Research Article
BibTex RIS Cite

Synthesis and antimicrobial effects of cyclotriphosphazenes containing monocarbonyl curcumin analogs

Year 2018, Volume: 22 Issue: 4, 536 - 546, 27.06.2025

Abstract

Six novel bridged structure cyclotriphosphazenes (4a-f) were synthesized from the reactions of aryloxycyclotriphosphazenes [aryloxy= phenoxy (2a) and (2-naphthoxy) (2b)] with monocarbonyl curcumin derivatives [acetone (3a), cyclopentanone (3b) and cyclohexanone (3c)] for the first time. The structures of the compounds (4a-f) were defined by elemental analysis, FT-IR, mass and NMR (1H and 31P) spectroscopies. The antimicrobial properties of the compounds (2a, 2b, 3a-c and 4a-f) were screened in vitro against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 6633, Bacillus cereus DSMZ 4312 and Candida albicans ATCC 10231. In addition, effective substance of 3b and 4c were evaluated Minimal Inhibition Concentration.

References

  • [1] Liang G, Yang S, Jiang L, Zhao Y, Shao L, Xiao J, Ye F, Li Y, Li X. Synthesis and antibacterial properties of monocarbonyl analogues of curcumin. Chem Pharm Bull. 2008; 56(2): 162-167. [CrossRef]
  • [2] Cao J, Liu Y, Jia L, Zhou H-M, Kong Y, Yang G, Jiang L-P, Li Q-J, Zhong L-F. Curcumin induces apoptosis through mitochondrial hyperpolarization and mtDNA damage in human hepatoma G2 cells. Free Radical Bio Med. 2007; 43(6): 968-975. [CrossRef]
  • [3] Altunatmaz SS, Aksu FY, Issa G, Kahraman BB, Altiner DD, Buyukunal SK. Antimicrobial effects of curcumin against L. monocytogenes, S. aureus, S. Typhimurium and E. coli O157:H7 pathogens in minced meat. Vet Med-Czech. 2016; 61(5): 256-262.
  • [4] Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: A short review. Life Sci. 2006; 78(18): 2081-2087. [CrossRef]
  • [5] Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol. 2007; 595: 453-470. [CrossRef]
  • [6] Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of Curcumin: problems and promises. Mol Pharmacol. 2007; 4(6): 807-818.
  • [7] Sanabria-Ríos DJ, Rivera-Torres Y, Rosario J, Gutierrez R, Torres-García Y, Montano N, Ortíz-Soto G, Ríos-Olivares E, Rodríguez JW, Carballeira NM. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria. Bioorg Med Chem Lett. 2015; 25(22): 5067-5071. [CrossRef]
  • [8] Zambre AP, Kulkarni VM, Padhye S, Sandur SK, Aggarwal BB. Novel curcumin analogs targeting TNF-induced NF-κB activation and proliferation in human leukemic KBM-5 cells. Bioorg Med Chem. 2006; 14(21): 7196-7204. [CrossRef]
  • [9] Yerdelen KO, Gul HI, Sakagami H, Umemura N. Synthesis and biological evaluation of 1,5-bis(4-hydroxy-3-methoxyphenyl) penta-1,4-dien-3-one and its aminomethyl derivatives. J Enzyme Inhib Med Chem. 2015; 30(3): 383-388. [CrossRef]
  • [10] Kohyama A, Yamakoshi H, Hongo S, Kanoh N, Shibata H, Iwabuchi Y. Structure activity relationships of the antitumor C5-Curcuminoid GO-Y030. Molecules. 2015; 20(8): 15374-15391. [CrossRef]
  • [11] Putri H, Jenie RI, Handayani S, Kastian RF, Meiyanto E. Combination of potassium pentagamavunon-0 and doxorubicin induces apoptosis and cell cycle arrest and inhibits metastasis in breast cancer cells. Asian Pac J Cancer Prev. 2016; 17(5): 2683-2688.
  • [12] Chang JY, Hsieh HP, Pan WY, Liou JP, Bey SJ, Chen LT, Liua JF, Song JS. Dual inhibition of topoisomerase I and tubulin polymerization by BPR0Y007, a novel cytotoxic agent. Biochem Pharmacol. 2003; 65(12): 2009-2019.
  • [13] Juang SH, Pan WY, Kuo CC, Liou JP, Hung YM, Chen LT, Hsieh HP, Chang JY. A novel bisbenzylidenecyclopentanone derivative, BPR0Y007, inducing a rapid caspase activation involving upregulation of Fas (CD95/APO-1) and wild-type p53 in human oral epidermoid carcinoma cells. Biochem Pharmacol. 2004; 68(2): 293-303. [CrossRef]
  • [14] Mapoung S, Pitchakarn P, Yodkeeree S, Ovatlarnporn C, Sakorn N, Limtrakul P. Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells. Chem Biol Interact. 2016; 244: 140-148. [CrossRef]
  • [15] Markaverich BM, Schauweker TH, Gregory RR, Varma M, Kittrell FS, Medina D, Varma RS. Nuclear Type II sites and malignant cell proliferation: inhibition by 2,6-bisbenzylidenecyclohexanones. Cancer Res. 1992; 52(9): 2482-2488.
  • [16] Khazaei A, Sarmasti N, Seyf JY. Quantitative structure-activity relationship of the curcumin-related compounds using various regression methods. J Mol Struct. 2016; 1108: 168-178. [CrossRef]
  • [17] Mousa MN. Synthesis, characterization and in vitro antioxidant activity of (1E,4E)-1,5-bis(4-hydroxyl-3-methoxyphenyl) penta-1,4-dien-3-one. J Pharm Res. 2012; 5(2): 913-914.
  • [18] Chen B, Zhu Z, Chen M, Dong W, Li Z. Three-dimensional quantitative structure–activity relationship study on antioxidant capacity of curcumin analogues. J Mol Struct. 2014; 1061: 134-139. [CrossRef]
  • [19] Nurfina AN, Reksohadiprodjo MS, Timmerman H, Jenie UA, Sugiyanto D, van der Goot H. Synthesis of some symmetrical curcumin derivatives and their anti-inflammatory activity. Eur J Med Chem. 1997: 321-328. [CrossRef]
  • [20] Nugroho AE, Yuniarti N, Istyastono EP, Maeyama SK, Hakim L. Anti-allergic effects of 1,5-bis(4’-hydroxy-3’-methoxyphenyl)-1,4-pentadiene-3-one on mast cell-mediated allergy model. Malay J Pharm Sci. 2009; 7(1): 51-71.
  • [21] Kannapan V, Jonathan DR. A study on the synthesis and bactericidal efficacy of certain poly(ester-amides) containing 2,5-bis(benzylidene)cyclopentanone moiety in the main chain. J Chem Pharm Res. 2013; 5(4): 382-386.
  • [22] Davarcı D, Zorlu Y. Group 12 metal coordination polymers built on a flexible hexakis-(3-pyridyloxy) cyclotriphosphazene ligand: effect of the central metal ions on the construction of coordination polymers. Polyhedron. 2017; 127: 1-8. [CrossRef]
  • [23] Şenkuytu E, Eçik ET. Octa-BODIPY derivative dendrimeric cyclotetraphosphazenes; photophysical properties and fluorescent chemosensor for Co²⁺ ions. Spectrochim Acta. 2017; 173: 863-870. [CrossRef]
  • [24] İbişoğlu H, Güzel AM, Yuksel F. The reaction of hexachlorocyclotriphosphazatriene with p-aminophenol. Phosphorus Sulfur Silicon Relat Elem. 2017; 192(1): 92-97. [CrossRef]
  • [25] Uslu A, Balcı CM, Yuksel F, Özcan E, Dural S, Beşli S. The investigation of thermosensitive properties of phosphazene derivatives bearing amino acid ester groups. J Mol Struct. 2017; 1136: 90-99. [CrossRef]
  • [26] Gleria M, De Jaeger R. Phosphazenes: A Worldwide Insight. Nova Science Publishers, New York, USA, 2004.
  • [27] Steiner A. Supramolecular Structures of Cyclotriphosphazenes. In: Adrianov AK. (Ed.) Polyphosphazenes for Biomedical Applications, Wiley, New Jersey, 2009, pp. 411-455.
  • [28] Akbaş H, Okumuş A, Karadağ A, Kılıç Z, Hökelek T, Koç LY, Açık L, Aydın B, Türk M. Structural and thermal characterizations, antimicrobial and cytotoxic activities, and in vitro DNA binding of the phosphazenium salts. J Therm Anal Calorim. 2016; 123(2): 1627-1641.
  • [29] Yıldırım T, Bilgin K, Çiftçi GY, Eçik ET, Şenkuytu E, Uludağ Y, Tomak L, Kılıç A. Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. Eur J Med Chem. 2012; 52(1): 213-220. [CrossRef]
  • [30] Çiftçi GY, Eçik ET, Yıldırım T, Bilgin K, Şenkuytu E, Yuksel F, Uludağ Y, Kılıç A. Synthesis and characterization of new cyclotriphosphazene compounds. Tetrahedron. 2013; 69: 1454-1461. [CrossRef]
  • [31] Akbaş H, Karadağ A, Aydın A, Destegül A, Kılıç Z. Synthesis, structural and thermal properties of the hexapyrrolidinocyclotriphosphazenes-based protic molten salts: Antiproliferative effects against HT29, HeLa, and C6 cancer cell lines. J Mol Liq. 2017; 230: 482-495. [CrossRef]
  • [32] Koran K, Tekin Ç, Çalışkan E, Tekin S, Sandal S, Görgülü AO. Synthesis, structural and thermal characterizations and in vitro cytotoxic activities of new cyclotriphosphazene derivatives. Phosphorus Sulfur Silicon Relat Elem. 2017; 192(9): 1002-1011.
  • [33] Elmas G, Okumuş A, Cemaloğlu R, Kılıç Z, Çelik SP, Açık L, Tunalı BÇ, Türk M, Çerçi NA, Güzel R, Hökelek T. Phosphorus-nitrogen compounds. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms. J Organomet Chem. 2017; 853: 93-106. [CrossRef]
  • [34] Okumuş A, Akbaş H, Kılıç Z, Koç LY, Açık L, Aydın B, Türk M, Hökelek T, Dal H. Phosphorus–nitrogen compounds: in vitro cytotoxic and antimicrobial activities, DNA interactions, syntheses, and structural investigations of new mono(4-nitrobenzyl)spirocyclotriphosphazenes. Res Chem Intermed. 2016; 42(5): 4221-4251.
  • [35] Asmafiliz N, Kılıç Z, Civan M, Avcı O, Gönder LY, Açık L, Aydın B, Türk M, Hökelek T. Phosphorus–nitrogen compounds. Part 36. Syntheses, Langmuir–Blodgett thin films and biological activities of spiro-bino-spiro trimeric phosphazenes. New J Chem. 2016; 40: 9609-9626.
  • [36] Çıralı DE, Uyar Z, Koyuncu İ, Hacıoğlu N. Synthesis, characterization and catalytic, cytotoxic and antimicrobial activities of two novel cyclotriphosphazene-based multisite ligands and their Ru(II) complexes. Appl Organometal Chem. 2015; 29: 536-542.
  • [37] Tümer Y, Koç LY, Asmafiliz N, Kılıç Z, Hökelek T, Soltanzade H, Açık L, Yola ML, Solak AO. Phosphorus–nitrogen compounds: part 30. Syntheses and structural investigations, antimicrobial and cytotoxic activities and DNA interactions of vanillinato-substituted NN or NO spirocyclic monoferrocenyl cyclotriphosphazenes. J Biol Inorg Chem. 2015; 20: 165-178.
  • [38] Çıralı DE, Dayan O, Özdemir N, Hacıoğlu N. A new phosphazene derivative, spiro-N₃P₃[(O₂C₁₂H₈)₂(OC₆H₆N-3)₂], and its Ru(II) complex: Syntheses, crystal structure, catalytic activity and antimicrobial activity studies. Polyhedron. 2015; 88: 170-175. [CrossRef]
  • [39] Koçak SB, Koçoğlu S, Okumuş A, Kılıç Z, Öztürk A, Hökelek T, Öner Y, Açık L. Syntheses, spectroscopic properties, crystal structures, biological activities, and DNA interactions of heterocyclic amine substituted spiro-ansa-spiro- and spiro-bino-spiro-phosphazenes. Inorg Chim Acta. 2013; 406: 160-170. [CrossRef]
  • [40] Wei W, Lu R, Tang S, Liu X. Highly cross-linked fluorescent poly(cyclotriphosphazene-co-curcumin) microspheres for the selective detection of picric acid in solution phase. J Mater Chem A. 2015; 3: 4604-4611.
  • [41] Wang H, Wang Y, Lee PPS, Chen Y, Huang C, Xin JH, Cheuka KKL. Syntheses, characterization, and photophysical properties of new type of curcumin-containing hyperbranched polymer. Poly Prepr. 2010; 51(2): 499-500.
  • [42] Yamakoshi H, Ohori H, Kudo C, Sato A, Kanoh N, Ishioka C, Shibata H, Iwabuchi Y. Structure–activity relationship of C5-curcuminoids and synthesis of their molecular probes. Bioorg Med Chem. 2010; 18: 1083-1092.
  • [43] Görgülü AO, Koran K, Özen F, Tekin S, Sandal S. Synthesis, structural characterization and anti-carcinogenic activity of new cyclotriphosphazenes containing dioxybiphenyl and chalcone groups. J Mol Struct. 2015; 1087: 1-10. [CrossRef]
  • [44] Baldwin PR, Reeves AZ, Powell KR, Napier RJ, Swimm AI, Sun A, Giesler K, Bommarius B, Shinnick TM, Snyder JP, Liotta DC, Kalman D. Monocarbonyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis. Eur J Med Chem. 2015; 92: 693-699. [CrossRef]
  • [45] Fitzsimmons BW, Shaw RA. Phosphorus-Nitrogen Compounds: Allcoxy and Aryloxy-cyclophosphazenes. J Chem Soc. 1964; 1735-1741.
  • [46] Santos JSO, Bauchart D, Besset C, Dez I. 1-Chloro-1,3,3,5,5-pentaphenoxy-cyclotriphosphazene: a precursor of functionalized cyclophosphazene derivatives. Acta Cryst C. 2004; 60(10): o751-o753. [CrossRef]
  • [47] Çoşut B, Yeşilot S. Synthesis, thermal and photophysical properties of naphthoxycyclotriphosphazenyl-substituted dendrimeric cyclic phosphazenes. Polyhedron. 2012; 35(1): 101-107. [CrossRef]
  • [48] Sardjiman SS, Reksohadiprodjo MS, Hakim L, van der Goot H, Timmerman H. 1,5-Diphenyl-1,4-pentadiene-3-ones and cyclic analogues as antioxidative agents. Synthesis and structure-activity relationship. Eur J Med Chem. 1997; 32(7-8): 625-630. [CrossRef]
  • [49] Valgas C, Souza SM, Smânia EFA, Jr AS. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007; 38(2): 369-380.
  • [50] Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3(2): 163-167.
  • [51] CLSI/NCCLS Guidelines: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; 7th Ed. Approved Standard document M-7: A5, Villanova, PA, NCCLS, 2006.
There are 51 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Mine Gül Şeker 0009-0007-4176-6191

Tuğçe Akbal

Devrim Atilla 0000-0001-8992-0070

Neslihan Avşar 0000-0002-7315-5674

Hanife İbişoğlu

Publication Date June 27, 2025
Published in Issue Year 2018 Volume: 22 Issue: 4

Cite

APA Gül Şeker, M., Akbal, T., Atilla, D., Avşar, N., et al. (2025). Synthesis and antimicrobial effects of cyclotriphosphazenes containing monocarbonyl curcumin analogs. Journal of Research in Pharmacy, 22(4), 536-546.
AMA Gül Şeker M, Akbal T, Atilla D, Avşar N, İbişoğlu H. Synthesis and antimicrobial effects of cyclotriphosphazenes containing monocarbonyl curcumin analogs. J. Res. Pharm. June 2025;22(4):536-546.
Chicago Gül Şeker, Mine, Tuğçe Akbal, Devrim Atilla, Neslihan Avşar, and Hanife İbişoğlu. “Synthesis and Antimicrobial Effects of Cyclotriphosphazenes Containing Monocarbonyl Curcumin Analogs”. Journal of Research in Pharmacy 22, no. 4 (June 2025): 536-46.
EndNote Gül Şeker M, Akbal T, Atilla D, Avşar N, İbişoğlu H (June 1, 2025) Synthesis and antimicrobial effects of cyclotriphosphazenes containing monocarbonyl curcumin analogs. Journal of Research in Pharmacy 22 4 536–546.
IEEE M. Gül Şeker, T. Akbal, D. Atilla, N. Avşar, and H. İbişoğlu, “Synthesis and antimicrobial effects of cyclotriphosphazenes containing monocarbonyl curcumin analogs”, J. Res. Pharm., vol. 22, no. 4, pp. 536–546, 2025.
ISNAD Gül Şeker, Mine et al. “Synthesis and Antimicrobial Effects of Cyclotriphosphazenes Containing Monocarbonyl Curcumin Analogs”. Journal of Research in Pharmacy 22/4 (June 2025), 536-546.
JAMA Gül Şeker M, Akbal T, Atilla D, Avşar N, İbişoğlu H. Synthesis and antimicrobial effects of cyclotriphosphazenes containing monocarbonyl curcumin analogs. J. Res. Pharm. 2025;22:536–546.
MLA Gül Şeker, Mine et al. “Synthesis and Antimicrobial Effects of Cyclotriphosphazenes Containing Monocarbonyl Curcumin Analogs”. Journal of Research in Pharmacy, vol. 22, no. 4, 2025, pp. 536-4.
Vancouver Gül Şeker M, Akbal T, Atilla D, Avşar N, İbişoğlu H. Synthesis and antimicrobial effects of cyclotriphosphazenes containing monocarbonyl curcumin analogs. J. Res. Pharm. 2025;22(4):536-4.