Effects of lesinurad on HEK-293 human kidney cells: In vitro and molecular docking evaluation
Year 2024,
Volume: 28 Issue: 3, 708 - 721, 28.06.2025
Tugce Boran
,
Mahmoud Abudayyak
Mohammed T. Qaoud
Abstract
Lesinurad is a drug used for the treatment of hyperuricemia. It has been reported that lesinurad causes renal adverse events. The molecular effects of lesinurad in the kidney cells have not been elucidated clearly. The embryonic kidney cells (HEK-293) were treated with lesinurad at various concentrations (12.5-100 µM) for 24h. The cytotoxicity, apoptotic effect, reactive oxygen species (ROS), lipid peroxidation (MDA), and total antioxidant capacity (TAC) levels were evaluated. Secretion of the inflammatory mediators was examined after lesinurad treatment. Additionally, molecular docking studies were performed for lesinurad with TNF-α and concanavalin a (ConA). Lesinurad did not induce apoptotic cell death at the tested concentrations. The ROS and MDA levels insignificantly declined, and the TAC level increased. TNF-α secretion was induced after 100 μM lesinurad treatment. Lesinurad significantly decreased the Con a-induced inflammatory mediators’ secretion. The docking studies results show a weak interaction with TNF-α but strong interaction with Con a proteins. These findings support that lesinurad-induced kidney toxicity could be related to the mechanical stress of uric acid crystals rather than the induction of inflammation by the initiation of oxidative damage.
References
- [1] Li X, Yan Z, Carlström M, Tian J, Zhang X, Zhang W, Wu S, Ye F. Mangiferin ameliorates hyperuricemic nephropathy which is associated with the downregulation of AQP2 and increased urinary uric acid excretion. Front Pharmacol. 2020; 11: 49. https://doi.org/10.3389/fphar.2020.00049
- [2] Miner JN, Tan PK., Hyndman D, Liu S, Iverson C, Nanavati P, Hagerty DT, Manhard K, Shen Z, Girardet JL, Yeh L, Terkeltaub R, Quart B. Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney. Arthritis Res Ther. 2016; 18(1): 1-10. https://doi.org/10.1186/s13075-016-1107-x.
- [3] FDA 2015, Highlights of prescribing information for Zurampic (Reference ID: 3864748). Revised in 12/2015. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/207988lbl.pdf.
- [4] EMA 2016, EPAR summary for the public for Zurampic (EMEA/H/C/003932). updated in 02/2016. https://www.ema.europa.eu/en/documents/overview/zurampic-epar-summary-public_en.pdf. (accessed on 19 May 2022).
- [5] Sam SE, Thomas TE, Abraham, E. A Review on gout. World J Pharm Res 2016; 5(6): 634-647.
- [6] Robinson PC. Gout–An update of aetiology, genetics, co-morbidities and management. Maturitas. 2018; 118: 67-73. https://doi.org/10.1016/j.maturitas.2018.10.012
- [7] Huneycutt E, Board C, Clements JN. Lesinurad, a selective URAT-1 inhibitor with a novel mechanism in combination with a xanthine oxidase inhibitor, for hyperuricemia associated with gout. J Pharm Pract. 2018;31(6):670-677. https://doi.org/10.1177/0897190017734427
- [8] Abhishek A. New urate-lowing therapies. BMC Pharmacol Toxicol. 2018; 30(2): 177-182. https://doi.org/10.1097/bor.0000000000000476
- [9] FDA Cross-Discipline Team Leader Review, 2014. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207988Orig1s000CrossR.pdf.
- [10] Reddy ARN, Reddy YN, Krishna DR, Himabindu, V. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK-293) cells. Toxicology. 2010; 272(1-3): 11-16. https://doi.org/10.1016/j.tox.2010.03.017
- [11] Reshma VG, Mohanan PV. Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK-293) cells. Colloids Surf B Biointerfaces. 2017; 157: 182-190. https://doi.org/10.1016/j.colsurfb.2017.05.069
- [12] Ma Z, Cao X, Guo X, Wang M, Ren X, Dong R, Shao R, Zhu Y. Establishment and validation of an in vitro screening method for traditional chinese medicine-induced nephrotoxicity. Evid Based Complement Alternat Med. 2018; 5: 1-15. https://doi.org/10.1155/2018/2461915
- [13] Goldfeld AE, Strominger JL, Doyle C. Human tumor necrosis factor alpha gene regulation in phorbol ester stimulated T and B cell lines. J Exp Med. 1991; 174(1): 73-81. https://doi.org/10.1084/jem.174.1.73
- [14] Tracey KJ, Cerami DA. Tumor necrosis factor: A pleiotropic cytokine and therapuetic target. Annu Rev Med. 1994; 45(1): 491-503. https://doi.org/10.1146/annurev.med.45.1.491
- [15] Zhang C, Lovering F, Behnke M, Zask A, Sandanayaka V, Sun L, Zhu Y, Xu W, Zhang Y, Levin J. Synthesis and activity of quinolinylmethyl P1′ α-sulfone piperidine hydroxamate inhibitors of TACE. Bioorg Med Chem Lett. 2009; 19(13): 3445-3448. https://doi.org/10.1016/j.bmcl.2009.05.020
- [16] Kakizoe T, Komatsu H, Niijima T, Kawachi T, Sugimura T. Increased agglutinability of bladder cells by concanavalin A after administration of carcinogens. Cancer Res. 1980; 40(6): 2006-2009.
- [17] Kanellopoulos JM, De Petris S, Leca G, Crumpton MJ. The mitogenic lectin from Phaseolus vulgaris does not recognize the T3 antigen of human T lymphocytes. Eur J Immunol. 1985; 15(5): 479-486. https://doi.org/10.1002/eji.1830150512
- [18] Yu M, Sato H, Seiki M, Thompson EW. Complex regulation of membrane-type matrix metalloproteinase expression and matrix metalloproteinase-2 activation by concanavalin A in MDA-MB-231 human breast cancer cells. Cancer Res. 1995; 55(15): 3272-3277.
- [19] Lei HY, Chang CP. Lectin of Concanavalin A as an anti-hepatoma therapeutic agent. J Biomed Sci. 2009; 16(1): 1-12. http://dx.doi.org/10.1186/1423-0127-16-10
- [20] Murumkar PR, Sharma MK, Giridhar R, Yadav MR. Virtual screening-based identification of lead molecules as selective TACE inhibitors. Med Chem Res. 2015; 24: 226-244. https://doi.org/10.1007/s00044-014-1097-7
- [21] Wu Z, Thiriot DS, Ruoho AE. Tyr199 in transmembrane domain 5 of the β2-adrenergic receptor interacts directly with the pharmacophore of a unique fluorenone-based antagonist. Biochem J. 2001; 354(3): 485-491. https://doi.org/10.1042/bj3540485
- [22] Klein RW, Kabadi S, Cinfio FN, Bly CA, Taylor DC, Szymanski KA. Budget impact of adding lesinurad for second-line treatment of gout: A US health plan perspective. J Comp Eff Res. 2018; 7(8): 807-816. https://doi.org/10.2217/cer-2017-0103
- [23] Ben Salem C, Slim R, Fathallah N, Hmouda H. Drug-induced hyperuricaemia and gout. Rheumatology. 2017; 56(5): 679-688. https://doi.org/10.1093/rheumatology/kew293
- [24] Verzola D, Ratto E, Villaggio B, Parodi EL, Pontremoli R, Garibotto G, Viazzi F, Franco M. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4. PloS one. 2014; 9(12): e115210. https://doi.org/10.1371/journal.pone.0115210
- [25] Heitel P, Gellrich L, Heering J, Goebel T, Kahnt A, Proschak E, Schubert-Zsilavecz M, Merk D. Urate transporter inhibitor lesinurad is a selective peroxisome proliferator-activated receptor gamma modulator (sPPARγM) in vitro. Sci Rep. 2018; 8(1): 1-11. https://doi.org/10.1038/s41598-018-31833-4.
- [26] Sánchez-Lozada LG, Soto V, Tapia E, Avila-Casado C, Sautin YY, Nakagawa T, Rodríguez-Iturbe B, Johnson RJ. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Renal Physiol. 2008; 295(4): F1134-F1141. https://doi.org/10.1152/ajprenal.00104.2008
- [27] Alghamdi YS, Soliman MM, Nassan MA. Impact of Lesinurad and allopurinol on experimental hyperuricemia in mice: biochemical, molecular and immunohistochemical study. BMC Pharmacol Toxicol. 2020; 21(1): 10. https://doi.org/10.1186/s40360-020-0386-7
- [28] Lee YS, Sung YY, Yuk HJ, Son E, Lee S, Kim JS, Kim DS. Anti-hyperuricemic effect of Alpinia oxyphylla seed extract by enhancing uric acid excretion in the kidney. Phytomedicine. 2019; 62: 152975. https://doi.org/10.1016/j.phymed.2019.152975
- [29] Navarro-González JF, Mora-Fernández C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008; 19: 433-442. https://doi.org/10.1681/ASN.2007091048.
- [30] Zhang H, Sun SC. NF-ΚB in inflammation and renal diseases. Cell Biosci. 2015; 5:63. https://doi.org/10.1186/s13578-015-0056-4
- [31] Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduc Target Ther. 2017; 2: 17023. https://doi.org/10.1038/sigtrans.2017.23
- [32] Gillen M, Yang C, Wilson D, Valdez S, Lee C, Kerr B, Shen Z. Evaluation of pharmacokinetic interactions between lesinurad, a new selective urate reabsorption inhibitor, and CYP enzyme substrates sildenafil, amlodipine, tolbutamide, and repaglinide. Clin Pharmacol Drug Dev. 2017; 6(4): 363-376. https://doi.org/10.1002/cpdd.324.
- [33] Fotakis G, Timbrell JA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett. 2006; 160(2): 171-177. https://doi.org/10.1016/j.toxlet.2005.07.001
- [34] Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzimol. 1978; 52: 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6
- [35] Bucalen CF. Effects of xenobiotics on total antioxidant capacity. Interdiscip Toxicol. 2012; 5(3): 117-122. https://doi.org/10.2478/v10102-012-0019-0
- [36] Sharma R, Tiku AB. Emodin inhibits splenocyte proliferation and inflammation by modulating cytokine responses in a mouse model system. J Immunotoxicol. 2016; 13(1): 20-26. https://doi.org/10.3109/1547691x.2014.995243.
- [37] Chae BS. Pretreatment of low-dose and super-low-dose LPS on the production of in vitro LPS-induced inflammatory mediators. Toxicol Res. 2018; 34(1): 65-73. https://doi.org/10.5487/tr.2018.34.1.065.
- [38] Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des.2007; 21(12): 681-691. https://doi.org/10.1007/s10822-007-9133-z.
- [39] Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2021.
- [40] Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschhagrin PC, Mainz DT. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein− ligand complexes. J Med Chem. 2006; 49(21): 6177-6196. https://doi.org/10.1021/jm051256o.
- [41] Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins. 2011; 79(10): 2794-2812. https://doi.org/10.1002/prot.23106.
- [42] Zamzami MA. Molecular docking, molecular dynamics simulation and MM-GBSA studies of the activity of glycyrrhizin relevant substructures on SARS-CoV-2 RNA-dependent-RNA polymerase. J Biomol Struct Dyn. 2023; 41(5): 1846-1858. https://doi.org/10.1080/07391102.2021.2025147.