springer, Heidelberg, London, 2011, pp. 121–134.
  • [5] Rotella DP, Phosphodiesterases. In: Taylor JB, Triggle DJ, (Eds). Comprehensive medicinal chemistry II. Elsevier, Amsterdam, 2007, pp. 919–957.
  • [6] Delhaye S, Bardoni B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol Psychiatry. 2021; 26(9): 4570–82. https://doi.org/10.1038/s41380-020-00997-9
  • [7] Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010; 59(6): 367–74. https://doi.org/10.1016/j.neuropharm.2010.05.004
  • [8] Azevedo MF, Faucz FR, Bimpaki E, Horvath A, Levy I, Alexandre RB de, Ahmad F, Manganiello V, Stratakis CA. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr Rev. 2014; 35(2): 195–233. https://doi.org/10.1210/er.2013-1053
  • [9] Savai R, Pullamsetti SS, Banat G-A, Weissmann N, Ghofrani HA, Grimminger F, Schermuly RT. Targeting cancer with phosphodiesterase inhibitors. Expert Opin Investig Drugs. 2010; 19(1): 117–31. https://doi.org/10.1517/13543780903485642
  • [10] Maryam A, Khalid RR, Siddiqi AR, Ece A. E-pharmacophore based virtual screening for identification of dual specific PDE5A and PDE3A inhibitors as potential leads against cardiovascular diseases. J Biomol Struct Dyn. 2021; 39(7): 2302–17. https://doi.org/10.1080/07391102.2020.1748718
  • [11] Xu Y, Zhang H-T, O'Donnell JM. Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. In: Francis SH, Conti M, Houslay MD, (Eds). Phosphodiesterases as drug targets. Springer, Heidelberg, London, 2011, pp. 447–485.
  • [12] Murata T, Shimizu K, Hiramoto K, Tagawa T. Phosphodiesterase 3 (PDE3): structure, localization and function. Cardiovasc Hematol Agents Med Chem. 2009; 7(3): 206–11. https://doi.org/10.2174/187152509789105453
  • [13] Nadur NF, Azevedo LL de, Caruso L, Graebin CS, Lacerda RB, Kümmerle AE. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur J Med Chem. 2021; 212: 113123. https://doi.org/10.1016/j.ejmech.2020.113123
  • [14] Beute J. (Oral) enoximone in asthma. ERJ Open Res. 2020; 6(4). https://doi.org/10.1183/23120541.00319-2020
  • [15] Milara J, Navarro A, Almudéver P, Lluch J, Morcillo EJ, Cortijo J. Oxidative stress-induced glucocorticoid resistance is prevented by dual PDE3/PDE4 inhibition in human alveolar macrophages. Clin Exp Allergy. 2011; 41(4): 535–46. https://doi.org/10.1111/j.1365-2222.2011.03715.x
  • [16] Bjermer L, Abbott-Banner K, Newman K. Efficacy and safety of a first-in-class inhaled PDE3/4 inhibitor (ensifentrine) vs salbutamol in asthma. Pulm Pharmacol Ther. 2019; 58: 101814. https://doi.org/10.1016/j.pupt.2019.101814
  • [17] Anzueto A, Barjaktarevic IZ, Siler TM, Rheault T, Bengtsson T, Rickard K, Sciurba F. Ensifentrine, a Novel PDE3 and PDE4 Inhibitor for the Treatment of COPD: Randomized, Double-Blind, Placebo-controlled, Multicenter, Phase III Trials (The ENHANCE Trials). Am J Respir Crit Care Med. 2023. https://doi.org/10.1164/rccm.202306-0944OC
  • [18] Rieder F, Siegmund B, Bundschuh DS, Lehr H-A, Endres S, Eigler A. The selective phosphodiesterase 4 inhibitor roflumilast and phosphodiesterase 3/4 inhibitor pumafentrine reduce clinical score and TNF expression in experimental colitis in mice. PLoS One. 2013; 8(2): e56867. https://doi.org/10.1371/journal.pone.0056867
  • [19] Barsig J. Combination of pde4 or pde3/4 inhibitor and an anti-rheumatic drug(WO2003039552A1); 2003; Available from: https://patents.google.com/patent/WO2003039552A1/ko. [September 04, 2023]
  • [20] Abdallah MS. The Phosphodiesterase 3 Inhibitor Cilostazol as an Adjunct to Conventional Therapy in Patients With Osteoarthritis: A Proof-of-Concept, Randomized, Double-Blind, Placebo-Controlled Trial. Clinical trial registration; 2022
  • [21] Kosutova P, Mikolka P, Balentova S, Adamkov M, Calkovska A, Mokra D. Effects of PDE3 Inhibitor Olprinone on the Respiratory Parameters, Inflammation, and Apoptosis in an Experimental Model of Acute Respiratory Distress Syndrome. IJMS 2020; 21(9). https://doi.org/10.3390/ijms21093382.
  • [22] Shafiee-Nick R, Pyne NJ, Furman BL. Effects of type-selective phosphodiesterase inhibitors on glucose-induced insulin secretion and islet phosphodiesterase activity. Br J Pharmacol. 1995; 115(8): 1486–92. https://doi.org/10.1111/j.1476-5381.1995.tb16641.x
  • [23] Bhanot S, Leehey DJ. Pentoxifylline for diabetic nephropathy: an important opportunity to re-purpose an old drug? Curr Hypertens Rep. 2016; 18(1): 8. https://doi.org/10.1007/s11906-015-0612-7
  • [24] Snyder PB, Esselstyn JM, Loughney K, Wolda SL, Florio VA. The role of cyclic nucleotide phosphodiesterases in the regulation of adipocyte lipolysis. J Lipid Res. 2005; 46(3): 494–503. https://doi.org/10.1194/jlr.M400362-JLR200
  • [25] Yokoyama T, Aoki T. Novel triglyceride reducing agent (US20090227610A1); 2009; Available from: https://patents.google.com/patent/US20090227610A1/en. [September 04, 2023]
  • [26] Khalifa M, Abdelsalam RM, Safar MM, Zaki HF. Phosphodiesterase (PDE) III inhibitor, Cilostazol, improved memory impairment in aluminum chloride-treated rats: modulation of cAMP/CREB pathway. Inflammopharmacology. 2022; 30(6): 2477–88. https://doi.org/10.1007/s10787-022-01010-1
  • [27] Hiramatsu M, Takiguchi O, Nishiyama A, Mori H. Cilostazol prevents amyloid β peptide (25-35)-induced memory impairment and oxidative stress in mice. Br J Pharmacol. 2010; 161(8): 1899–912. https://doi.org/10.1111/j.1476-5381.2010.01014.x
  • [28] Sakurai H, Hanyu H, Sato T, Kume K, Hirao K, Kanetaka H, Iwamoto T. Effects of cilostazol on cognition and regional cerebral blood flow in patients with Alzheimer's disease and cerebrovascular disease: a pilot study. Geriatr Gerontol Int. 2013;13(1):90–7. https://doi.org/10.1111/j.1447-0594.2012.00866.x
  • [29] Tai SY, Chen CH, Chien CY, Yang YH. Cilostazol as an add-on therapy for patients with Alzheimer's disease in Taiwan: a case control study. BMC Neurol. 2017; 17(1): 40. https://doi.org/10.1186/s12883-017-0800-y
  • [30] Schaler AW, Myeku N. Cilostazol, a phosphodiesterase 3 inhibitor, activates proteasome-mediated proteolysis and attenuates tauopathy and cognitive decline. Transl Res. 2018; 193: 31–41. https://doi.org/10.1016/j.trsl.2017.11.004
  • [31] Kim YR, Kim HN, Hong KW, Shin HK, Choi BT. Anti-depressant effects of phosphodiesterase 3 inhibitor cilostazol in chronic mild stress-treated mice after ischemic stroke. Psychopharmacology. 2016; 233(6): 1055–66. https://doi.org/10.1007/s00213-015-4185-6
  • [32] Khadivi A, Shobeiri P, Momtazmaneh S, Samsami FS, Shalbafan M, Shirazi E, Akhondzadeh S. Cilostazol as an adjunctive treatment in major depressive disorder: a pilot randomized, double-blind, and placebo-controlled clinical trial. Psychopharmacology. 2022; 239(2): 551–9. https://doi.org/10.1007/s00213-021-06041-0
  • [33] Luhach K, Singh B, Aggarwal H, Sharma B. PDE3 inhibition by cilostazol attenuated developmental hyperserotonemia induced behavioural and biochemical deficits in a rat model of autism spectrum disorder. Res Autism Spect Dis. 2022; 99: 102052. https://doi.org/10.1016/j.rasd.2022.102052
  • [34] Kim HN, Gil CH, Kim YR, Shin HK, Choi BT. Anti-photoaging properties of the phosphodiesterase 3 inhibitor cilostazol in ultraviolet B-irradiated hairless mice. Sci Rep. 2016; 6(4): 31169. https://doi.org/10.1038/srep31169
  • [35] Wei B, Zhang YP, Yan HZ, Xu Y, Du TM. Cilostazol promotes production of melanin by activating the microphthalmia-associated transcription factor (MITF). Biochem Biophys Res Commun. 2014; 443(2): 617–21. https://doi.org/10.1016/j.bbrc.2013.12.017
  • [36] Hao N, Shen W, Du R, Jiang S, Zhu J, Chen Y, Huang C, Shi Y, Xiang R, Luo Y. Phosphodiesterase 3A Represents a Therapeutic Target that Drives Stem Cell–like Property and Metastasis in Breast Cancer. Mol Cancer Ther. 2019.
  • [37] Vandenberghe P, Hagué P, Hockman SC, Manganiello VC, Demetter P, Erneux C, Vanderwinden JM. Phosphodiesterase 3A: a new player in development of interstitial cells of Cajal and a prospective target in gastrointestinal stromal tumors (GIST). Oncotarget. 2017; 8(25): 41026–43. https://doi.org/10.18632/oncotarget.17010
  • [38] Nazir M, Senkowski W, Nyberg F, Blom K, Edqvist P-H, Jarvius M, Andersson C, Gustafsson MG, Nygren P, Larsson R, Fryknäs M. Targeting tumor cells based on Phosphodiesterase 3A expression. Exp Cell Res. 2017; 361(2): 308–15. https://doi.org/10.1016/j.yexcr.2017.10.032
  • [39] An R, Liu J, He J, Wang F, Zhang Q, Yu Q. PDE3A inhibitor anagrelide activates death signaling pathway genes and synergizes with cell death-inducing cytokines to selectively inhibit cancer cell growth. Am J Cancer Res. 2019; 9(9): 1905–21
  • [40] Nizhenkovska IV, Matskevych KV, Golovchenko OI, Golovchenko OV, Kustovska AD, Van M. New Prospective phosphodiesterase inhibitors: Phosphorylated oxazole derivatives in treatment of hypertension. Adv Pharm Bull. 2023; 13(2): 399–407. https://doi.org/10.34172/apb.2023.044
  • [41] Beute J, Lukkes M, Koekoek EP, Nastiti H, Ganesh K, Bruijn MJ de, Hockman S, van Nimwegen M, Braunstahl GJ, Boon L, Lambrecht BN, Manganiello VC, Hendriks RW, KleinJan A. A pathophysiological role of PDE3 in allergic airway inflammation. JCI Insight 2018; 3(2). https://doi.org/10.1172/jci.insight.94888
  • [42] Movsesian MA, Kukreja RC. Phosphodiesterase inhibition in heart failure. In: Francis SH, Conti M, Houslay MD, (Eds). Phosphodiesterases as drug targets. Springer, Heidelberg, London, 2011, pp. 121–134
  • [43] Murata T, Sugatani T, Shimizu K, Manganiello VC, Tagawa T. Phosphodiesterase 3 as a potential target for therapy of malignant tumors in the submandibular gland. Anti-cancer drugs 2001; 12(1): 79–83. https://doi.org/10.1097/00001813-200101000-00011
  • [44] Halpin DMG. ABCD of the phosphodiesterase family: interaction and differential activity in COPD. Int J Chron Obstruct Pulmon Dis. 2008; 3(4): 543–61. https://doi.org/10.2147/copd.s1761
  • [45] Lugnier C. Cyclic Nucleotide Phosphodiesterase Families in Intracellular Signaling and Diabetes. In: Diabetes and Cardiovascular Disease. Springer, Boston, MA; 2001, pp. 253–261
  • [46] Keravis T, Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) isoforms as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol. 2012; 165(5): 1288–305. https://doi.org/10.1111/j.1476-5381.2011.01729.x
  • [47] Movsesian M, Ahmad F, Hirsch E. Functions of PDE3 Isoforms in Cardiac Muscle. J Cardiovasc Dev Dis. 2018; 5(1). https://doi.org/10.3390/jcdd5010010
  • [48] Hambleton R, Krall J, Tikishvili E, Honeggar M, Ahmad F, Manganiello VC, Movsesian MA. Isoforms of cyclic nucleotide phosphodiesterase PDE3 and their contribution to cAMP hydrolytic activity in subcellular fractions of human myocardium. J Biol Chem. 2005; 280(47): 39168–74. https://doi.org/10.1074/jbc.M506760200
  • [49] Ahmad F, Shen W, Vandeput F, Szabo-Fresnais N, Krall J, Degerman E, Goetz F, Klussmann E, Movsesian M, Manganiello V. Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J Biol Chem. 2015; 290(11): 6763–76. https://doi.org/10.1074/jbc.M115.638585
  • [50] Beca S, Ahmad F, Shen W, Liu J, Makary S, Polidovitch N, Sun J, Hockman S, Chung YW, Movsesian M, Murphy E, Manganiello V, Backx PH. Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ Res. 2013; 112(2): 289–97. https://doi.org/10.1161/CIRCRESAHA.111.300003
  • [51] Peng T, Gong J, Jin Y, Zhou Y, Tong R, Wei X, Bai L, Shi J. Inhibitors of phosphodiesterase as cancer therapeutics. Eur J Med Chem. 2018; 150: 742–56. https://doi.org/10.1016/j.ejmech.2018.03.046
  • [52] Orstavik O, Ata SH, Riise J, Dahl CP, Andersen GØ, Levy FO, Skomedal T, Osnes JB, Qvigstad E. Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart. B J Pharmacol. 2014; 171(23): 5169–81. https://doi.org/10.1111/bph.12647
  • [53] Cavusoglu E, Frishman WH, Klapholz M. Vesnarinone: a new inotropic agent for treating congestive heart failure. J Card Fail. 1995; 1(3): 249–57. https://doi.org/10.1016/1071-9164(95)90030-6
  • [54] Venuti MC, Alvarez R, Bruno JJ, Strosberg AM, Gu L, Chiang HS, Massey IJ, Chu N, Fried JH. Inhibitors of cyclic AMP phosphodiesterase. 4. Synthesis and evaluation of potential prodrugs of lixazinone (N-cyclohexyl-N-methyl-4-(1,2,3,5-tetrahydro-2- oxoimidazo2,1-bquinazolin-7-yl)-oxybutyramide, RS-82856). J Med Chem. 1988; 31(11): 2145–52. https://doi.org/10.1021/jm00119a015
  • [55] Ercu M, Walter S, Klussmann E. Mutations in phosphodiesterase 3A (PDE3A) cause hypertension without cardiac damage. Hypertension. 2023; 80(6): 1171–9. https://doi.org/10.1161/HYPERTENSIONAHA.122.19433
  • [56] Takasago T, Imagawa T, Shigekawa M. Phosphorylation of the cardiac ryanodine receptor by cAMP-dependent protein kinase. J Biochem. 1989; 106(5): 872–7. https://doi.org/10.1093/oxfordjournals.jbchem.a122945
  • [57] Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D, Bonaduce D. β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol. 2014; 4: 396. https://doi.org/10.3389/fphys.2013.00396
  • [58] Preedy MEJ. Cardiac cyclic nucleotide phosphodiesterases: Roles and therapeutic potential in heart failure. Cardiovasc Drug Ther. 2020; 34(3): 401–17. https://doi.org/10.1007/s10557-020-06959-1
  • [59] Subramaniam G, Schleicher K, Kovanich D, Zerio A, Folkmanaite M, Chao YC, Surdo NC, Koschinski A, Hu J, Scholten A, Heck AJR, Ercu M, Sholokh A, Park KC, Klussmann E, Meraviglia V, Bellin M, Zanivan S, Hester S, Mohammed S, Zaccolo M. Integrated proteomics unveils nuclear PDE3A2 as a regulator of cardiac myocyte hypertrophy. Circ Res. 2023; 132(7): 828–48. https://doi.org/10.1161/CIRCRESAHA.122.321448
  • [60] Gresele P, Momi S, Falcinelli E. Anti-platelet therapy: phosphodiesterase inhibitors. B J Pharmacol. 2011; 72(4): 634–46. https://doi.org/10.1111/j.1365-2125.2011.04034.x
  • [61] Feijge MAH, Ansink K, Vanschoonbeek K, Heemskerk JWM. Control of platelet activation by cyclic AMP turnover and cyclic nucleotide phosphodiesterase type-3. Biochem Pharmacol. 2004; 67(8): 1559–67. https://doi.org/10.1016/j.bcp.2003.12.028
  • [62] Rondina MT, Weyrich AS. Targeting phosphodiesterases in anti-platelet therapy. Handb Exp Pharmacol. 2012; (210): 225–38. https://doi.org/10.1007/978-3-642-29423-5_9
  • [63] Schrör K. The pharmacology of cilostazol. Diabetes Obes Metab. 2002; 4 Suppl 2: S14-9. https://doi.org/10.1046/j.1463-1326.2002.0040s2s14.x
  • [64] Kariyazono H, Nakamura K, Shinkawa T, Yamaguchi T, Sakata R, Yamada K. Inhibition of platelet aggregation and the release of P-selectin from platelets by cilostazol. Thromb Res. 2001; 101(6): 445–53. https://doi.org/10.1016/s0049-3848(00)00415-1
  • [65] Igawa T, Tani T, Chijiwa T, Shiragiku T, Shimidzu S, Kawamura K, Kato S, Unemi F, Kimura Y. Potentiation of anti-platelet aggregating activity of cilostazol with vascular endothelial cells. Thromb Res. 1990; 57(4): 617–23. https://doi.org/10.1016/0049-3848(90)90079-r
  • [66] Liu Y, Shakur Y, Kambayashi J. Phosphodiesterases as targets for intermittent claudication. In: Francis SH, Conti M, Houslay MD, (Eds). Phosphodiesterases as drug targets. Springer, Heidelberg, London, 2011, pp. 211–236
  • [67] Bedenis R, Stewart M, Cleanthis M, Robless P, Mikhailidis DP, Stansby G. Cilostazol for intermittent claudication. Cochrane Database Syst Rev. 2014; 2014(10): CD003748. https://doi.org/10.1002/14651858.CD003748.pub4
  • [68] Salhiyyah K, Forster R, Senanayake E, Abdel-Hadi M, Booth A, Michaels JA. Pentoxifylline for intermittent claudication. Cochrane Database Syst Rev. 2015; 9(9): CD005262. https://doi.org/10.1002/14651858.CD005262.pub3
  • [69] Ishiwata N, Noguchi K, Kawanishi M, Asakura Y, Hori M, Mitani A, Ito Y, Takahashi K. NT-702 (parogrelil hydrochloride, NM-702), a novel and potent phosphodiesterase inhibitor, improves reduced walking distance and lowered hindlimb plantar surface temperature in a rat experimental intermittent claudication model. Life sci. 2007; 81(12): 970–8. https://doi.org/10.1016/j.lfs.2007.07.025
  • [70] Lewis RJ, Connor JT, Teerlink JR, Murphy JR, Cooper LT, Hiatt WR, Brass EP. Application of adaptive design and decision making to a phase II trial of a phosphodiesterase inhibitor for the treatment of intermittent claudication. Trials. 2011; 12(1): 134. https://doi.org/10.1186/1745-6215-12-134
  • [71] Edmondson SD, Mastracchio A, He J, Chung CC, Forrest MJ, Hofsess S, MacIntyre E, Metzger J, O'Connor N, Patel K, Tong X, Tota MR, van der Ploeg LHT, Varnerin, JP, Fisher MH, Wyvratt MJ, Weber AE, Parmee ER. Benzyl vinylogous amide substituted aryldihydropyridazinones and aryldimethylpyrazolones as potent and selective PDE3B inhibitors. Bioorg Med Chem Lett. 2003; 13(22): 3983–7. https://doi.org/10.1016/j.bmcl.2003.08.056
  • [72] Raker VK, Becker C, Steinbrink K. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front Immunol. 2016; 7: 123. https://doi.org/10.3389/fimmu.2016.00123
  • [73] Pieretti S, Dominici L, Di Giannuario A, Cesari N, Dal Piaz V. Local anti-inflammatory effect and behavioral studies on new PDE4 inhibitors. Life sci. 2006; 79(8): 791–800. https://doi.org/10.1016/j.lfs.2006.02.026
  • [74] Singh D, Martinez FJ, Watz H, Bengtsson T, Maurer BT. A dose-ranging study of the inhaled dual phosphodiesterase 3 and 4 inhibitor ensifentrine in COPD. Respir Res. 2020; 21(1): 47. https://doi.org/10.1186/s12931-020-1307-4
  • [75] Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. J Immunol. 2010; 185(11): 6413–9. https://doi.org/10.4049/jimmunol.1001829
  • [76] Genaro LM, Gomes LEM, Franceschini, Ana Paula Menezes de Freitas, Ceccato HD, Jesus RN de, Lima AP. Nagasako CK, Fagundes JJ, Ayrizono Maria de Lourdes Setsuko, Leal RF. Anti-TNF therapy and immunogenicity in inflammatory bowel diseases: a translational approach. Am J Transl Res. 2021; 13(12): 13916–30
  • [77] Tenor H, Hedbom E, Häuselmann HJ, Schudt C, Hatzelmann A. Phosphodiesterase isoenzyme families in human osteoarthritis chondrocytes--functional importance of phosphodiesterase 4. B J Pharmacol. 2002; 135(3): 609–18. https://doi.org/10.1038/sj.bjp.0704480
  • [78] Cukic V, Lovre V, Dragisic D, Ustamujic A. Asthma and chronic obstructive pulmonary disease (COPD) - Differences and similarities. Mater Socio Med. 2012; 24(2): 100–5. https://doi.org/10.5455/msm.2012.24.100-105
  • [79] Dorey-Stein ZL, Shenoy KV. Tezepelumab as an emerging therapeutic option for the treatment of severe asthma: Evidence to date. Drug Des Devel Ther. 2021; 15: 331–8. https://doi.org/10.2147/DDDT.S250825
  • [80] Mokry J, Giembycz M, Mokra D. Editorial: Phosphodiesterases as Drug Targets in Airway and Inflammatory Diseases. Front. Pharmacol. 2021; 12: 657596. https://doi.org/10.3389/fphar.2021.657596
  • [81] Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther. 2019; 197: 225–42. https://doi.org/10.1016/j.pharmthera.2019.02.002
  • [82] Cazzola M, Ora J, Calzetta L, Rogliani P, Matera MG. The future of inhalation therapy in chronic obstructive pulmonary disease. Curr Res Pharmacol Drug Discov. 2022; 3: 100092. https://doi.org/10.1016/j.crphar.2022.100092
  • [83] Franciosi LG, Diamant Z, Banner KH, Zuiker R, Morelli N, Kamerling IMC, Kam ML de, Burggraaf J, Cohen AF, Cazzola M, Calzetta L, Singh D, Spina D, Walker MJA, Page CP. Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials. Lancet Respir Med. 2013; 1(9): 714–27. https://doi.org/10.1016/S2213-2600(13)70187-5
  • [84] Cazzola M, Calzetta L, Rogliani P, Matera MG. Ensifentrine (RPL554): an investigational PDE3/4 inhibitor for the treatment of COPD. Expert Opin Investig Drugs. 2019; 28(10): 827–33. https://doi.org/10.1080/13543784.2019.1661990
  • [85] Matera MG, Cazzola M, Page C. Prospects for COPD treatment. Curr Opin Pharmacol. 2021; 56: 74–84. https://doi.org/10.1016/j.coph.2020.11.003
  • [86] Martin C, Burgel P-R, Roche N. Inhaled Dual Phosphodiesterase 3/4 Inhibitors for the Treatment of Patients with COPD: A Short Review. Int J Chron Obstruct Pulmon Dis. 2021; 16: 2363–73. https://doi.org/10.2147/COPD.S226688
  • [87] Mokra D, Kosutova P. Biomarkers in acute lung injury. Respir Physiol Neurobiol. 2015; 209: 52–8. https://doi.org/10.1016/j.resp.2014.10.006
  • [88] Hu B, Guo H, Zhou P, Shi Z-L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19(3): 141–54. https://doi.org/10.1038/s41579-020-00459-7
  • [89] Motta NAV, Autran LJ, Brazão SC, Lopes RdO, Scaramello CBV, Lima GF, Brito FCF de. Could cilostazol be beneficial in COVID-19 treatment? Thinking about phosphodiesterase-3 as a therapeutic target. Int. Immunopharmacol. 2021; 92: 107336. https://doi.org/10.1016/j.intimp.2020.107336
  • [90] Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In: Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R, (Eds). StatPearls [Internet]. StatPearls Publishing; 2023
  • [91] Giorgi M, Cardarelli S, Ragusa F, Saliola M, Biagioni S, Poiana G, Naro F, Massimi M. Phosphodiesterase Inhibitors: Could They Be Beneficial for the Treatment of COVID-19? Int J Mol Sci. 2020; 21(15): 5338. https://doi.org/10.3390/ijms21155338
  • [92] Beute J, Boermans P, Benraad B, Telman J, Diamant Z, KleinJan A. PDE3-inhibitor enoximone prevented mechanical ventilation in patients with SARS-CoV-2 pneumonia. Exp Lung Res. 2021; 47(3): 149–60. https://doi.org/10.1080/01902148.2021.1881189
  • [93] Abosheasha MA, El-Gowily AH. Superiority of cilostazol among antiplatelet FDA-approved drugs against COVID 19 Mpro and spike protein: Drug repurposing approach. Drug Dev Res. 2021; 82(2): 217–29. https://doi.org/10.1002/ddr.21743
  • [94] Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett D, Chertkow H, Cummings JL, Leon M de, Feldman H, Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B. Mild cognitive impairment. Lancet. 2006; 367(9518): 1262–70. https://doi.org/10.1016/S0140-6736(06)68542-5
  • [95] Farias ST, Mungas D, Reed BR, Harvey D, DeCarli C. Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Arch Neurol. 2009; 66(9): 1151–7. https://doi.org/10.1001/archneurol.2009.106
  • [96] Akiyama H, Fukuda T, Tojima T, Nikolaev VO, Kamiguchi H. Cyclic nucleotide control of microtubule dynamics for axon guidance. J Neurosci. 2016; 36(20): 5636–49. https://doi.org/10.1523/JNEUROSCI.3596-15.2016.
  • [97] Shelly M, Lim BK, Cancedda L, Heilshorn SC, Gao H, Poo M. Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science. 2010; 327(5965): 547–52. https://doi.org/10.1126/science.1179735
  • [98] Yanai S, Endo S. PDE3 inhibitors repurposed as treatments for age-related cognitive impairment. Mol Neurobiol. 2019; 56(6): 4306–16. https://doi.org/10.1007/s12035-018-1374-4
  • [99] Saito S, Kojima S, Oishi N, Kakuta R, Maki T, Yasuno F, Nagatsuka K, Yamamoto H, Fukuyama H, Fukushima M, Ihara M. A multicenter, randomized, placebo-controlled trial for cilostazol in patients with mild cognitive impairment: The COMCID study protocol. Alzheimers Dement. 2016; 2(4): 250–7. https://doi.org/10.1016/j.trci.2016.10.001
  • [100] Yanai S, Semba Y, Ito H, Endo S. Cilostazol improves hippocampus-dependent long-term memory in mice. Psychopharmacology. 2014; 231(13): 2681–93. https://doi.org/10.1007/s00213-014-3442-4
  • [101] Yanai S, Tago T, Toyohara J, Arasaki T, Endo S. Reversal of spatial memory impairment by phosphodiesterase 3 inhibitor cilostazol is associated with reduced neuroinflammation and increased cerebral glucose uptake in aged male mice. Front. Pharmacol. 2022; 13: 1031637. https://doi.org/10.3389/fphar.2022.1031637
  • [102] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002; 297(5580): 353–6. https://doi.org/10.1126/science.1072994
  • [103] Yakushiji Y, Kawamoto K, Uchihashi K, Ihara M, Aoki S, Nagaishi Y, Suzuyama K, Tsugitomi Y, Hara H. Low-dose phosphodiesterase III inhibitor reduces the vascular amyloid burden in amyloid-β protein precursor transgenic mice. Int J Mol Sci. 2020; 21(7). https://doi.org/10.3390/ijms21072295
  • [104] Kitashoji A, Egashira Y, Mishiro K, Suzuki Y, Ito H, Tsuruma K, Shimazawa M, Hara H. Cilostazol ameliorates warfarin-induced hemorrhagic transformation after cerebral ischemia in mice. Stroke. 2013; 44(10): 2862–8. https://doi.org/10.1161/STROKEAHA.113.001183
  • [105] Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009;15(3):112–9. https://doi.org/10.1016/j.molmed.2009.01.002
  • [106] Jadhav S, Maji S, Kommineni S, Singh S, Shukla S, Dey A, Soni P. Pharmacological inhibition of phosphodiesterase 3 ameliorates tau hyperphosphorylation in experimental models of Alzheimer's disease. J Neurochem. 2017; 143(5): 503–15. https://doi.org/10.1111/jnc.14114
  • [107] Kato K, Fujita Y, Takada T, Uchida H, Kobayashi T, Matsumoto T, Matsumoto H. Phosphodiesterase 3 inhibition improves memory and learning in aged rats. Jpn J Pharmacol. 2000; 82(3): 236–42. https://doi.org/10.1254/jjp.82.236
  • [108] Minatogawa Y, Hasegawa H, Yoshimoto K, Matsuo K. Phosphodiesterase 3 inhibitors, cilostazol and milrinone, prevent memory impairment in a rat model of aging. Psychopharmacology. 2007; 191(1): 45–52. https://doi.org/10.1007/s00213-006-0512-z
  • [109] Wu Y, Shen Y, Zeng J, Li Y, Wu Y, Zhang L. Pharmacological inhibition of phosphodiesterase-3 ameliorates Alzheimer's disease-like phenotypes in APP/PS1 mice. Neurobiol Aging. 2015; 36(3): 1223–31. https://doi.org/10.1016/j.neurobiolaging.2014.12.017
  • [110] Huang Y, Wu Y, Zhang L, Shen Y, Zeng J, Li Y. Phosphodiesterase 3 inhibition improves cognition and hippocampal plasticity in a mouse model of Alzheimer's disease. Neurochem Res. 2017; 42(5): 1331–41. https://doi.org/10.1007/s11064-017-2224-4
  • [111] Gundersen BB, Briand LA, Onksen JL, Lelay J, Kaestner KH, Blendy JA. Increased hippocampal neurogenesis and accelerated response to antidepressants in mice with specific deletion of CREB in the hippocampus: role of cAMP response-element modulator τ. J Neurosci. 2013; 33(34): 13673–85. https://doi.org/10.1523/JNEUROSCI.1669-13.2013
  • [112] Tanaka Y, Tanaka R, Liu M, Hattori N, Urabe T. Cilostazol attenuates ischemic brain injury and enhances neurogenesis in the subventricular zone of adult mice after transient focal cerebral ischemia. Neuroscience. 2010; 171(4): 1367–76. https://doi.org/10.1016/j.neuroscience.2010.10.008
  • [113] Shibasaki T, Takahashi H, Miki T, Sunaga Y, Matsumura K, Yamanaka M, Zhang C, Tamamoto A, Satoh T, Miyazaki JI, Seino S. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci. 2007; 104(49): 19333–8. https://doi.org/10.1073/pnas.0707054104
  • [114] Mourad NI, Nenquin M, Henquin J-C. cAMP-mediated and metabolic amplification of insulin secretion are distinct pathways sharing independence of β-cell microfilaments. Endocrinology. 2012; 153(10): 4644–54. https://doi.org/10.1210/en.2012-1450
  • [115] Tengholm A, Gylfe E. cAMP signalling in insulin and glucagon secretion. Diabetes Obes Metab. 2017; 19 Suppl 1:42–53. https://doi.org/10.1111/dom.12993
  • [116] Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells. 2021; 10(7). https://doi.org/10.3390/cells10071658
  • [117] Okada S, Ohshima K, Mori M. Phosphodiesterase 3 (PDE3) attenuates insulin secretion from the human pancreas: a specific PDE3 inhibitor improves insulin secretion in type II diabetes mellitus. Endocr J. 2002; 49(5): 581–2
  • [118] Kilanowska A, Ziółkowska A. Role of Phosphodiesterase in the Biology and Pathology of Diabetes. IJMS. 2020; 21(21): 8244. https://doi.org/10.3390/ijms21218244
  • [119] Härndahl L, Jing XJ, Ivarsson R, Degerman E, Ahrén B, Manganiello VC, Renström E, Holst LS. Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta-cell exocytosis and release of insulin. J Biol Chem. 2002; 277(40): 37446–55. https://doi.org/10.1074/jbc.M205401200
  • [120] Härndahl L, Wierup N, Enerbäck S, Mulder H, Manganiello VC, Sundler F, Degerman E, Ahrén B, Holst LS. Beta-cell-targeted overexpression of phosphodiesterase 3B in mice causes impaired insulin secretion, glucose intolerance, and deranged islet morphology. J Biol Chem. 2004; 279(15): 15214–22. https://doi.org/10.1074/jbc.M308952200
  • [121] Han P, Werber J, Surana M, Fleischer N, Michaeli T. The calcium/calmodulin-dependent phosphodiesterase PDE1C down-regulates glucose-induced insulin secretion. J Biol Chem. 1999; 274(32): 22337–44. https://doi.org/10.1074/jbc.274.32.22337
  • [122] Dávila-Esqueda ME, Martínez-Morales F. Pentoxifylline diminishes the oxidative damage to renal tissue induced by streptozotocin in the rat. Exp Diabesity Res. 2004; 5(4): 245–51. https://doi.org/10.1080/154386090897974
  • [123] An ZM, Dong XG, Guo Y, Zhou JL, Qin T. Effects and clinical significance of pentoxifylline on the oxidative stress of rats with diabetic nephropathy. J Huazhong Univ Sci Technol Med Sci. 2015; 35(3): 356–61. https://doi.org/10.1007/s11596-015-1437-y
  • [124] Marinho AD, Coelho Jorge AR, Nogueira Junior FA, Alison de Moraes Silveira J, Rocha DG, Negreiros Nunes Alves AP, Ferreira RS, Bezerra Jorge RJ, Azul Monteiro HS. Effects of cilostazol, a phosphodiesterase-3 inhibitor, on kidney function and redox imbalance in acute kidney injury caused by Bothrops alternatus venom. Toxicon. 2022; 220: 106922. https://doi.org/10.1016/j.toxicon.2022.09.008
  • [126] Krutmann J, Berneburg M. Lichtalterung (Photoaging) der Haut: Was gibt es Neues? Hautarzt. 2021; 72(1): 2–5. https://doi.org/10.1007/s00105-020-04747-4
  • [127] Kingsley M, Metelitsa AI, Somani AK. Chemical peels. In: Wolverton SE, (Eds). Comprehensive dermatologic drug therapy. Saunders/Elsevier, Edinburgh, 2013, 579-583.e1
  • [128] Choi HI, Kim DY, Choi SJ, Shin CY, Hwang ST, Kim KH, Kwon O. The effect of cilostazol, a phosphodiesterase 3 (PDE3) inhibitor, on human hair growth with the dual promoting mechanisms. J Dermatol Sci. 2018; 91(1): 60–8. https://doi.org/10.1016/j.jdermsci.2018.04.005
  • [129] Abadi AH, Ibrahim TM, Abouzid KM, Lehmann J, Tinsley HN, Gary BD, Piazza GA. Design, synthesis and biological evaluation of novel pyridine derivatives as anticancer agents and phosphodiesterase 3 inhibitors. Bioorg Med Chem. 2009; 17(16): 5974–82. https://doi.org/10.1016/j.bmc.2009.06.063
  • [130] Levy I, Horvath A, Azevedo M, Alexandre RB de, Stratakis CA. Phosphodiesterase function and endocrine cells: links to human disease and roles in tumor development and treatment. Curr Opin Pharmacol. 2011; 11(6): 689–97. https://doi.org/10.1016/j.coph.2011.10.003
  • [131] Pitari GM, Di Guglielmo MD, Park J, Schulz S, Waldman SA. Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells. Proc Natl Acad Sci USA. 2001; 98(14): 7846–51. https://doi.org/10.1073/pnas.141124698
  • [132] Marko D, Romanakis K, Zankl H, Fürstenberger G, Steinbauer B, Eisenbrand G. Induction of apoptosis by an inhibitor of cAMP-specific PDE in malignant murine carcinoma cells overexpressing PDE activity in comparison to their nonmalignant counterparts. Cell Biochem Biophys. 1998; 28(2-3): 75–101. https://doi.org/10.1007/BF02737806
  • [133] Zhang L, Murray F, Zahno A, Kanter JR, Chou D, Suda R, Fenlon M, Rassenti L, Cottam H, Kipps TJ, Insel PA. Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2008; 105(49): 19532–7. https://doi.org/10.1073/pnas.0806152105
  • [134] Murata K, Kameyama M, Fukui F, Ohigashi H, Hiratsuka M, Sasaki Y, Kabuto T, Mukai M, Mammoto T, Akedo H, Ishikawa O, Imaoka S. Phosphodiesterase type III inhibitor, cilostazol, inhibits colon cancer cell motility. Clin Exp metastasis 1999; 17(6): 525–30. https://doi.org/10.1023/a:1006626529536
  • [135] Uzawa K, Kasamatsu A, Baba T, Usukura K, Saito Y, Sakuma K, Iyoda M, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H. Targeting phosphodiesterase 3B enhances cisplatin sensitivity in human cancer cells. Cancer Med. 2013; 2(1): 40–9. https://doi.org/10.1002/cam4.56
  • [136] Abadi AH, Hany MS, Elsharif SA, Eissa AAH, Gary BD, Tinsley HN, Piazza GA. Modulating the cyclic guanosine monophosphate substrate selectivity of the phosphodiesterase 3 inhibitors by pyridine, pyrido2,3-dpyrimidine derivatives and their effects upon the growth of HT-29 cancer cell line. Chem. Pharm. Bull. 2013; 61(4): 405–10. https://doi.org/10.1248/cpb.c12-00993
  • [137] Davari AS, Abnous K, Mehri S, Ghandadi M, Hadizadeh F. Synthesis and biological evaluation of novel pyridine derivatives as potential anticancer agents and phosphodiesterase-3 inhibitors. Bioorg Chem. 2014; 57: 83–9. https://doi.org/10.1016/j.bioorg.2014.09.003
  • [138] Shekouhy M, Karimian S, Moaddeli A, Faghih Z, Delshad Y, Khalafi-Nezhad A. The synthesis and biological evaluation of nucleobases/tetrazole hybrid compounds: A new class of phosphodiesterase type 3 (PDE3) inhibitors. Bioorg Med Chem. 2020; 28(12): 115540. https://doi.org/10.1016/j.bmc.2020.115540
  • [139] MacKeil JL, Brzezinska P, Burke-Kleinman J, Theilmann AL, Nicol CJB, Ormiston ML, Maurice DH. Phosphodiesterase 3B (PDE3B) antagonizes the anti-angiogenic actions of PKA in human and murine endothelial cells. Cell Signal. 2019; 62: 109342. https://doi.org/10.1016/j.cellsig.2019.06.007
There are 138 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Reviews
Authors

Muhammed Trawally 0000-0002-0041-4612

Publication Date June 28, 2025
Published in Issue Year 2023 Volume: 27 Issue: 6

Cite

APA Trawally, M. (2025). Beyond the heart - Exploring the therapeutic potential of PDE3 inhibitors. Journal of Research in Pharmacy, 27(6), 2218-2241. https://doi.org/10.29228/jrp.512
AMA Trawally M. Beyond the heart - Exploring the therapeutic potential of PDE3 inhibitors. J. Res. Pharm. July 2025;27(6):2218-2241. doi:10.29228/jrp.512
Chicago Trawally, Muhammed. “Beyond the Heart - Exploring the Therapeutic Potential of PDE3 Inhibitors”. Journal of Research in Pharmacy 27, no. 6 (July 2025): 2218-41. https://doi.org/10.29228/jrp.512.
EndNote Trawally M (July 1, 2025) Beyond the heart - Exploring the therapeutic potential of PDE3 inhibitors. Journal of Research in Pharmacy 27 6 2218–2241.
IEEE M. Trawally, “Beyond the heart - Exploring the therapeutic potential of PDE3 inhibitors”, J. Res. Pharm., vol. 27, no. 6, pp. 2218–2241, 2025, doi: 10.29228/jrp.512.
ISNAD Trawally, Muhammed. “Beyond the Heart - Exploring the Therapeutic Potential of PDE3 Inhibitors”. Journal of Research in Pharmacy 27/6 (July 2025), 2218-2241. https://doi.org/10.29228/jrp.512.
JAMA Trawally M. Beyond the heart - Exploring the therapeutic potential of PDE3 inhibitors. J. Res. Pharm. 2025;27:2218–2241.
MLA Trawally, Muhammed. “Beyond the Heart - Exploring the Therapeutic Potential of PDE3 Inhibitors”. Journal of Research in Pharmacy, vol. 27, no. 6, 2025, pp. 2218-41, doi:10.29228/jrp.512.
Vancouver Trawally M. Beyond the heart - Exploring the therapeutic potential of PDE3 inhibitors. J. Res. Pharm. 2025;27(6):2218-41.