Research Article
BibTex RIS Cite

Panax ginseng extract ameliorates methotrexate-induced multi-organ damage via the regulation of oxidative stress

Year 2023, Volume: 27 Issue: 5, 1974 - 1988, 28.06.2025

Abstract

Oxidative damage plays an important role in organ toxicities caused by methotrexate (MTX). This study aimed to determine the antioxidant effects of Panax ginseng (PxG) extract against MTX-induced liver, lung, ileum and kidney damage. Twenty-four Sprague Dawley male rats (weight 250-300 g) were used in the study. The animals were randomly separated into three groups: a) Control, b) MTX-treated (MTX) and c) MTX+PxG-treated (MTX+PxG) groups. MTX was administered intraperitoneally at 20 mg/kg, as a single dose to MTX and MTX+PxG groups. PxG was administered orally at 100 mg/kg to the MTX+PxG group for five days. Saline was given to the control and MTX groups for 5 days. At the end of the experiment, liver, lung, ileum, and kidney samples were obtained. Malondialdehyde (MDA) and glutathione (GSH) levels, superoxide dismutase (SOD), glutathione-S-transferase (GST) and tissue factor (TF) activities were determined in all tissues. In addition, histological examinations were done through light microscopy. GraphPad Prism 5v. was used for statistics, and p<0.05 were considered significant. Administration of MTX caused severe injury in tissues. Findings showed that MDA level, SOD, and GST activities were significantly normalized in the MTX+PxG group compared to the control group. A significant reduction in GSH level observed in the MTX group was reversed with PxG administration In addition, TF activity and total protein levels were found to be impaired in the MTX group, but TF activity was significantly improved in liver and lung tissues and total protein level was significantly reversed in lung and ileum in MTX+PxG group. The results of histological examinations showed that MTX-induced damage was ameliorated with the PxG administration. In conclusion, this study shows that Panax ginseng, thanks to its antioxidant properties, reversed MTX-induced tissue damage and therefore may be beneficial against side effects in patients undergoing chemotherapy.

References

  • [1] Bleyer WA. Methotrexate: clinical pharmacology, current status and therapeutic guidelines. Cancer Treat Rev. 1977;4(2): 87-101. https://doi.org/10.1016/s0305-7372(77)80007-8
  • [2] Friedman B, Cronstein B. Methotrexate mechanism in treatment of rheumatoid arthritis. Joint Bone Spine. 2019;86(3): 301-307. https://doi.org/10.1016/j.jbspin.2018.07.004
  • [3] AlAmeel T, Al Sulais E, Raine T. Methotrexate in inflammatory bowel disease: A primer for gastroenterologists. Saudi J Gastroenterol. 2022;28(4): 250-260. https://doi.org/10.4103/sjg.sjg_496_21
  • [4] Çakır T, Özkan E, Dulundu E, Topaloğlu Ü, Şehirli AÖ, Ercan F, Şener E, Şener G. Caffeic acid phenethyl ester (CAPE) prevents methotrexate-induced hepatorenal oxidative injury in rats. J Pharm Pharmacol. 2011;63(12): 1566-1571. https://doi.org/10.1111/j.2042-7158.2011.01359.x
  • [5] Al-Abkal F, Abdel-Wahab BA, El-Kareem HFA, Moustafa YM, Khodeer DM. Protective effect of pycnogenol against Methotrexate-Induced hepatic, renal, and cardiac toxicity: An in vivo study. Pharmaceuticals (Basel). 2022;15(6): 674. https://doi.org/10.3390/ph15060674
  • [6] Kremer JM. Methotrexate pulmonary toxicity: Deep inspiration. Arthritis Rheumatol. 2020;72(12): 1959-1962. https://doi.org/10.1002/art.41451
  • [7] Babiak RM, Campello AP, Carnieri EG, Oliveira MB. Methotrexate: pentose cycle and oxidative stress. Cell Biochem Funct. 1998;16(4): 283-293. https://doi.org/10.1002/(SICI)1099-0844(1998120)16:4<283::AID-CBF801>3.0.CO;2-E
  • [8] Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2): 89-96.
  • [9] McCall MR, Frei B. Can antioxidant vitamins materially reduce oxidative damage in humans?. Free Radic Biol Med. 1999;26(7-8): 1034-1053. https://doi.org/10.1016/s0891-5849(98)00302-5
  • [10] Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr. 2005;135(5): 969-972. https://doi.org/10.1093/jn/135.5.969
  • [11] Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem Toxicol. 2017;107(Pt A): 362-372. https://doi.org/10.1016/j.fct.2017.07.019.
  • [12] Zhang H, Abid S, Ahn JC, Mathiyalagan R, Kim Y-J, Yang D-C, Wang Y. Characteristics of Panax ginseng cultivars in Korea and China. Molecules. 2020; 25(11): 2635. https://doi.org/10.3390/molecules25112635
  • [13] Todorova V, Ivanov K, Ivanova S. Comparison between the biological active compounds in plants with adaptogenic properties (Rhaponticum carthamoides, Lepidium meyenii, Eleutherococcus senticosus and Panax ginseng). Plants (Basel). 2021;11(1): 64. https://doi.org/10.3390/plants11010064
  • [14] Patel S, Rauf A. Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects. Biomed Pharmacother. 2017;85: 120-127. https://doi.org/10.1016/j.biopha.2016.11.112
  • [15] Dyshlyuk LS, Fotina NV, Milentyeva IS, Ivanova SA, Izgarysheva NV, Golubtsova YV. Antimicrobial and antioxidant activity of Panax ginseng and Hedysarum neglectum root crop extracts. Braz J Biol. 2022;84:e256944. https://doi.org/10.1590/1519-6984.256944
  • [16] Ratan ZA, Youn SH, Kwak YS, Han CK, Haidere MF, Kim JK, Min H, Jung YJ, Hosseinzadeh H, Hyun SH, Cho JY. Adaptogenic effects of Panax ginseng on modulation of immune functions. J Ginseng Res. 2021;45(1): 32-40. https://doi.org/10.1016/j.jgr.2020.09.004
  • [17] Çağlar Y, Özgür H, Matur I, Yenilmez ED, Tuli A, Gönlüşen G, Polat S. Ultrastructural evaluation of the effect of N-acetylcysteine on methotrexate nephrotoxicity in rats. Histol Histopathol. 2013;28(7): 865-874. https://doi.org/10.14670/HH-28.865
  • [18] Hamed KM, Dighriri IM, Baomar AF, Alharthy BT, Alenazi FE, Alali GH, Alenazy RH, Alhumaidi NT, Alhulayfi DH, Alotaibi YB, Alhumaidan SS, Alhaddad ZA, Humadi AA, Alzahrani SA, Alobaid RH. Overview of methotrexate toxicity: A comprehensive literature review. Cureus. 2022;14(9): e29518. https://doi.org/10.7759/cureus.29518
  • [19] Demiryilmaz I, Uzkeser H, Cetin N, Hacimuftuoglu A, Bakan E, Altuner D. Effect of mirtazapine on gastric oxidative stress and DNA injury created with methotrexate in rats. Asian J. Chem. 2013;25(4): 2047–2050. https://doi.org/10.14233/ajchem.2013.13296
  • [20] Lee YM, Yoon H, Park HM, Song BC, Yeum KJ. Implications of red Panax ginseng in oxidative stress associated chronic diseases. J Ginseng Res. 2017;41(2): 113-119. https://doi.org/10.1016/j.jgr.2016.03.003
  • [21] Huang H, Chen F, Long R, Huang G. The antioxidant activities in vivo of bitter gourd polysaccharide. Int J Biol Macromol. 2020;145: 141-144. https://doi.org/10.1016/j.ijbiomac.2019.12.165.
  • [22] Jahovic N, Çevik H, Şehirli AÖ, Yeğen BÇ, Şener G. Melatonin prevents methotrexate-induced hepatorenal oxidative injury in rats. J Pineal Res. 2003;34: 282-287. https://doi.org/10.1034/j.1600-079X.2003.00043.x
  • [23] Verma P, Jahan S, Kim TH, Goyal PK. Management of radiation injuries by Panax ginseng extract. J Ginseng Res. 2011;35(3): 261-271. https://doi.org/10.5142/jgr.2011.35.3.261
  • [24] Jang SS, Kim HG, Han JM, Lee JS, Choi MK, Huh GJ, Son CG. Modulation of radiation-induced alterations in oxidative stress and cytokine expression in lung tissue by Panax ginseng extract. Phytother Res. 2015;29(2): 201–209. https://doi.org/10.1002/ptr.5223
  • [25] Kalemci S, Topal Y, Celik SY, Yilmaz N, Beydilli H, Kosar MI, Dirican N, Altuntas I. Silibinin attenuates methotrexate-induced pulmonary injury by targeting oxidative stress. Exp Ther Med. 2015;10(2): 503-507. https://doi.org/10.3892/etm.2015.2542
  • [26] Olayinka ET, Ore A, Adeyemo OA, Ola OS. Ameliorative effect of gallic acid on methotrexate-induced hepatotoxicity and nephrotoxicity in rat. J Xenobiot. 2016;6(1): 6092. https://doi.org/10.4081/xeno.2016.6092
  • [27] Song WB, Wang YY, Meng FS, Zhang QH, Zeng JY, Xiao LP, Yu XP, Peng DD, Su L, Xiao B, Zhang ZS. Curcumin protects intestinal mucosal barrier function of rat enteritis via activation of MKP-1 and attenuation of p38 and NF-κB activation. PLoS One. 2010;5(9): e12969. https://doi.org/10.1371/journal.pone.0012969
  • [28] Ramesh T, Kim SW, Hwang SY, Sohn SH, Yoo SK, Kim SK. Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats. Nutr Res. 2012;32(9): 718-726. https://doi.org/10.1016/j.nutres.2012.08.005
  • [29] Kim YO, Kim HJ, Kim GS, Park HG, Lim SJ, Seong NS, Ham YW, Lee SD, Jang KH, Jung KH, Chung JH, Kang SA. Panax ginseng protects against global ischemia injury in rat hippocampus. J Med Food. 2009;12(1): 71-76. https://doi.org/10.1089/jmf.2007.0614
  • [30] Zhang HE, Chu MY, Jiang T, Song XH, Hou JF, Cheng LY, Feng Y, Chen CB, Wang EP. By-Product of the Red Ginseng Manufacturing Process as Potential Material for Use as Cosmetics: Chemical Profiling and In Vitro Antioxidant and Whitening Activities. Molecules. 2022;27(23): 8202. https://doi.org/10.3390/molecules27238202
  • [31] Colombo I, Sangiovanni E, Maggio R, Mattozzi C, Zava S, Corbett Y, Fumagalli M, Carlino C, Corsetto PA, Scaccabarozzi D, Calvieri S, Gismondi A, Taramelli D, Dell'Agli M. HaCaT Cells as a Reliable In Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediators Inflamm. 2017:7435621. https://doi.org/10.1155/2017/7435621
  • [32] Roghani M, Kalantari H, Khodayar MJ, Khorsandi L, Kalantar M, Goudarzi M, Kalantar H. Alleviation of Liver Dysfunction, Oxidative Stress and Inflammation Underlies the Protective Effect of Ferulic Acid in Methotrexate-Induced Hepatotoxicity. Drug Des Devel Ther. 2020;14: 1933-1941. https://doi.org/10.2147/DDDT.S237107
  • [33] Karadag AS, Kanbay A, Ozlu E, Uzuncakmak TK, Gedik C, Akdeniz N. Pulmonary fibrosis developed secondary to methotrexate use in a patient with psoriasis vulgaris. North Clin Istanb. 2015;2(2): 159-161. https://doi.org/10.14744/nci.2015.97759
  • [34] Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol. 1997;54(1): 1-8. https://doi.org/10.1016/s0006-2952(97)00193-7
  • [35] Yokozawa T, Liu ZW. The role of ginsenoside-Rd in cisplatin-induced acute renal failure. Ren Fail. 2000;22(2):115-127. https://doi.org/10.1081/jdi-100100858
  • [36] Al Kury LT, Dayyan F, Ali Shah F, Malik Z, Khalil AAK, Alattar A, Alshaman R, Ali A, Khan Z. Ginkgo biloba extract protects against methotrexate-ınduced hepatotoxicity: a computational and pharmacological approach. Molecules. 2020; 25(11): 2540. https://doi.org/10.3390/molecules25112540
  • [37] Kalemci S, Akpınar O, Dere Y, Sarıhan A, Zeybek A, Tanriverdi Ö. Efficacy of clarithromycin as a protective agent in the methotrexate-induced pulmonary fibrosis model. Kardiochir Torakochirurgia Pol. 2018;15(4): 209-212. https://doi.org/10.5114/kitp.2018.80915
  • [38] Swierkot J, Szechiński J. Methotrexate in rheumatoid arthritis. Pharmacol Rep. 2006;58(4): 473-492.
  • [39] Ali YA, Ahmed AAE, Abd El-Raouf OM, Elkhoely A, Gad AM. Polydatin combats methotrexate-induced pulmonary fibrosis in rats: Involvement of biochemical and histopathological assessment. J Biochem Mol Toxicol. 2022;36(5): e23019. https://doi.org/10.1002/jbt.23019
  • [40] Shah ZA, Gilani RA, Sharma P, Vohora SB. Cerebroprotective effect of Korean ginseng tea against global and focal models of ischemia in rats. J Ethnopharmacol. 2005;101(1-3): 299-307. https://doi.org/10.1016/j.jep.2005.05.002
  • [41] Lee L-S, Cho C-W, Hong H-D, Lee Y-C, Choi U-K, Kim Y-C. Hypolipidemic and antioxidant properties of phenolic compound-rich extracts from white ginseng (Panax ginseng) in cholesterol-fed rabbits. Molecules. 2013; 18(10): 12548-12560. https://doi.org/10.3390/molecules181012548
  • [42] Tunali-Akbay T, Sehirli O, Ercan F, Sener G. Resveratrol protects against methotrexate-induced hepatic injury in rats. J Pharm Pharm Sci. 2010;13(2): 303-310. https://doi.org/10.18433/j30k5q
  • [43] Mehra L, Bhattacharya A, Rawat H, Kumar A, Jaimini A, Mittal G. In-vitro and in-vivo functional observation studies to establish therapeutic potential of alpha-ketoglutarate against methotrexate induced liver injury. Biomed J. 2021;44(5):611-619. https://doi.org/10.1016/j.bj.2020.05.012
  • [44] Li CT, Wang HB, Xu BJ. A comparative study on anticoagulant activities of three Chinese herbal medicines from the genus Panax and anticoagulant activities of ginsenosides Rg1 and Rg2. Pharm Biol. 2013;51(8): 1077-1080. https://doi.org/10.3109/13880209.2013.775164
  • [45] Xiong L, Xie J, Song C, Liu J, Zheng J, Liu C, Zhang X, Li P, Wang F. The activation of Nrf2 and its downstream regulated genes mediates the antioxidative activities of Xueshuan Xinmaining tablet in human umbilical vein endothelial cells. Evid Based Complement Alternat Med. 2015;2015: 187265. https://doi.org/10.1155/2015/187265
  • [46] Zhang X, Zhang C, Sai J, Li F, Liu J, Li Y, Wang F. Xueshuan Xinmaining tablet treats blood stasis through regulating the expression of F13a1, Car1, and Tbxa2r. Evid Based Complement Alternat Med. 2015;2015: 704390. https://doi.org/10.1155/2015/704390
  • [47] Wee JJ, Hoe JN, Kim MW, Kang DY. Protective of korean red ginseng against oxidative damage by carbon tetrachloride in rat. Korean J Ginseng Sci. 1996;20(2): 154-158 https://koreascience.kr/article/JAKO199611919373271.pdf
  • [48] Yokozawa T, Liu ZW, Dong E. A study of ginsenoside-Rd in a renal ischemiareperfusion model. Nephron 1998;78(2): 201-206. https://doi.org/10.1159/000044911
  • [49] Rubio-Patiño C, Bossowski JP, De Donatis GM, Mondragón L, Villa E, Aira LE, Chiche J, Mhaidly R, Lebeaupin C, Marchetti S, Voutetakis K, Chatziioannou A, Castelli FA, Lamourette P, Chu-Van E, Fenaille F, Avril T, Passeron T, Patterson JB, Verhoeyen E, Bailly-Maitre B, Chevet E, Ricci JE. Low-protein diet induces ire1alpha-dependent anticancer immunosurveillance. Cell Metab. 2018, 27, 828–842. https://doi.org/10.1016/j.cmet.2018.02.009
  • [50] Ge G, Yan Y, Cai H. Ginsenoside Rh2 inhibited proliferation by inducing ROS mediated ER stress dependent apoptosis in lung cancer cells. Biol. Pharm. Bull. 2017, 40, 2117–2124. https://doi.org/10.1248/bpb.b17-00463
  • [51] Saba E, Jeong D, Irfan M, Lee YY, Park S-, Park C-, Rhee MH. Anti-inflammatory activity of Rg3-enriched korean red ginseng extract in murine model of sepsis. Evid -Based Complement Altern Med. 2018;2018. https://doi.org/10.1155/2018/6874692
  • [52] Xiong L, Qi Z, Zheng B, Li Z, Wang F, Liu J, Li P. Inhibitory effect of triterpenoids from panax ginseng on coagulation factor X. Molecules 2017;22(4): 649. https://doi.org/10.3390/molecules22040649
  • [53] Li C, Wang H, Xu B. A comparative study on anticoagulant activities of three Chinese herbal medicines from the genus Panax and anticoagulant activities of ginsenosides Rg1 and Rg2. Pharm Biol 2013;51(8): 1077e80. https://doi.org/10.3109/13880209.2013.775164
  • [54] Li H, Zhai B, Sun J, Fan Y, Zou J, Cheng J, Zhang X, Shi Y, Guo D. Antioxidant, Anti-Aging and Organ Protective Effects of Total Saponins from Aralia taibaiensis. Drug Des Devel Ther. 2021;15: 4025-4042. https://doi.org/10.2147/DDDT.S330222.
  • [55] Chang GR, Lin WL, Lin TC, Liao HJ, Lu YW. The Ameliorative Effects of Saikosaponin in Thioacetamide-Induced Liver Injury and Non-Alcoholic Fatty Liver Disease in Mice. Int J Mol Sci. 2021;22(21): 11383. https://doi.org/10.3390/ijms222111383
  • [56] Karakaya-Çimen FB, Macit Ç, Göksun Sivas G, Tunalı Akbay T, Şener G, Ercan F. Morphological and Biochemical Investigation of the Protective Effects of Panax ginseng on Methotrexate-Induced Testicular Damage. Eur J Biol 2023;82(1): 31-37. https://doi.org/10.26650/EurJBiol.2023.1271825
  • [57] Hussien M, Yousef MI. Impact of ginseng on neurotoxicity induced by cisplatin in rats. Environ Sci Pollut Res Int. 2022;29(41): 62042-62054. https://doi.org/10.1007/s11356-021-16403-y
  • [58] Beutler E, Reduced Glutathione (GSH). In: Bergmeyen HV. (Ed). Red Blood Cell Metabolism: A Manual of Biochemical Methods. Grune and Stratton, New York, 1975, pp.112-114.
  • [59] Habig WH, Jacoby WB. Assays for differentiation of glutathione-S-transferases. Methods Enzymol. 1981;77: 398-405. https://doi.org/10.1016/s0076-6879(81)77053-8
  • [60] Ledwozyw A, Michalak J, Stepień A, Kadziołka A. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta; Int J Clin Chem. 1986;155(3): 275-283. https://doi.org/10.1016/0009-8981(86)90247-0
  • [61] Mylroie AA, Collins H, Umbles C, Kyle J. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol Appl Pharmacol. 1986;82(3): 512-20. https://doi.org/10.1016/0041-008x(86)90286-3
  • [62] Ingram GI, Hills M. Reference method for the one-stage prothrombin-time test on human blood. Thromb Haemost, 1976; 36(1): 237-238.
  • [63] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem. 1951; 193(1): 265-275.
There are 63 citations in total.

Details

Primary Language English
Subjects Clinical Pharmacology and Therapeutics
Journal Section Articles
Authors

Caglar Macit 0000-0002-5532-2395

Seren Ede Pazarbasi

Sümeyye Yilmaz Karaoglu 0000-0001-5529-7380

Tugba Tunaliakbay 0000-0002-2091-9298

Fatma Bedia Karakaya-çimen 0000-0001-6054-0752

Feriha Ercan 0000-0003-2339-5669

Goksel Sener

Publication Date June 28, 2025
Published in Issue Year 2023 Volume: 27 Issue: 5

Cite

APA Macit, C., Pazarbasi, S. E., Karaoglu, S. Y., Tunaliakbay, T., et al. (2025). Panax ginseng extract ameliorates methotrexate-induced multi-organ damage via the regulation of oxidative stress. Journal of Research in Pharmacy, 27(5), 1974-1988.
AMA Macit C, Pazarbasi SE, Karaoglu SY, Tunaliakbay T, Karakaya-çimen FB, Ercan F, Sener G. Panax ginseng extract ameliorates methotrexate-induced multi-organ damage via the regulation of oxidative stress. J. Res. Pharm. July 2025;27(5):1974-1988.
Chicago Macit, Caglar, Seren Ede Pazarbasi, Sümeyye Yilmaz Karaoglu, Tugba Tunaliakbay, Fatma Bedia Karakaya-çimen, Feriha Ercan, and Goksel Sener. “Panax Ginseng Extract Ameliorates Methotrexate-Induced Multi-Organ Damage via the Regulation of Oxidative Stress”. Journal of Research in Pharmacy 27, no. 5 (July 2025): 1974-88.
EndNote Macit C, Pazarbasi SE, Karaoglu SY, Tunaliakbay T, Karakaya-çimen FB, Ercan F, Sener G (July 1, 2025) Panax ginseng extract ameliorates methotrexate-induced multi-organ damage via the regulation of oxidative stress. Journal of Research in Pharmacy 27 5 1974–1988.
IEEE C. Macit, S. E. Pazarbasi, S. Y. Karaoglu, T. Tunaliakbay, F. B. Karakaya-çimen, F. Ercan, and G. Sener, “Panax ginseng extract ameliorates methotrexate-induced multi-organ damage via the regulation of oxidative stress”, J. Res. Pharm., vol. 27, no. 5, pp. 1974–1988, 2025.
ISNAD Macit, Caglar et al. “Panax Ginseng Extract Ameliorates Methotrexate-Induced Multi-Organ Damage via the Regulation of Oxidative Stress”. Journal of Research in Pharmacy 27/5 (July 2025), 1974-1988.
JAMA Macit C, Pazarbasi SE, Karaoglu SY, Tunaliakbay T, Karakaya-çimen FB, Ercan F, Sener G. Panax ginseng extract ameliorates methotrexate-induced multi-organ damage via the regulation of oxidative stress. J. Res. Pharm. 2025;27:1974–1988.
MLA Macit, Caglar et al. “Panax Ginseng Extract Ameliorates Methotrexate-Induced Multi-Organ Damage via the Regulation of Oxidative Stress”. Journal of Research in Pharmacy, vol. 27, no. 5, 2025, pp. 1974-88.
Vancouver Macit C, Pazarbasi SE, Karaoglu SY, Tunaliakbay T, Karakaya-çimen FB, Ercan F, Sener G. Panax ginseng extract ameliorates methotrexate-induced multi-organ damage via the regulation of oxidative stress. J. Res. Pharm. 2025;27(5):1974-88.