Research Article
BibTex RIS Cite

9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-vitro and in-vivo Evaluation

Year 2023, Volume: 27 Issue: 5, 1734 - 1750, 28.06.2025

Abstract

Pithecellobium dulce (Roxb.) Benth. has been used as a folk medicine due to its wide range of pharmacological applications. In light of the lack of significant studies examining the anti-inflammatory potential of seeds and their phytochemical constituents, we investigated the molecular basis behind the therapeutic efficacy of methanolic extract both in-vitro and in-vivo. The phytochemical investigation of methanolic seed extract using GC-MS analysis revealed the presence of 30 molecules of diverse classes. Further solvent fractionation followed by RP-HPLC separation demonstrated the presence of 9-Hexadecenoic acid and 8,11,14 (Z, Z, Z)-Eicosatrienoic acid and were further structurally characterized by 1H-NMR and HRMS. 9-Hexadecenoic acid-rich HPLC fraction exhibited the highest % inhibition of albumin denaturation and % reduction of IL-8 and IL-6 in HaCaT cells as well as NO and PGE-2 production in RAW267.4 cells among other test samples. In-vivo anti-inflammatory findings revealed that 9-Hexadecenoic acid-rich fraction potentially reduced rat paw edema by 84.62% at 150 µg/mL, which is superior to the diclofenac. The results of the present study revealed that the 9-hexadecenoic acid-rich fraction of methanolic seed extract of P. dulce displayed potential anti-inflammatory activity both in-vitro and in-vivo, which suggests an efficient alternative in treating a variety of ailments related to inflammation and pain.

References

  • [1] Atanasov AG, Waltenberger B, Pferschy-Wenzig E, Linder T, Wawrosch C, Uhrin, P. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33:1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001.
  • [2] Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages, and spices: anti-oxidant activity and health effects – a review. J Funct Foods. 2015;18:820–897. https://doi.org/10.1016/j.jff.2015.06.018.
  • [3] Liao BY, Zhu DY, Thakur K, Li L, Zhang JG, Wei ZJ. Thermal and anti-oxidant properties of polysaccharides sequentially extracted from mulberry leaves (Morus alba L.). Molecules. 2017;22(12):1–14. https://doi.org/10.3390/molecules22122271.
  • [4] Zhang YY, Zhang F, Thakur K, Ci AT, Wang H, Zhang JG. Effect of natural polyphenol on the oxidative stability of pecan oil. Food Chem Toxicol. 2015;119:489–495. https://doi.org/10.1016/j.fct.2017.10.001.
  • [5] Shahidi F, McDonald J, Chandrasekara A, Zhong Y. Phytochemicals of foods, beverages and fruit vinegar: chemistry and health effects. Asia Pacific J Clin Nutr. 2008;17:380–382. https://doi.org/10.1058/aj.cfi.2008.10.055.
  • [6] Vasu K, Goud J, Suryam V, Singara A, Chary M. Biomolecular and phytochemical analyses of three aquatic angiosperms. Afric J Micro Res. 2009;3(8):418–421. https://doi.org/10.2145/a.mcr.2009.10.2001.
  • [7] Medzhitov R. Inflammation 2010: New Adventures of an Old Flame. Cell. 2010;140:771–776. https://doi.org/10.1016/j.cell.2010.03.006.
  • [8] Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–435. https://doi.org/10.1038/nature07201.
  • [9] Muller WA. Getting leukocytes to the site of inflammation. Vet Pathol. 2013;50(1):7–22. https://doi.org/10.1177/0300985812469883.
  • [10] Guo W, Sun J, Jiang L, Duan L, Huo M, Chen N, Zhong W, Wassy L, Yang Z, Feng H. Imperatorin attenuates LPS-Induced Inflammation by Suppressing NF-B and MAPKs Activation in RAW 264.7 Macrophages. Inflammation. 2012;35:1764–1772. https://doi.org/10.1007/s10753-012-9495-9.
  • [11] Naik AD, Woofter AL, Skinner JM, Abraham NS. Pharmaceutical companies influence non-steroidal anti-inflammatory drug prescribing behaviours. Am J Manag Care. 2009;15:9–15. PMID: 19341315.
  • [12] Horl WH. Non-steroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals. 2010;3:2291–2321. https://doi.org/10.3390/ph3072291.
  • [13] Emmanuelle L, Olivier R, Pierre D, Boutin JA. Unravelling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol. 2020;11:397–415. https://doi.org/10.3389/fphar.2020.00397.
  • [14] Martins E. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 2014;4:177–189. https://doi.org/10.3389/fphar.2013.00177.
  • [15] Nagmoti DM, Kothavade PS, Bulani VD, Gawali NB, Juvekar AR. Anti-diabetic and anti-hyperlipidemic activity of Pithecellobium dulce (Roxb.) Benth seeds extract in streptozotocin-induced diabetic rats. Eur J Integr Med. 2015;7:263–273. https://doi.org/10.1016/j.eujim.2015.01.001.
  • [16] Vargas AF, Kuri GA, Vargas MH, Chavez SJL, Ferriz RA, Hernandez SLG, Guzma MSH. Phenolic profile and anti-oxidant capacity of Pithecellobium dulce (Roxb) Benth: a review. J Food Sci Technol. 2020;57(12):4316–4336. http://doi.org/10.1007/s13197-020-04453.
  • [17] Palika W, Piriya C, Chuchard P, Sineenart S. LC-QTOF-MS Characterization, Antioxidant Activity, and In Vitro Toxicity of Medicinal Plants from the Tri-Than-Thip Remedy. eCAM. 2022;2022:10 pages. https://doi.org/10.1155/2022/4477003.
  • [18] Yadava RN, Chakravarty A. In vitro anti-inflammatory activity of a new allelochemical from the bark of Pithecellobium dulce (Roxb.) Benth. Indian J Clin Biochem. 2017;56B(04):447–452. https://doi.org/10/123456789/41187.
  • [19] Selvan S, Muthukumaran P. Analgesic and anti-inflammatory activities of leaf extract of Pithecellobium dulce Benth. Int J Chem Tech Res. 2011;3(1):337–341. https://doi.org/10.12554/502418/5632.
  • [20] Kalavani R, Sabithabanu R, Jeyanthi KA, Uma Sankari T, Vinothkanna A. Evaluation of anti-inflammatory and antibacterial activity of Pithecellobium dulce (Benth) extract. Biotechnol Res. 2016;2(4):148–154. https://doi.org/10.12554/5412/rt/4520.
  • [21] Sugumaran M, Vetrichelvan T, Darlin SQ. Anti-inflammatory activity of Folklore: Pithecellobium dulce Benth. Res J Pharm Tech. 2009;2(4):868–869. https://doi.org/10.55217/ghts/0236.01.
  • [22] Shankar K, Maheshkumar SK. Anti-oxidant and free radical scavenging activity of Pithecellobium dulce (Roxb.) Benth wood bark and leaves. Free Rad Antiox. 2012;2(3):47–57. https://doi.org/10.5530/ax.2012.3.7.
  • [23] Bobade A. GC-MS Study and Pharmacognostic Study of Pithecellobium Dulce Leaves. Int J PharmTech Res. 2016;6:1–9.
  • [24] Saeed KS, Ayoub IM, El-Moghazy SA, Singab ANB. Phytochemical analysis of Pithecellobium dulce (Roxb) Benth Bark via UPLC-ESI-MS/MS and evaluation of its biological activity. Nat Prod Res. 2022;1–6. http://doi.org/10.1080/14786419.2022.2140153.
  • [25] Sara SK, Iriny MA, Safaa A, Moghazy EA, Nasser BS. Process Optimization and Characterization of Manila Tamarind Seed Oil Extracted by the Soxhlet Method. Int J Energy Clean Environ. 2021;22(1):31–39.
  • [26] Sofowora A. Medicinal Plants and Traditional Medicine in Africa. Spectrum Books Limited: Ibadan, Nigeria, 1993.
  • [27] Trease GE, Evans W. Pharmacognosy. Baillier Tindall: Philadelphia, PA, USA, 2003.
  • [28] Ahmed M, Ji M, Peiwen Q, Liu Y, Gu Z, Sikandar A, Iqbal M, Javeed A. Phytochemical screening, total phenolics, and flavonoids content and anti-oxidant activities of Citrullus colocynthis L. and Cannabis sativa L. Appl Ecol Environ Res. 2019;17(3):6961–6979. https://doi.org/10.15666/aeer/1703_69616979.
  • [29] Lei W, Wei Z, Li Y, Fang Y, Ying X, Fang C. Extraction optimization of total triterpenoids from Jatropha curcas leaves using response surface methodology and evaluations of their antimicrobial and anti-oxidant capacities. Elect J Biotech. 2015;18:88–95. https://doi.org/10.1016/j.ejbt.2014.12.005.
  • [30] Ren X, Chen J, Deschênes JS, Tremblay R, Jolicoeur M. Glucose feeding recalibrates carbon flux distribution and favours lipid accumulation in Chlorella protothecoides through cell energetic management. Algal Res. 2016;14:83–91. https://doi.org/10.1016/j.algal.2016.01.004.
  • [31] Paul E, Donald SG, Anthony JA. Evaluation of anti-oxidant activity and the fatty acid profile of the leaves of Vernonia amygdalina growing in South Africa. Food Chem. 2007;104(2):636–642. https://doi.org/10.1016/j.foodchem.2006.12.013.
  • [32] Ruiz GV, Perez MC. Update on solid-phase extraction for the analysis of lipid classes and related compounds. J Chromatogr A. 2000;885:321–341. https://doi.org/10.1016/s0021-9673(00)00181-3.
  • [33] Padmanabhan P, Jangle SN. Evaluation of the in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. J Biomed Sci. 2012;2(1):109–116. https://doi.org/10.1016/j.jtcme.2015.07.001.
  • [34] Dharmadeva S, Galgamuwa LS, Prasadinie C, Kumarasinghe N. In vitro anti-inflammatory activity of Ficus racemosa L. bark using albumin denaturation method. Ayu. 2018;39(4):239–242. https://doi.org/10.4103/ayu.AYU_27_18.
  • [35] Colombo I, Sangiovanni E, Maggio R, Mattozzi C, Zava S, Corbett Y, Fumagalli M, Carlino C, Corsetto PA, Scaccabarozzi D, et al. HaCaT Cells as a Reliable In Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediators Inflamm. 2017;12(2):7435621. https://doi.org/10.1155/2017/7435621.
  • [36] Wedler J, Daubitz T, Schlotterbeck G, Butterweck V. In vitro anti-inflammatory and wound-healing potential of a Phyllostachys edulis leaf extract – identification of isoorientin as an active compound. Planta Med. 2014;80:1678–1684. https://doi.org/10.1055/s-0034-1383195.
  • [37] Ryoo S, Choi J, Kim J, Bae S, Hong J, Jo S, Kim S, Lee Y. BIRB 796 has distinctive anti-inflammatory effects on different cell types. Immune Netw. 2013;13:283–288. https://doi.org/10.4110/in.2013.13.6.283.
  • [38] Girish GM, Anil K, Waseem R, Tripathi CD, Khan RA. Evaluation of the anti-inflammatory activity of the aqueous and ethanolic extracts of the leaves of Albizzia lebbeck in rats. J Tradit Complement Med. 2016;6(2):172–175. https://doi.org/10.1016/j.jtcme.2014.11.038.
There are 38 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Babanna Yelugudari 0000-0002-3128-2982

Nageshwar Mesram

Pratap Reddy Karnati

Publication Date June 28, 2025
Published in Issue Year 2023 Volume: 27 Issue: 5

Cite

APA Yelugudari, B., Mesram, N., & Karnati, P. R. (2025). 9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-vitro and in-vivo Evaluation. Journal of Research in Pharmacy, 27(5), 1734-1750.
AMA Yelugudari B, Mesram N, Karnati PR. 9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-vitro and in-vivo Evaluation. J. Res. Pharm. July 2025;27(5):1734-1750.
Chicago Yelugudari, Babanna, Nageshwar Mesram, and Pratap Reddy Karnati. “9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium Dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-Vitro and in-Vivo Evaluation”. Journal of Research in Pharmacy 27, no. 5 (July 2025): 1734-50.
EndNote Yelugudari B, Mesram N, Karnati PR (July 1, 2025) 9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-vitro and in-vivo Evaluation. Journal of Research in Pharmacy 27 5 1734–1750.
IEEE B. Yelugudari, N. Mesram, and P. R. Karnati, “9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-vitro and in-vivo Evaluation”, J. Res. Pharm., vol. 27, no. 5, pp. 1734–1750, 2025.
ISNAD Yelugudari, Babanna et al. “9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium Dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-Vitro and in-Vivo Evaluation”. Journal of Research in Pharmacy 27/5 (July 2025), 1734-1750.
JAMA Yelugudari B, Mesram N, Karnati PR. 9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-vitro and in-vivo Evaluation. J. Res. Pharm. 2025;27:1734–1750.
MLA Yelugudari, Babanna et al. “9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium Dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-Vitro and in-Vivo Evaluation”. Journal of Research in Pharmacy, vol. 27, no. 5, 2025, pp. 1734-50.
Vancouver Yelugudari B, Mesram N, Karnati PR. 9-Hexadecenoic Acid Rich HPLC Fraction of Pithecellobium dulce Methanolic Seed Extract Exhibits Potential Antiinflammatory Activity by Inhibiting IL-8, IL-6, and PGE2: Phytochemical Characterization, in-vitro and in-vivo Evaluation. J. Res. Pharm. 2025;27(5):1734-50.