Research Article
BibTex RIS Cite
Year 2018, Volume: 22 Issue: 4, 578 - 586, 27.06.2025
https://doi.org/10.12991/jrp.2018.100

Abstract

References

  • [1] Campbell N, Young ER, Drouin D, Legowski B, Adams MA, Farrell J, Kaczorowski J, Lewanczuk R, Lum-Kwong MM, Tobe S. A framework for discussion on how to improve prevention, management, and control of hypertension in Canada. Can J Cardiol. 2012; 28(3): 262–269.
  • [2] Ahada A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: Statistical optimization, characterization and pharmacokinetic assessment. Int J Pharm. 2013; 443(1–2): 26–38.
  • [3] Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohem M, et al. ESH/ESC guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013; 31(7): 1281–1357.
  • [4] Altoama K, Yassine Mallem M, Thorin C, Betti E, Desfontis J. Effect of nebivolol treatment during pregnancy on the genital circulation, fetal growth and postnatal development in the Wistar rat. Eur J Pharm. 2015; 758: 31–39.
  • [5] Wang S, Chow M, Zuo Z. An approach for rapid development of nasal delivery of analgesics—Identification of relevant features, in vitro screening and in vivo verification. Int J Pharm. 2011; 420(1): 43–50.
  • [6] Nigris F, Rienzo M, Schiano C, Fiorito C, Casamassimi A, Napoli C. Prominent cardioprotective effects of third generation beta blocker nebivolol against anthracycline-induced cardiotoxicity using the model of isolated perfused rat heart. Eur J Cancer. 2008; 44(3): 334–340.
  • [7] Das S, Chaudhary A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011; 12(1): 62-76.
  • [8] Ranpise NS, Korabu SS, Ghodake VN. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf B Biointerfaces. 2014; 116: 81–87.
  • [9] Dery AS, Hamilton LA, Starr JA. Nebivolol for the treatment of heart failure disclosures. Am J Health Syst Pharm. 2011; 68(10): 879-886.
  • [10] Veverka A, Nuzum DS, Jolly JL. Nebivolol: A third-generation β-adrenergic blocker. Ann Pharmacother. 2006; 40(7-8): 1353-1360.
  • [11] Lennernas H. Animal data: the contributions of the Ussing Chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Deliv Rev. 2007; 59(11): 1103-1120.
  • [12] Incecayir T, Tsume Y, Amidon GL. Comparison of the permeability of metoprolol and labetalol in rat, mouse, and Caco-2 cells: use as a reference standard for BCS classification. Mol Pharm. 2013; 10(3): 958-966.
  • [13] Idkaidek NM, Jilani JA, Mansi IA. Evaluation of hydroxyethyldiclofenac intestinal absorption in rats. Saudi Pharm J. 2005; 13(4): 158-163.
  • [14] Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomed Nanotechnol Biol Med. 2010; 6(6): 753–759.
  • [15] Zhang Z, Gao F, Bu H, Xiao J, Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomed Nanotech Biol Med. 2012; 8(5): 740–747.
  • [16] Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009; 133(3): 238–244.
  • [17] Üstündağ Okur N, Yurdasiper A, Gündoğdu E, Gökçe EH. Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertension: Polyethylene glycol versus chitosan oligosaccharide lactate. J Microencaps. 2016; 33(1): 30-42.
  • [18] Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009; 6(1): 19-28.
  • [19] Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003; 24(23): 283–300.
  • [20] Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995; 12(3): 413-420.
  • [21] Zakeri-Milani P, Valizadeh H, Azarmi Y, Jalali MB, Tajerzadeh H. Simultaneous determination of metoprolol, propranolol and phenol red in samples from rat in situ intestinal perfusion studies. DARU J Pharm Sci. 2006; 14(2): 102-108.
  • [22] Nagare N, Damre A, Singh KS, Mallurwar SR, Iyer S, Naik A, Chintamaneni M. Determination of site of absorption of propranolol in rat gut using in situ single-pass intestinal perfusion. Indian J Pharm Sci. 2010; 72(5): 625-629.
  • [23] Lennernas H, Abrahamsson B. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J Pharm Pharmacol. 2005; 57(3): 273-285.
  • [24] Kaynak MS, Buyuktuncel E, Caglar H, Sahin S. Determination of regional intestinal permeability of diclofenac and metoprolol using a newly-developed and validated high performance liquid chromatographic method. Trop J Pharm Res. 2015; 14(1): 163-170.
  • [25] Kim JS, Mitchell S, Kijek P, Tsume Y, Hilfinger J, Amidon GL. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol Pharm. 2006; 3(6): 686-694.
  • [26] Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release. 2008; 128(3): 185–199.
  • [27] Yang Z, Gan G, Sawchuk RJ. Correlation between net water flux and absorptive clearance determined from in situ intestinal perfusion studies does not necessarily indicate a solvent drag effect. J Pharm Sci. 2007; 96(3): 517-521.
  • [28] Yang T, Sheng HH, Fen NP, Wei H, Wang Z, Wang C. Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: Characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity. J Pharm Sci. 2013; 102(12): 4414–4425.
  • [29] Sangsena Y, Wiwattanawongs K, Likhitwitayawuid K, Sritularak B, Wiwattanapatape R. Modification of oral absorption of oxyresveratrol using lipid based nanoparticles. Colloids Surf B Biointerfaces. 2015; 131: 182-190.
  • [30] Gonçalves LMD, Maestrelli F, Manelli L, Ghelardini C, Almeida AJ, Mura P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm. 2016; 102: 41-50.
  • [31] Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996; 13(9): 1336-1342.
  • [32] Gao H, Wang M, Sun D, Sun S, Sun C, Liu J, Guan Q. Evaluation of the cytotoxicity and intestinal absorption of a self-emulsifying drug delivery system containing sodium taurocholate. Eur J Pharm Sci. 2017; 106: 212-219.
  • [33] Komiya I, Park JY, Kamani A, Ho NFH, Higuchi WI. Quantitative mechanistic studies in simultaneous fluid-flow and intestinal-absorption using steroids as model solutes. Int J Pharm. 1980; 4(3): 249-262.
  • [34] Patel JR, Barve KH. Intestinal permeability of lamivudine using single pass intestinal perfusion. Indian J Pharm Sci. 2012; 74(5): 478-433.

Comparison of intestinal permeability of nebivolol hydrochloride loaded solid lipid nanoparticles with commercial nebivolol tablet

Year 2018, Volume: 22 Issue: 4, 578 - 586, 27.06.2025
https://doi.org/10.12991/jrp.2018.100

Abstract

The oral application of drugs is the most popular route for achieving systemic effects, nevertheless, it is limited by difficulties related to physicochemical properties of the drug. Solid lipid nanoparticles (SLNs) are appealing extensive notice because of showing increased solubility and improved oral bioavailability via different mechanisms. The aim of the study is to compare and peruse the in-situ permeation of nebivolol (NBV) loaded SLN and its commercial tablet formulation used for the treatment of hypertension. For this aim Single-Pass Intestinal Perfusion (SPIP) method was used for in-situ permeation studies. NBV loaded SLNs were prepared and modified with polyethylene glycol (PEG). In order to prepare SLNs by homogenization technique, compritol, lecithin and poloxamer were chosen. Particle sizes of blank and loaded SLN were 213.4±17.5 and 264.1±18.8 nm, respectively with polydispersity index values of approximately 0.3 for each. NBV loading resulted in positive electrical charge on SLNs. The encapsulation efficiency was 98.04±0.2 %. Permeability coefficient values were tripled when NBV was incorporated in SLNs and doubled when pure NBV was given separately with a blank SLN. PEG modified SLN can be used to enhance oral absorption of NBV, and SLNs alone can be used as permeation enhancer in oral drug delivery..

References

  • [1] Campbell N, Young ER, Drouin D, Legowski B, Adams MA, Farrell J, Kaczorowski J, Lewanczuk R, Lum-Kwong MM, Tobe S. A framework for discussion on how to improve prevention, management, and control of hypertension in Canada. Can J Cardiol. 2012; 28(3): 262–269.
  • [2] Ahada A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: Statistical optimization, characterization and pharmacokinetic assessment. Int J Pharm. 2013; 443(1–2): 26–38.
  • [3] Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohem M, et al. ESH/ESC guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013; 31(7): 1281–1357.
  • [4] Altoama K, Yassine Mallem M, Thorin C, Betti E, Desfontis J. Effect of nebivolol treatment during pregnancy on the genital circulation, fetal growth and postnatal development in the Wistar rat. Eur J Pharm. 2015; 758: 31–39.
  • [5] Wang S, Chow M, Zuo Z. An approach for rapid development of nasal delivery of analgesics—Identification of relevant features, in vitro screening and in vivo verification. Int J Pharm. 2011; 420(1): 43–50.
  • [6] Nigris F, Rienzo M, Schiano C, Fiorito C, Casamassimi A, Napoli C. Prominent cardioprotective effects of third generation beta blocker nebivolol against anthracycline-induced cardiotoxicity using the model of isolated perfused rat heart. Eur J Cancer. 2008; 44(3): 334–340.
  • [7] Das S, Chaudhary A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011; 12(1): 62-76.
  • [8] Ranpise NS, Korabu SS, Ghodake VN. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surf B Biointerfaces. 2014; 116: 81–87.
  • [9] Dery AS, Hamilton LA, Starr JA. Nebivolol for the treatment of heart failure disclosures. Am J Health Syst Pharm. 2011; 68(10): 879-886.
  • [10] Veverka A, Nuzum DS, Jolly JL. Nebivolol: A third-generation β-adrenergic blocker. Ann Pharmacother. 2006; 40(7-8): 1353-1360.
  • [11] Lennernas H. Animal data: the contributions of the Ussing Chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv Drug Deliv Rev. 2007; 59(11): 1103-1120.
  • [12] Incecayir T, Tsume Y, Amidon GL. Comparison of the permeability of metoprolol and labetalol in rat, mouse, and Caco-2 cells: use as a reference standard for BCS classification. Mol Pharm. 2013; 10(3): 958-966.
  • [13] Idkaidek NM, Jilani JA, Mansi IA. Evaluation of hydroxyethyldiclofenac intestinal absorption in rats. Saudi Pharm J. 2005; 13(4): 158-163.
  • [14] Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomed Nanotechnol Biol Med. 2010; 6(6): 753–759.
  • [15] Zhang Z, Gao F, Bu H, Xiao J, Li Y. Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomed Nanotech Biol Med. 2012; 8(5): 740–747.
  • [16] Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release. 2009; 133(3): 238–244.
  • [17] Üstündağ Okur N, Yurdasiper A, Gündoğdu E, Gökçe EH. Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertension: Polyethylene glycol versus chitosan oligosaccharide lactate. J Microencaps. 2016; 33(1): 30-42.
  • [18] Dahan A, Amidon GL. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol Pharm. 2009; 6(1): 19-28.
  • [19] Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003; 24(23): 283–300.
  • [20] Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995; 12(3): 413-420.
  • [21] Zakeri-Milani P, Valizadeh H, Azarmi Y, Jalali MB, Tajerzadeh H. Simultaneous determination of metoprolol, propranolol and phenol red in samples from rat in situ intestinal perfusion studies. DARU J Pharm Sci. 2006; 14(2): 102-108.
  • [22] Nagare N, Damre A, Singh KS, Mallurwar SR, Iyer S, Naik A, Chintamaneni M. Determination of site of absorption of propranolol in rat gut using in situ single-pass intestinal perfusion. Indian J Pharm Sci. 2010; 72(5): 625-629.
  • [23] Lennernas H, Abrahamsson B. The use of biopharmaceutic classification of drugs in drug discovery and development: current status and future extension. J Pharm Pharmacol. 2005; 57(3): 273-285.
  • [24] Kaynak MS, Buyuktuncel E, Caglar H, Sahin S. Determination of regional intestinal permeability of diclofenac and metoprolol using a newly-developed and validated high performance liquid chromatographic method. Trop J Pharm Res. 2015; 14(1): 163-170.
  • [25] Kim JS, Mitchell S, Kijek P, Tsume Y, Hilfinger J, Amidon GL. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol Pharm. 2006; 3(6): 686-694.
  • [26] Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release. 2008; 128(3): 185–199.
  • [27] Yang Z, Gan G, Sawchuk RJ. Correlation between net water flux and absorptive clearance determined from in situ intestinal perfusion studies does not necessarily indicate a solvent drag effect. J Pharm Sci. 2007; 96(3): 517-521.
  • [28] Yang T, Sheng HH, Fen NP, Wei H, Wang Z, Wang C. Preparation of andrographolide-loaded solid lipid nanoparticles and their in vitro and in vivo evaluations: Characteristics, release, absorption, transports, pharmacokinetics, and antihyperlipidemic activity. J Pharm Sci. 2013; 102(12): 4414–4425.
  • [29] Sangsena Y, Wiwattanawongs K, Likhitwitayawuid K, Sritularak B, Wiwattanapatape R. Modification of oral absorption of oxyresveratrol using lipid based nanoparticles. Colloids Surf B Biointerfaces. 2015; 131: 182-190.
  • [30] Gonçalves LMD, Maestrelli F, Manelli L, Ghelardini C, Almeida AJ, Mura P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm. 2016; 102: 41-50.
  • [31] Fagerholm U, Johansson M, Lennernas H. Comparison between permeability coefficients in rat and human jejunum. Pharm Res. 1996; 13(9): 1336-1342.
  • [32] Gao H, Wang M, Sun D, Sun S, Sun C, Liu J, Guan Q. Evaluation of the cytotoxicity and intestinal absorption of a self-emulsifying drug delivery system containing sodium taurocholate. Eur J Pharm Sci. 2017; 106: 212-219.
  • [33] Komiya I, Park JY, Kamani A, Ho NFH, Higuchi WI. Quantitative mechanistic studies in simultaneous fluid-flow and intestinal-absorption using steroids as model solutes. Int J Pharm. 1980; 4(3): 249-262.
  • [34] Patel JR, Barve KH. Intestinal permeability of lamivudine using single pass intestinal perfusion. Indian J Pharm Sci. 2012; 74(5): 478-433.
There are 34 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biotechnology, Pharmaceutical Delivery Technologies
Journal Section Articles
Authors

Evren Homan Gökçe 0000-0002-0751-5563

Mustafa Sinan Kaynak 0000-0003-2917-2407

Aysu Yurdasiper 0000-0001-6551-4334

Neslihan Üstündağ Okur 0000-0002-3210-3747

Selma Şahin 0000-0001-5736-5906

Publication Date June 27, 2025
Published in Issue Year 2018 Volume: 22 Issue: 4

Cite

APA Homan Gökçe, E., Kaynak, M. S., Yurdasiper, A., Üstündağ Okur, N., et al. (2025). Comparison of intestinal permeability of nebivolol hydrochloride loaded solid lipid nanoparticles with commercial nebivolol tablet. Journal of Research in Pharmacy, 22(4), 578-586. https://doi.org/10.12991/jrp.2018.100
AMA Homan Gökçe E, Kaynak MS, Yurdasiper A, Üstündağ Okur N, Şahin S. Comparison of intestinal permeability of nebivolol hydrochloride loaded solid lipid nanoparticles with commercial nebivolol tablet. J. Res. Pharm. June 2025;22(4):578-586. doi:10.12991/jrp.2018.100
Chicago Homan Gökçe, Evren, Mustafa Sinan Kaynak, Aysu Yurdasiper, Neslihan Üstündağ Okur, and Selma Şahin. “Comparison of Intestinal Permeability of Nebivolol Hydrochloride Loaded Solid Lipid Nanoparticles With Commercial Nebivolol Tablet”. Journal of Research in Pharmacy 22, no. 4 (June 2025): 578-86. https://doi.org/10.12991/jrp.2018.100.
EndNote Homan Gökçe E, Kaynak MS, Yurdasiper A, Üstündağ Okur N, Şahin S (June 1, 2025) Comparison of intestinal permeability of nebivolol hydrochloride loaded solid lipid nanoparticles with commercial nebivolol tablet. Journal of Research in Pharmacy 22 4 578–586.
IEEE E. Homan Gökçe, M. S. Kaynak, A. Yurdasiper, N. Üstündağ Okur, and S. Şahin, “Comparison of intestinal permeability of nebivolol hydrochloride loaded solid lipid nanoparticles with commercial nebivolol tablet”, J. Res. Pharm., vol. 22, no. 4, pp. 578–586, 2025, doi: 10.12991/jrp.2018.100.
ISNAD Homan Gökçe, Evren et al. “Comparison of Intestinal Permeability of Nebivolol Hydrochloride Loaded Solid Lipid Nanoparticles With Commercial Nebivolol Tablet”. Journal of Research in Pharmacy 22/4 (June 2025), 578-586. https://doi.org/10.12991/jrp.2018.100.
JAMA Homan Gökçe E, Kaynak MS, Yurdasiper A, Üstündağ Okur N, Şahin S. Comparison of intestinal permeability of nebivolol hydrochloride loaded solid lipid nanoparticles with commercial nebivolol tablet. J. Res. Pharm. 2025;22:578–586.
MLA Homan Gökçe, Evren et al. “Comparison of Intestinal Permeability of Nebivolol Hydrochloride Loaded Solid Lipid Nanoparticles With Commercial Nebivolol Tablet”. Journal of Research in Pharmacy, vol. 22, no. 4, 2025, pp. 578-86, doi:10.12991/jrp.2018.100.
Vancouver Homan Gökçe E, Kaynak MS, Yurdasiper A, Üstündağ Okur N, Şahin S. Comparison of intestinal permeability of nebivolol hydrochloride loaded solid lipid nanoparticles with commercial nebivolol tablet. J. Res. Pharm. 2025;22(4):578-86.