Research Article
BibTex RIS Cite

Traditional Herbal Drugs against Liver Diseases – Experimented in vitro using HepG2 Cells for Induced Steatosis

Year 2023, Volume: 27 Issue: 5, 1831 - 1847, 28.06.2025

Abstract

Salvia fruticosa leaves, Malva sylvestris flowers, Taraxacum officinale aerial parts, Plantago ovata seeds, Tanacetum parthenium aerial parts, and Allium sativum bulbs are documented for traditional use against hepatic disorders and different liver diseases. To evaluate herbal drug material for potential use against liver diseases, at molecular level for the efficacy linked to ethnobotanical documented data.Different herbal extracts were prepared and standardized by HPLC, according to European Pharmacopoeia. Initially 0.25 mg/mL each standardized extract was applied to oleic+palmitic acid induced fatty liver using a HepG2 cell culture model. ALT, AST, GSH, and MDA levels were comparatively analyzed, in addition to cell Nil Red staining. The highest activity for MDA reduction was observed for the A. sativum extract at 48.2% level, followed by 36.4% for M. sylvestris, and S. fruticosa extracts with 27.3% reduction, respectively. Glutathione levels increased to 59.1% when A. sativum extract was applied. M. sylvestris extract increased the glutathione levels in the medium by 49.7%; S. fruticosa extract decreased ALT levels by 53.5% and M. sylvestris extract by 38.5%, whereas the standard resveratrol reduced ALT level by 30.9%, respectively. The AST levels for M. sylvestris extract was 46.5%, compared to resveratrol by 93%. A. sativum, M. sylvestris, and S. fruticosa standard extracts showed relatively good correlation and activity where further in vivo studies should be performed.

References

  • [1] Younossi ZM. Non-alcoholic fatty liver disease – A global public health perspective. J Hepatol. 2019; 70(3): 531–544. https://doi.org/10.1016/J.JHEP.2018.10.033
  • [2] Adams LA, Angulo P, Lindor KD. Nonalcoholic fatty liver disease. Can Med Assoc J. 2005; 172(7): 899–905. https://doi.org/10.1503/CMAJ.045232
  • [3] Gürdal B, Kültür Ş. An ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey). J Ethnopharmacol. 2013; 146(1): 113–126. https://doi.org/10.1016/J.JEP.2012.12.012
  • [4] Asadollahi M, Firuzi O, Heidary Jamebozorgi F, Alizadeh M, Jassbi AR. Ethnopharmacological studies, chemical composition, antibacterial and cytotoxic activities of essential oils of eleven Salvia in Iran. J Herb Med. 2019; 17–18: 100250. https://doi.org/10.1016/J.HERMED.2018.11.006
  • [5] Gasparetto JC, Martins CAF, Hayashi SS, Otuky MF, Pontarolo R. Ethnobotanical and scientific aspects of Malva sylvestris L.: a millennial herbal medicine. J Pharm Pharmacol. 2012; 64(2): 172–189. https://doi.org/10.1111/J.2042-7158.2011.01383.X
  • [6] Thirunatayanan T, Rajkumar S. Ethnobotanical Survey Regarding the Management of Liver Disorders by Traditional Healers of Vellore District, Tamil Nadu, India. Int J Pharmacol Clin Sci. 2012; 1: 24–31.
  • [7] Nencini C, Franchi GG, Cavallo F, Micheli L. Protective Effect of Allium neapolitanum Cyr. Versus Allium sativum L. on Acute Ethanol-Induced Oxidative Stress in Rat Liver. J Med Food. 2010; 13(2): 329–335. https://doi.org/10.1089/JMF.2008.0180
  • [8] Abbasi AM, Ajab Khan M, Ahmad M, Zafar M, Khan H, Muhammad N, Sultana S. Medicinal plants used for the treatment of jaundice and hepatitis based on socio-economic documentation. Afr J Biotechnol. 2010; 8(8): 1643–1650. https://doi.org/10.4314/ajb.v8i8.60358
  • [9] Wahid A, Mahmoud SMN, Attia EZ, Yousef AESA, Okasha AMM, Soliman HA. Dietary fiber of psyllium husk (Plantago ovata) as a potential antioxidant and hepatoprotective agent against CCl4-induced hepatic damage in rats. S Afr J Bot. 2020; 130: 208–214. https://doi.org/10.1016/J.SAJB.2020.01.007
  • [10] Martinez M, Poirrier P, Chamy R, Prüfer D, Schulze-Gronover C, Jorquera L, Ruiz G. Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant. J Ethnopharmacol. 2015; 169: 244–262. https://doi.org/10.1016/J.JEP.2015.03.067
  • [11] Gulfraz M, Ahmad D, Ahmad MS, Qureshi R, Mahmood RT, Jabeen N, Abbasi KS. Effect of leaf extracts of Taraxacum officinale on CCl4 induced hepatotoxicity in rats, in vivo study. Pak J Pharm Sci. 2014; 27(4): 825–829.
  • [12] Hanlidou E, Karousou R, Kleftoyanni V, Kokkini S. The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. J Ethnopharmacol. 2004; 91: 281–299. https://doi.org/10.1016/J.JEP.2004.01.007
  • [13] Mahmoodzadeh Y, Mazani M, Rezagholizadeh L. Hepatoprotective effect of methanolic Tanacetum parthenium extract on CCl4-induced liver damage in rats. Toxicol Rep. 2017; 4: 455–462. https://doi.org/10.1016/J.TOXREP.2017.08.003
  • [14] European Pharmacopoeia Online. https://pheur.edqm.eu/home (accessed February 2, 2023).
  • [15] Amiri MS, Joharchi MR. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna J Phytomedicine. 2013; 3(3): 254. https://doi.org/10.22038/ajp.2013.487
  • [16] Arenas PM, Molares S, Aguilar Contreras A, Doumecq B, Gabrielli F. Ethnobotanical, micrographic and pharmacological features of plant-based weight-loss products sold in naturist stores in Mexico City: the need for better quality control. Acta Bot Brasilica. 2013; 27: 560–579. https://doi.org/10.1590/S0102-33062013000300014
  • [17] Perfumi M, Arnold N, Tacconi R. Hypoglycemic activity of Salvia fruticosa Mill. from Cyprus. J Ethnopharmacol. 1991; 34: 135–140. https://doi.org/10.1016/0378-8741(91)90030-H
  • [18] Bocchini P, Andalò C, Pozzi R, Galletti GC, Antonelli A. Determination of diallyl thiosulfinate (allicin) in garlic (Allium sativum L.) by high-performance liquid chromatography with a post-column photochemical reactor. Anal Chim Acta. 2001; 441(1): 37–43. https://doi.org/10.1016/S0003-2670(01)01104-7
  • [19] Iberl B, Winkler G, Muller B, Knobloch K. Quantitative determination of allicin and alliin from garlic by HPLC. Planta Med. 1990; 56(3): 320–326. https://doi.org/10.1055/S-2006-960969
  • [20] Exarchou V, Kanetis L, Charalambous Z, Apers S, Pieters L, Gekas V, Goulas V. HPLC-SPE-NMR Characterization of Major Metabolites in Salvia fruticosa Mill. Extract with Antifungal Potential: Relevance of Carnosic Acid, Carnosol, and Hispidulin. J Agric Food Chem. 2015; 63(2): 457–463. https://doi.org/10.1021/JF5050734
  • [21] Topçu G, Öztürk M, Kuşman T, Demirkoz AAB, Kolak U, Ulubelen A. Terpenoids, essential oil composition and fatty acids profile, and biological activities of Anatolian Salvia fruticosa Mill. Turkish J Chem. 2013; 37(4): 619–632. https://doi.org/10.3906/KIM-1303-25
  • [22] Nakamura Y, Yoshikawa N, Hiroki I, Sato K, Ohtsuki K, Chang CC, Upham BL, Trosko JE. β-Sitosterol From Psyllium Seed Husk (Plantago ovata Forsk) Restores Gap Junctional Intercellular Communication in Ha-ras Transfected Rat Liver Cells. Nutr Cancer. 2009; 51(2): 218–225. https://doi.org/10.1207/S15327914NC5102_12
  • [23] Heptinstall S, Awang DVC, Dawson BA, Kindack D, Knight DW, May J. Parthenolide Content and Bioactivity of Feverfew (Tanacetum parthenium (L.) Schultz-Bip.). Estimation of Commercial and Authenticated Feverfew Products. J Pharm Pharmacol. 2011; 44(5): 391–395. https://doi.org/10.1111/J.2042-7158.1992.TB03631.X
  • [24] Sur R, Martin K, Liebel F, Lyte P, Shapiro S, Southall M. Anti-inflammatory activity of parthenolide-depleted feverfew (Tanacetum parthenium). Inflammopharmacol. 2009; 17: 42–49. https://doi.org/10.1007/S10787-008-8040-9/METRICS
  • [25] Bozin B, Mimica-Dukic N, Samojlik I, Goran A, Igic R. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chem. 2008; 111(4): 925–929. https://doi.org/10.1016/J.FOODCHEM.2008.04.071
  • [26] Ünyayar S, Çelik A, Çekiç FÖ, Gözel A. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagen. 2006; 21(1): 77–81. https://doi.org/10.1093/MUTAGE/GEL001
  • [27] Bontempo P, Stiuso P, Lama S, Napolitano A, Piacente S, Altucci L, Molinari AM, Masi LD, Rigano D. Metabolite Profile and In Vitro Beneficial Effects of Black Garlic (Allium sativum L.) Polar Extract. Nutr. 2021; 13(8): 2771. https://doi.org/10.3390/NU13082771
  • [28] Barros L, Carvalho AM, Ferreira ICFR. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food Chem Toxicol. 2010; 48(6): 1466–1472. https://doi.org/10.1016/J.FCT.2010.03.012
  • [29] Marouane W, Soussi A, Murat JC, Bezzine S, El Feki A. The protective effect of Malva sylvestris on rat kidney damaged by vanadium. Lipids Health Dis. 2011; 10(1): 1–8. https://doi.org/10.1186/1476-511X-10-65/FIGURES/4
  • [30] Saad A Ben, Rjeibi I, Alimi H, Ncib S, Smida A, Zouari N, Zourgui L. Lithium induced, oxidative stress and related damages in testes and heart in male rats: The protective effects of Malva sylvestris extract. Biomed Pharmacother. 2017; 86: 127–135. https://doi.org/10.1016/J.BIOPHA.2016.12.004
  • [31] Zhen-yu W. Impact of anthocyanin from Malva sylvestris on plasma lipids and free radical. J For Res. 2005; 16: 228–232. https://doi.org/10.1007/BF02856821
  • [32] Zuo H, Li Y, Cui Y, An Y. Cardioprotective effect of Malva sylvestris L. in myocardial ischemic/reperfused rats. Biomed Pharmacother. 2017; 95: 679–684. https://doi.org/10.1016/J.BIOPHA.2017.08.111
  • [33] Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 1968; 25: 192–205. https://doi.org/10.1016/0003-2697(68)90092-4
  • [34] Izdebska M, Piątkowska-Chmiel I, Korolczuk A, Herbet M, Gawrońska-Grzywacz M, Gieroba R, et al. The beneficial effects of resveratrol on steatosis and mitochondrial oxidative stress in HepG2 cells. Canad J Phys Pharm. 2017; 95(12): 1442–1453. https://doi.org/10.1139/CJPP-2016-0561
  • [35] Medina-Urrutia A, Lopez-Uribe AR, El Hafidi M, González-Salazar MDC, Posadas-Sánchez R, Jorge-Galarza E. Chia (Salvia hispanica)-supplemented diet ameliorates non-alcoholic fatty liver disease and its metabolic abnormalities in humans. Lipids Health Dis. 2020; 19(1): 1–9. https://doi.org/10.1186/S12944-020-01283-X/FIGURES/2
  • [36] Hosseini SM, Asadbegy M, Karamian R, Yari S. Phytochemical Contents of Salvia grossheimii SOSN. Species Extract and Its Protective Effect on Alcohol-Induced Fatty Liver in Rats. Iran Red Crescent Med J. 2019; 21(11): 1–7. https://doi.org/10.5812/IRCMJ.93718
  • [37] Choi SI, Cho IH, Han SH, Jeon YJ, Choi JG, Kim JS, Lee HJ. Antiobesity Effects of Salvia plebeia R. Br. Extract in High-Fat Diet-Induced Obese Mice. J Med Food. 2016; 19(11): 1048–1056. https://doi.org/10.1089/JMF.2016.3763
  • [38] Soleimani D, Paknahad Z, Rouhani MH. Therapeutic Effects of Garlic on Hepatic Steatosis in Nonalcoholic Fatty Liver Disease Patients: A Randomized Clinical Trial. Diabetes, Metab Syndr Obes Targets Ther. 2020; 13: 2389. https://doi.org/10.2147/DMSO.S254555
  • [39] Sangouni AA, Mohammad Hosseini Azar MR, Alizadeh M. Effects of garlic powder supplementation on insulin resistance, oxidative stress, and body composition in patients with non-alcoholic fatty liver disease: A randomized controlled clinical trial. Complement Ther Med. 2020; 51: 102428. https://doi.org/10.1016/J.CTIM.2020.102428
  • [40] Liu J, Yu W, Wang C, Li S, Zhang W. Garlic (Allium sativum) polysaccharides ameliorates hepatic injury and fat accumulation in mice with metabolic associated fatty liver disease (MAFLD). J Funct Foods. 2022; 99: 105342. https://doi.org/10.1016/J.JFF.2022.105342
  • [41] Abbas AS, Akhtar T, Shaheen N, Aslam S, Sheikh N. Mechanistic study of regulation of iron homeostasis by N. sativa seeds and P. ovata husks on high fat/high sucrose diet induced non-alcoholic fatty liver disease. Mol Biol Rep. 2022; 49(8): 7417–7424. https://doi.org/10.1007/S11033-022-07538-3/FIGURES/5
  • [42] Abbas AS, Abbasi MH, Khawar B, Jabeen F, Shad A, Sheikh N. Gender linked negative consequences of “Nigella sativa” seeds and “Plantago ovata” husk on fibrosis in the energy-rich diet (ERD) induced nonalcoholic fatty liver disease (NAFLD). Pakistan J Biochem Biotechnol. 2022; 3(2): 61–66. https://doi.org/10.52700/PJBB.V3I2.161
  • [43] Kamatou GPP, Viljoen AM, Steenkamp P. Antioxidant, antiinflammatory activities and HPLC analysis of South African Salvia species. Food Chem. 2010; 119(2): 684–688. https://doi.org/10.1016/J.FOODCHEM.2009.07.010
  • [44] Bose S, Laha B, Banerjee S. Quantification of allicin by high performance liquid chromatography-ultraviolet analysis with effect of post-ultrasonic sound and microwave radiation on fresh garlic cloves. Pharmacogn Mag. 2014; 10(2): S288. https://doi.org/10.4103/0973-1296.133279
  • [45] Farina A, Doldo A, Cotichini V, Rajevic M, Quaglia MG, Mulinacci N, Vincieri FF. HPTLC and reflectance mode densitometry of anthocyanins in Malva silvestris L.: a comparison with gradient-elution reversed-phase HPLC. J Pharm Biomed Anal. 1995; 14(1–2): 203–211. https://doi.org/10.1016/0731-7085(95)01632-5
  • [46] Schütz K, Kammerer DR, Carle R, Schieber A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2005; 19(2): 179–186. https://doi.org/10.1002/RCM.1767
  • [47] Sriraman S, Ramanujam GM, Ramasamy MK, Dubey GP. Identification of beta-sitosterol and stigmasterol in Bambusa bambos (L.) Voss leaf extract using HPLC and its estrogenic effect in vitro. J Pharm Biomed Anal. 2015; 115: 55–61. https://doi.org/10.1016/J.JPBA.2015.06.024
  • [48] Daraie B, Pourahmad J, Hamidi-Pour N, Hosseini M-J, Shaki F, Soleimani M. Uranyl Acetate Induces Oxidative Stress and Mitochondrial Membrane Potential Collapse in the Human Dermal Fibroblast Primary Cells. Iran J Pharm Res. 2012; 11(2): 495.
  • [49] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein Measurement with the Folin Phenol Reagent. J Biol Chem. 1951; 193(1): 265–275. https://doi.org/10.1016/S0021-9258(19)52451-6
  • [50] She X, Wang F, Ma J, Chen X, Ren D, Lu J. In vitro antioxidant and protective effects of corn peptides on ethanol-induced damage in HepG2 cells. Food Agric Immun. 2015; 27(1): 99–110. https://doi.org/10.1080/09540105.2015.1079597
There are 50 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Ayşe Esra Karadağ

Mehmet Evren Okur 0000-0001-7706-6452

Yağmur Özhan 0000-0001-6173-3281

Hande Sipahi

Fatih Demirci

Publication Date June 28, 2025
Published in Issue Year 2023 Volume: 27 Issue: 5

Cite

APA Karadağ, A. E., Okur, M. E., Özhan, Y., Sipahi, H., et al. (2025). Traditional Herbal Drugs against Liver Diseases – Experimented in vitro using HepG2 Cells for Induced Steatosis. Journal of Research in Pharmacy, 27(5), 1831-1847.
AMA Karadağ AE, Okur ME, Özhan Y, Sipahi H, Demirci F. Traditional Herbal Drugs against Liver Diseases – Experimented in vitro using HepG2 Cells for Induced Steatosis. J. Res. Pharm. July 2025;27(5):1831-1847.
Chicago Karadağ, Ayşe Esra, Mehmet Evren Okur, Yağmur Özhan, Hande Sipahi, and Fatih Demirci. “Traditional Herbal Drugs Against Liver Diseases – Experimented in Vitro Using HepG2 Cells for Induced Steatosis”. Journal of Research in Pharmacy 27, no. 5 (July 2025): 1831-47.
EndNote Karadağ AE, Okur ME, Özhan Y, Sipahi H, Demirci F (July 1, 2025) Traditional Herbal Drugs against Liver Diseases – Experimented in vitro using HepG2 Cells for Induced Steatosis. Journal of Research in Pharmacy 27 5 1831–1847.
IEEE A. E. Karadağ, M. E. Okur, Y. Özhan, H. Sipahi, and F. Demirci, “Traditional Herbal Drugs against Liver Diseases – Experimented in vitro using HepG2 Cells for Induced Steatosis”, J. Res. Pharm., vol. 27, no. 5, pp. 1831–1847, 2025.
ISNAD Karadağ, Ayşe Esra et al. “Traditional Herbal Drugs Against Liver Diseases – Experimented in Vitro Using HepG2 Cells for Induced Steatosis”. Journal of Research in Pharmacy 27/5 (July 2025), 1831-1847.
JAMA Karadağ AE, Okur ME, Özhan Y, Sipahi H, Demirci F. Traditional Herbal Drugs against Liver Diseases – Experimented in vitro using HepG2 Cells for Induced Steatosis. J. Res. Pharm. 2025;27:1831–1847.
MLA Karadağ, Ayşe Esra et al. “Traditional Herbal Drugs Against Liver Diseases – Experimented in Vitro Using HepG2 Cells for Induced Steatosis”. Journal of Research in Pharmacy, vol. 27, no. 5, 2025, pp. 1831-47.
Vancouver Karadağ AE, Okur ME, Özhan Y, Sipahi H, Demirci F. Traditional Herbal Drugs against Liver Diseases – Experimented in vitro using HepG2 Cells for Induced Steatosis. J. Res. Pharm. 2025;27(5):1831-47.