Research Article
BibTex RIS Cite

Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells

Year 2023, Volume: 27 Issue: 6, 2242 - 2249, 28.06.2025

Abstract

Although progress has been made in the diagnosis and treatment of breast cancer, which is one of the most important causes of women's health, it is still one of the leading causes of death in women. One of the most prominent causes for this is illness resistance to the medications employed in treatment. For this reason, the trend towards combination therapy research has increased in addition to conventional therapy. In this study, we aimed to investigate the effect of co-administration of caffeine (CAF) and paclitaxel (PTX), which is frequently used in breast cancer, on MDA-MB-231 and MCF-7 cells. For this purpose, 4 groups were determined as control, CAF, PTX and CAF+PTX. MTT assay was used to assess cell viability and the appropriate dose for CAF was determined. The apoptotic effect of the drug combination on cell lines was evaluated with the TUNEL method, and it was determined at what stage it paused cell division by cell cycle analysis. According to the study's findings, the results indicated that CAF induced apoptosis in breast cancer cells and the best effect was in the group administered with PTX. Furthermore, it was discovered that CAF and PTX in the MCF-7 cell lines, both together and separately, blocked cell division in the S phase in MCF-7 cell lines. These results are promising for future studies that will prove the usefulness of CAF as an adjuvant in the treatment of breast cancer.

References

  • [1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71: 209-249. http://dx.doi.org/10.3322/caac.21660
  • [2] Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S, Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast. 2022; 66: 15-23. http://dx.doi.org/10.1016/j.breast.2022.08.010
  • [3] Swain SM, Shastry M. & Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023; 22(2): 101-126. http://dx.doi.org/10.1038/s41573-022-00579-0
  • [4] Pascua SM, McGahey GE, Ma N, Wang JJ, Digman MA. Caffeine and cisplatin effectively targets the metabolism of a triple-negative breast cancer cell line assessed via phasor-flim. Int J Mol Sci. 2020; 21(7): 2443. http://dx.doi.org/10.3390/ijms21072443
  • [5] Vantangoli MM, Madnick SJ, Huse SM, Weston P, Boekelheide K. MCF-7 human breast cancer cells form differentiated microtissues in scaffold-free hydrogels. PLoS One. 2015; 10(8): e0135426. https://doi.org/10.1371/journal.pone.0135426
  • [6] Ahn SG, Kim SJ, Kim C, Jeong J. Molecular classification of triple-negative breast cancer. J Breast Cancer. 2016; 19: 223-230. https://doi.org/10.4048/jbc.2016.19.3.223
  • [7] Debien V, De Caluwé A, Wang X, Piccart-Gebhart M, Tuohy VK, Romano E, Buisseret L. Immunotherapy in breast cancer: an overview of current strategies and perspectives. npj Breast Cancer. 2023; 9: Article number 7. https://doi.org/10.1038/s41523-023-00508-3
  • [8] Pascua SM, McGahey GE, Ma N, Wang JJ, Digman MA. Caffeine and cisplatin effectively targets the metabolism of Lai HZ, Han JR, Fu X, Ren YF, Li ZH, You FM. Targeted Approaches to HER2-Low Breast Cancer: Current Practice and Future Directions. Cancers (Basel). 2022; 14(15): 3774. https://doi.org/10.3390/cancers14153774
  • [9] Huang Z, Yu P, Tang J. Characterization of Triple-Negative Breast Cancer MDA-MB-231 Cell Spheroid Model. Onco Targets Ther. 2020; 13: 5395-5405. http://dx.doi.org/10.2147/OTT.S249756
  • [10] Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's mechanistic and clinical effects on breast cancer. Biomolecules. 2019; 9(12): 789. https://doi.org/10.3390/biom9120789
  • [11] Chen J, Tian W, He H, Chen F, Huang J, Wang X, Chen Z. Downregulation of miR-200c-3p contributes to the resistance of breast cancer cells to paclitaxel by targeting SOX2. Oncol Rep. 2018; 40: 3821-3829. https://doi.org/10.3892/or.2018.6735
  • [12] Xu R, Sato N, Yanai K, Akiyoshi T, Nagai S, Wada J, Koga K, Mibu R, Nakamura M, Katano M. Enhancement of paclitaxel-induced apoptosis by inhibition of mitogen-activated protein kinase pathway in colon cancer cells. Anticancer Res. 2009; 29: 261-270.
  • [13] Castaneda AM, Melendez CM, Uribe D, Pedroza-Díaz J. Synergistic effects of natural compounds and conventional chemotherapeutic agents: recent insights for the development of cancer treatment strategies. Heliyon. 2022; 8: e09519. https://doi.org/10.1016/j.heliyon.2022.e09519
  • [14] Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev. 1992; 17: 139-170. https://doi.org/10.1016/0165-0173(92)90012
  • [15] Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 1999; 59: 4375-4382
  • [16] Bode AM, Dong Z. The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett. 2007; 247(1): 26-39. https://doi.org/10.1016/j.canlet.2006.03.032
  • [17] He Z, Ma WY, Hashimoto T, Bode AM, Yang CS, Dong Z. Induction of apoptosis by caffeine is mediated by the p53, Bax, and caspase 3 pathways. Cancer Res. 2003; 63: 4396-4401
  • [18] Busse PM, Bose SK, Jones RW, Tolmach LJ. The action of caffeine on x-irradiated hela cells. III. Enhancement of x-ray-induced killing during G2 arrest. Radiat Res. 1978; 76: 292-307. https://doi.org/10.2307/3574780
  • [19] Replogle JM, Zhou W, Amaro AE, McFarland JM, Villalobos-Ortiz M, Ryan J, Letai A, Yılmaz Ö, Sheltzer J, Lippard SJ, Ben-David U, Amon A. Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. PNAS. 2020; 117(48): 30566-30576. https://doi.org/10.1073/pnas.2009506117
  • [20] George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants. 2021; 10(9): 1455. https://doi.org/10.3390/antiox10091455
  • [21] Ben-David U, Beroukhim R, Golub TR. Genomic evolution of cancer models: perils and opportunities. Nat Rev Cancer. 2019; 19(2): 97-109. https://doi.org/10.1038/s41568-018-0095-3
  • [22] Liu YP, Zheng CC, Huang YN, He ML, Xu WW, Li B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. Med Comm. 2021; 2: 315-340. https://doi.org/10.1002/mco2.55
  • [23] Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel’s Mechanistic and Clinical Effects on Breast Cancer. Biomolecules. 2019; 9(12): 789. https://doi.org/10.3390/biom9120789
  • [24] Kellokumpu-Lehtinen P, Tuunanen T, Asola R, Elomaa L, Heikkinen M, Kokko R, Järvenpää R, Lehtinen I, Maiche A, Kaleva-Kerola J, Huusko M, Möykkynen K, Ala-Luhtala T. Weekly paclitaxel-An effective treatment for advanced breast cancer. Anticancer Res. 2013; 33: 2623-2627
  • [25] Van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother. Pharmacol. 2015; 76: 1101-1112. https://doi.org/10.1007/s00280-015-2903-8
  • [26] McGrogan BT, Gilmartin B, Carney DN, McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta. 2008; 1785: 1796. https://doi.org/132. 10.1016/j.bbcan.2007.10.004
  • [27] Chen J, Tian W, He H, Chen F, Huang J, Wang X, Chen Z. Downregulation of miR-200c-3p contributes to the resistance of breast cancer cells to paclitaxel by targeting SOX2. Oncol Rep. 2018; 40: 3821-3829. https://doi.org/10.3892/or.2018.6735
  • [28] Yap TA, Omlin A, de Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol. 2013; 31(12): 1592-1605. https://doi.org/10.1200/JCO.2011.37.6418
  • [29] Ialongo D, Tudino V, Arpacioglu M, Messore A, Patacchini E, Costi R, Di Santo R, Madia VN. Synergistic Effects of Caffeine in Combination with Conventional Drugs: Perspectives of a Drug That Never Ages. Pharmaceuticals. 2023; 16(5): 730. https://doi.org/10.3390/ph16050730
  • [30] Nehlig, A. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacol Rev. 2018; 70: 384-411. https://doi.org/10.1124/pr.117.014407
  • [31] Motegi T, Katayama M, Uzuka Y, Okamura Y. Evaluation of anticancer effects and enhanced doxorubicin cytotoxicity of xanthine derivatives using canine hemangiosarcoma cell lines. Res. Vet. Sci. 2013; 2: 600-605. https://doi.org/10.1016/j.rvsc.2013.06.011
  • [32] Abe K, Yamamoto N, Hayashi K, Takeuchi A, Tsuchiya H. Caffeine citrate enhanced cisplatin antitumor effects in osteosarcoma and fibrosarcoma in vitro and in vivo. BMC Cancer. 2019; 19: 689. https://doi.org/10.1186/s12885-019-5891-y
  • [33] Hashimoto T, He Z, Ma WY, Schmid PC, Bode AM, Yang CS, Dong Z. Caffeine inhibits cell proliferation by G0/G1 phase arrest in JB6 cells. Cancer Res. 2004; 64: 3344-3349. https://doi.org/10.1158/0008-5472.can-03-3453
  • [34] Zhang L, Wu C, Mu S, Xue W, Ma D. A chemotherapeutic self-sensibilized drug carrier delivering paclitaxel for the enhanced chemotherapy to human breast MDA-MB-231 cells. Colloids Surf B: Biointerfaces. 2019; 181: 902-909. https://doi.org/10.1016/j.colsurfb.2019.06.052
  • [35] Sprouse AA, Herbert BS. Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells. Anticancer Res. 2014; 34: 5363-5374
  • [36] Tinghua Xu, Pengxi Liu, Qingming Li, Changbin Shi, Xinjie Wang. Inhibitory effects of everolimus in combination with paclitaxel on adriamycin-resistant breast cancer cell line MDA-MB-231. Taiwan J Obstet Gynecol. 2020; 59(6): 828-34. https://doi.org/10.1016/j.tjog.2020.09.008
  • [37] Baran M, Ozturk F, Canoz O, Onder GO, Yay A. The effects of apoptosis and apelin on lymph node metastasis in invasive breast carcinomas. Clin Exp Med. 2020; 20(4): 507-514. https://doi.org/10.1007/s10238-020-00635-2
There are 37 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Funda Aydın 0000-0002-5484-9435

Gözde Özge Önder 0000-0002-0515-9286

Özge Göktepe 0000-0002-8205-2132

Nazmiye Bitgen 0000-0002-6416-9230

Publication Date June 28, 2025
Published in Issue Year 2023 Volume: 27 Issue: 6

Cite

APA Aydın, F., Önder, G. Ö., Göktepe, Ö., Bitgen, N. (2025). Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells. Journal of Research in Pharmacy, 27(6), 2242-2249. https://doi.org/10.29228/jrp.513
AMA Aydın F, Önder GÖ, Göktepe Ö, Bitgen N. Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells. J. Res. Pharm. July 2025;27(6):2242-2249. doi:10.29228/jrp.513
Chicago Aydın, Funda, Gözde Özge Önder, Özge Göktepe, and Nazmiye Bitgen. “Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells”. Journal of Research in Pharmacy 27, no. 6 (July 2025): 2242-49. https://doi.org/10.29228/jrp.513.
EndNote Aydın F, Önder GÖ, Göktepe Ö, Bitgen N (July 1, 2025) Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells. Journal of Research in Pharmacy 27 6 2242–2249.
IEEE F. Aydın, G. Ö. Önder, Ö. Göktepe, and N. Bitgen, “Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells”, J. Res. Pharm., vol. 27, no. 6, pp. 2242–2249, 2025, doi: 10.29228/jrp.513.
ISNAD Aydın, Funda et al. “Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells”. Journal of Research in Pharmacy 27/6 (July 2025), 2242-2249. https://doi.org/10.29228/jrp.513.
JAMA Aydın F, Önder GÖ, Göktepe Ö, Bitgen N. Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells. J. Res. Pharm. 2025;27:2242–2249.
MLA Aydın, Funda et al. “Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells”. Journal of Research in Pharmacy, vol. 27, no. 6, 2025, pp. 2242-9, doi:10.29228/jrp.513.
Vancouver Aydın F, Önder GÖ, Göktepe Ö, Bitgen N. Caffeine Increased Antitumor Effects of Paclitaxel (PTX) in MCF-7 and MDA-MB-231 Breast Cancer Cells. J. Res. Pharm. 2025;27(6):2242-9.