Research Article
BibTex RIS Cite

Characterization of the compound of longan honey from indonesia using LC-MS/MS and FTIR and the mechanism of inhibition of HEp-2 cells

Year 2023, Volume: 27 Issue: 5, 2035 - 2057, 28.06.2025

Abstract

Indonesian honey contains active compounds that have the potential as antioxidant and anticancer, especially as anticancer of the larynx through inhibition of HEp-2 cells. This study aims to determine the active compounds in longan honey and proposes the mechanism of action in inhibiting HEp-2 cells. The sample was used in the form of longan obtained from honey bee breeders in Central Java. Honey samples were extracted using methanol, and then liquid-liquid partitioning was carried out successively using n-hexane and ethyl acetate. Isolation and characterization of longan honey samples using FTIR and LC-MS/MS showed the presence of the following compounds: Xanthoxol glycosides, Santonin, Octadecanamide, Indole-3 carboxylaldehyde, 3,4-dimethoxycinnamic acid, Dimethyl esculetin, Tryptophan, O-acetyl-L- serine, D-glucose-6-phosphate, Feruloiltyramine, Lauryl diethanolamide, Taurine, 6-mercaptopurine, 3-(2,4-dichlorophenyl)-4-phenylcoumarin, 3',4'-dimethoxy-3-hydroxy-6-methylflavone and D-1-((3-carboxypropyl)amino)-1-deoxyfructose. The compounds in longan honey against HEp-2 cells is quercetin, 3,6-dimethoxycinnamic acid, phenyl coumarin, dimethyl esculetin, santonin, 6-mercaptopurine, and feruloyltyramine. The proposed mechanism of active compound in honey to inhibit HEp-2 cells in several ways including via caspase pathway and purine synthesis and other relevant mechanisms. However, this assumption needs to be tested further to obtain more precise information regarding the mechanism of inhibition of HEp-2 cells.

References

  • [1] Pasini F, Gardini S, Marcazzan GL, Caboni MF. Buckwheat honeys: Screening of composition and properties. Food Chem. 2013; 141: 2802–2811. https://doi.org/10.1016/j.foodchem.2013.05.102
  • [2] Spilioti E., Jaakkola M, Tolonen T, Lipponen M, Virtanen V, Chinou I, Kassi E, Karabournioti S, Moutsatsou P. Phenolic Acid Composition, Antiatherogenic, and Anticancer Potential of Honeys Derived from Various Regions in Greece. PLOS ONE. 2014; 9(4): 1–10. https://doi.org/10.1371/journal.pone.0094860
  • [3] Fathoni A, Sumarlin L, Fuady Hanief F, Sukandar D. Isolation And Cytotoxic Activity Of The β-Carotene Combination Of Trigona Honey And Namnam Leaves Extract (Cynometra cauliflora). Elkawnie: Journal of Islamic Science and Technology. 2021; 7(1): 52-66. http://dx.doi.org/10.22373/ekw.v7i1.8696
  • [4] Wasagu RSU, Shehu S, Mode YD. Comparative Proximate Composition And Antioxidant Vitamins Contents of Two Honey Varieties (Light Amber And Dark Amber) From Sokoto State, Nigeria. Bayero J. Pure Appl. Sci. 2013; 6(2): 118 – 120. http://dx.doi.org/10.4314/bajopas.v6i2.25
  • [5] Fathoni A., Sumarlin L, Putri JR, Fitriana N. Antioxidant Activity Of Mixed Katuk LeafExtract And Honey. EduChemia. 2020; 5(2): 168-179. http://dx.doi.org/10.30870/educhemia.v5i2.7275
  • [6] Hossen MS, Ali MY, Jahurul MHA, Abdel-Daim MM, Gan SH, Khalil MI. Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharm. Rep. 2017; 69: 1194–1205. https://doi.org/10.1016/j.pharep.2017.07.002
  • [7] Almasaudi S. Review: The antibacterial activities of honey. Saudi J. Biol. Sci. 2021; 28: 2188-2196. https://doi.org/10.1016/j.sjbs.2020.10.017
  • [8] Gül A, Pehlivan T. Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J. Biol. Sci. 2018; 25(6): 1056-1065. https://doi.org/10.1016/j.sjbs.2018.02.011
  • [9] Bouali N, Hamadou WS, Badraoui R, Lajimi RH, Hamdi A, Alreshidi M, Adnan M, Soua Z, Siddiqui AJ, Noumi E, Snoussi M. Phytochemical Composition, Antioxidant, and Anticancer Activities of Sidr Honey: In Vitro and In Silico Computational Investigation. Life. 2023; 13: 35. https://doi.org/10.3390/life13010035
  • [10] Sumarlin LO, Muawanah A, Afandi FR, Adawiah A. Inhibitory Activity of HEp-2 Cells by Honey from Indonesia. Jurnal Kimia Sains dan Aplikasi. 2019; 22(6): 317-325. https://doi.org/10.14710/jksa.22.6.317-325
  • [11] Alghamdi BA, Alshumrani ES, Bin Saeed MS, Rawas GM, Alharthi NT, Baeshen MN, Helmi NM, Alam MZ, Suhail M. Analysis of sugar composition and pesticides using HPLC and GC–MS techniques in honey samples collected from Saudi Arabian markets. Saudi J. Biol. Sci. 2020; 27(12): 3720-3726. https://doi.org/10.1016/j.sjbs.2020.08.018
  • [12] Ng L, Wu S. Antiproliferative Activity of Cinnamomum cassia Constituents and Effects of Pifithrin-Alpha on Their Apoptotic Signaling Pathways in HEp G2 Cells. Evid Based Complement Alternat Med. 2011; 9(2): 1–6. https://doi.org/10.1093/ecam/nep220
  • [13] Siswarni MZ, Putri YI, Rinda PR. Ekstraksi Kuersetin Dari Kulit Terong Belanda (Solanum betaceum Cav.) Menggunakan Pelarut Etanol Deangan Metode Maserasi dan Sokletasi. Jurnal Teknik Kima USU. 2017; 6(1): 36–42. https://doi.org/10.32734/jtk.v6i1.1563
  • [14] Mahasuari NPS, Paramita NLP, Putra AAGRY. Effect Of Methanol Concentration As A Solvent On Total Phenolic And Flavonoid Content Of Beluntas Leaf Extract (Pulchea Indica L.). J. Pharm. Sci. Appl. 2020; 2(2): 77-88. https://doi.org/10.24843/JPSA.2020.v02.i02.p05
  • [15] Horizon, Pujiastuti B, Kurnia D, Sumiarsa D, Supratman U, Shiono Y. Kuersetin dan Kuersetin-3-O-Glukosida dari Kulit Batang Sonneratia Alba (Lythraceae). Jurnal Kimia VALENSI. 2015; 1(1): 33–38. https://doi.org/10.15408/jkv.v0i0.3151
  • [16] Hashemzaei M, Far AD, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouhas K, Kouretas D, Tzanakakis G, Nikitovic D, Anisimov NY, Spandidos DA, Tsatsakis AM, Rezaee R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep. 2017; 38(2): 819–828. https://doi.org/10.3892/or.2017.5766
  • [17] Wang G, Zhang J, Liu L, Sharma S, Dong Q. Quercetin Potentiates Doxorubicin Mediated Antitumor Effects against Liver Cancer through p53/Bcl-xl. PLOS ONE. 2012; 7(12): 1–12. https://doi.org/10.1371/journal.pone.0051764
  • [18] Ahmed S, Othman NH. Honey as a potential natural anticancer agent: A review of its mechanisms. J Evid Based Complementary Altern. Med. 2013; 2013: 829070. https://doi.org/10.1155/2013/829070
  • [19] Abubakar MB, Abdullah WZ, Sulaiman SA, Suen AB. A Review of Molecular Mechanisms of the Antileukemic Effects of Phenolic Compounds in Honey. Int J Mol. Sci. 2012; 13(11):15054–15073. https://doi.org/10.3390/ijms131115054
  • [20] Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer. 2016; 64: 1–15. https://doi.org/10.1186/s12943-016-0550-2
  • [21] Wu D, Chen L, Teh J, Sim E, Schlundt J, Conway PL. Honeys with anti-inflammatory capacity can alter the elderly gut microbiota in an ex vivo gut model. Food Chem. 2022; 392: 133229. https://doi.org/10.1016/j.foodchem.2022.133229
  • [22] Devi JR, Thangam EB. Mechanisms of Anticancer Activity of Sulforaphane from Brassica oleracea in HEp-2 Human Epithelial Carcinoma Cell Line. Asian Pac J Cancer Prev. 2012; 13(5): 2095–2100. https://doi.org/10.7314/APJCP.2012.13.5.2095
  • [23] Kahlin AZ, Helander S, Wennerstrand P, Vikingsson S, Mårtensson L-G, Appell ML. Pharmacogenetic studies of thiopurine methyltransferase genotype-phenotype concordance and effect of methotrexate on thiopurine metabolism. Basic Clin Pharmacol Toxicol. 2021; 128: 52–65. https://doi.org/10.1111/bcpt.13483
  • [24] Yang Y, Zhou S, Ouyang R, Yang Y, Tao H, Feng K, Zhang X, Xiong F, Guo N, Zong T, Cao P, Li Y, Miao Y. Improvement in the Anticancer Activity of 6-Mercaptopurine via Combination with Bismuth(III). Chem. Pharm. Bull. 2016; 64: 1539–1545. https://doi.org/10.1248/cpb.c15-00949
  • [25] Branco CDS, Émilin Dreher de Lima EDD, Rodrigues TS, Scheffel TB, Scola G, Laurino CCFC, Moura S, Salvador M. Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells. Chem. Biol. Interact. 2015; 231: 108–118. https://doi.org/10.1016/j.cbi.2015.03.005
  • [26] Shao F, Lv M, Zheng Y, Jiang J, Wang Y, Lv L, Wang J. The anti-tumour activity of rLj-RGD4, an RGD toxin protein from Lampetra japonica, on human laryngeal squamous carcinoma Hep-2 cells in nude mice. Biochimie. 2015; 119: 183–191. https://doi.org/10.1016/j.biochi.2015.11.004
  • [27] Zhang F, Yang B, Shi S, Jiang X. RNA interference (RNAi) mediated stable knockdown of protein caseinkinase 2-alpha (CK2α) inhibits migration and invasion and enhances cisplatin-induced apoptosis in HEp-2 laryngeal carcinoma cells. Acta Histochem. 2014; 116: 1000–1006. https://doi.org/10.1016/j.acthis.2014.04.001
  • [28] Miao S, Mao X, Pei R, Miao S, Xiang C, Lv Y, Yang X, Sun J, Jia S, Liu Y. Lepista sordida polysaccharide induces apoptosis of Hep-2 cancer cells via mitochondrial pathway. Int. J. Biol. Macromol. 2013; 61: 97–101. https://doi.org/10.1016/j.ijbiomac.2013.06.052
  • [29] Kang R, Wang ZH, Wang BQ, Zhang CM, Gao W, Feng Y, Bai T, Zhang HL, Pu HH, Wen SX. Inhibition of autophagy-potentiated chemosensitivity to cisplatin in laryngeal cancer Hep-2 cells. Am J Otolaryngol. 2012; 33: 678–684. https://doi.org/10.1016/j.amjoto.2012.05.005
  • [30] Boudjlida A, Kaci S, Karaki S, Benayad T, Rocchi P, Smati D, Aouichat SB. Berberis hispanica alkaloids extract induced cell death and apoptosis in human laryngeal cancer cells Hep-2. S. Afr. J. Bot. 2019; 125: 134–141. https://doi.org/10.1016/j.sajb.2019.04.006
  • [31] Barhoi D, Upadhaya P, Barbhuiya SN, Giri A, Giri S. Extracts of Tagetes erecta exhibit potential cytotoxic and antitumor activity that could be employed as a promising therapeutic agent against cancer: A study involving in vitro and in vivo approach. Phytomedicine Plus. 2022; 2: 100187. https://doi.org/10.1016/j.phyplu.2021.100187
  • [32] Singh S, Chhipa RR, Vijayakumar MV, Bhat MK. DNA damaging drugs-induced down-regulation of Bcl-2 is essential for induction of apoptosis in high-risk HPV-positive HEp-2 and KB cells. Cancer Lett. 2006; 236: 213–221. https://doi.org/10.1016/j.canlet.2005.05.024
  • [33] Cheng B, Yang X, An L, Gao B, Liu X. Arsenic trioxide-induced apoptosis of Hep-2 cell line through modulating intracellular glutathione (GSH) level. Auris Nasus Larynx. 2010; 37: 89–94. https://doi.org/10.1016/j.anl.2009.04.016
  • [34] Kameswaran TR, Ramanibai R. Indirubin-3-monooxime induced cell cycle arrest and apoptosis in Hep-2 human laryngeal carcinoma cells. Biomed. Pharmacother. 2009; 63: 146–154. https://doi.org/10.1016/j.biopha.2008.03.005
  • [35] Bartolomeua AR, Herreraa YF, da Silvaa LM, Romagnolia GG, de Oliveirab DE, Sforcina JM. Combinatorial effects of geopropolis produced by Melipona fasciculata Smith with anticancer drugs against human laryngeal epidermoid carcinoma (HEp-2) cells. Biomed. Pharmacother. 2016; 81: 48–55. https://doi.org/10.1016/j.biopha.2016.03.049
  • [36] Annamalaia G, Kathiresana S, Kannappanb N. [6]-Shogaol, a dietary phenolic compound, induces oxidative stress mediated mitochondrial dependant apoptosis through activation of proapoptotic factors in Hep-2 cells. Biomed. Pharmacother. 2016; 82: 226–236. https://doi.org/10.1016/j.biopha.2016.04.044
  • [37] da Silva Frozzaa CO, Santosa DA, Rufattob LC, Minettob L, Scariot FJ, Echeverrigaray S, Piche CT, Mourab S, Padilhaf FF, Borsukf S, Savegnago L, Collares T, Seixas FK, Dellagostin O, Elya MR, Henriquesa JAP. Antitumor activity of Brazilian red propolis fractions against Hep-2 cancer cell line. Biomed. Pharmacother. 2017; 91: 951–963. https://doi.org/10.1016/j.biopha.2017.05.027
  • [38] Huankang Z, Bo S, Swinarska JT, Wen L, Kuanlin X, Peijie H. 9-Hydroxypheophorbide α-mediated photodynamic therapy induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in Hep-2 cells via ROS-mediated suppression of the ERK pathway. Photodiagnosis Photodyn Ther. 2014; 11: 55–62. https://doi.org/10.1016/j.pdpdt.2013.12.001
  • [39] Khodaii Z, Eslami , Kamalinejad M, Mirzaei A, Natanzia MM. Evaluation of aqueous-extracts from four aromatic plants for their activity against Candida albicans adhesion to human HEp-2 epithelial cells. Gene Reports. 2020; 18: 100554. https://doi.org/10.1016/j.genrep.2019.100554
  • [40] Rahman MM, Khan MA. Anticancer Potential of South Asian Plants. Nat. Prod. Bioprospect. 2013; 3(3): 74–88. https://doi.org/10.1007/s13659-013-0027-6
  • [41] Khazir J, Singh PP, Reddy DM, Hyder I, Shafi S, Sawant SD, Chashoo G, Mahajan A, Alam MS, Saxena AK, Arvinda S, Gupta BD, Kumar HM. Synthesis and anticancer activity of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of α-santonin. Eur J Med Chem. 2013; 63: 279–289. https://doi.org/10.1016/j.ejmech.2013.01.003
  • [42] Xuan H, Wang Y, Li A, Fu C, Wang Y, Peng W. Bioactive Components of Chinese Propolis Water Extract on Antitumor Activity and Quality Control. Evid. Based Complementary Altern. Med. 2016; 9. https://doi.org/10.1155/2016/9641965
  • [43] Assaleh MH, Bjelogrlic SK, Prlainovic N, Cvijetic I, Bozic A, Arandjelovic I, Vukovic D, Marinkovic A. Antimycobacterial and anticancer activity of newly designed cinnamic acid hydrazides with favorable toxicity profile. Arab. J. Chem. 2022; 15(1): 103532. https://doi.org/10.1016/j.arabjc.2021.103532
  • [44] Duan J, Shia J, Ma X, Xuan Y, Li P, Wang H, Fan Y, Gong H, Wang L, Pang Y, Pang S, Yan Y. Esculetin inhibits proliferation, migration, and invasion of clear cell renal cell carcinoma cells. Biomed. Pharmacother. 2020; 125: 110031. https://doi.org/10.1016/j.biopha.2020.110031
  • [45] Wang J, Lu ML, Dai HL, Zhang SP, Wang HX, Wei N. Esculetin, a coumarin derivative, exerts in vitro and in vivo antiproliferative activity against hepatocellular carcinoma by initiating a mitochondrial-dependent apoptosis pathway. Braz J Med Biol Res. 2015; 48(3): 245–253. https://doi.org/10.1590/1414-431X20144074
  • [46] Park SB, Jung WK, Kim HR, Yu HY, Kim YH, Kim J. Esculetin Has Therapeutic Potential Via The Proapoptotic Signaling Pathway In A253 Human Submandibular Salivary Gland Tumor Cells. Exp. Ther. Med. 2022; 24(2): 533. https://doi.org/10.3892/etm.2022.11460
  • [47] Choi J, Yoo MJ, Park SY, Seol JW. Antitumor Effects of Esculetin, a Natural Coumarin Derivative, against Canine Mammary Gland Tumor Cells by Inducing Cell Cycle Arrest and Apoptosis. Vet. Sci. 2023; 10: 84. https://doi.org/10.3390/vetsci10020084
  • [48] Jiang Y, Yu L, Wang MH. N-trans-feruloyltyramine inhibits LPS-induced NO and PGE2 production in RAW 264.7 macrophages: Involvement of AP-1 and MAP kinase signalling pathways. Chem. Biol. Interact. 2015; 235: 56–62. https://doi.org/10.1016/j.cbi.2015.03.029
  • [49] Gao X, Wang CC, Chen Z, Chen Y, Santhanam RK, Xue Z, Ma Q, Guo Q, Liu W, Zhang M, Chen H. Effects of N-trans-feruloyltyramine isolated from laba garlic on antioxidant, cytotoxic activities and H2O2-induced oxidative damage in HepG2 and L02 cells. Food Chem. Toxicol. 2019; 130: 130–141. https://doi.org/10.1016/j.fct.2019.05.021
  • [50] Basaiyye SS, Naoghare PK, Kanojiya S, Bafana A, Arrigo P, Kannan Krishnamurthi K, Sivanesan SS. Molecular mechanism of apoptosis induction in Jurkat E6-1 cells by Tribulus terrestris alkaloids extract. J. Tradit. Complement. Med. 2018; 8(3): 410–419. https://doi.org/10.1016/j.jtcme.2017.08.014
  • [51] Kevadiya BD, Chettiar SS, Rajkumar S, Bajaj HC, Gosai KA, Brahmbhatt H. Evaluation of clay/poly (L-lactide) microcomposites as anticancer drug, 6-mercaptopurine reservoir through in vitro cytotoxicity, oxidative stress markers and in vivo pharmacokinetics. Colloids Surf B Biointerfaces. 2013; 112: 400–407. https://doi.org/10.1016/j.colsurfb.2013.07.008
  • [52] Peng XX, Shi Z, Damaraju VL, Huang XC, Kruh GD, Wu HC, Zhou Y, Tiwari A, Fu L, Cass CE, Chen ZS. Up-regulation of MRP4 and down-regulation of influx transporters in human leukemic cells with acquired resistance to 6-mercaptopurine. Leuk. Res. 2008; 32(5): 799–809. https://doi.org/10.1016/j.leukres.2007.09.015
  • [53] Talib AB, Mohammed MH. Preparation, characterization and preliminary cytotoxic evaluation of 6-mercaptopurine-coated biotinylated carbon dots nanoparticles as a drug delivery system. Materials Today: Proceedings. 2023; 80(3): 2327–2333. https://doi.org/10.1016/j.matpr.2021.06.341
  • [54] Miron T, Wilchek M, Shvidel L, Berrebi A, Arditti FD. S-allyl derivatives of 6-mercaptopurine are highly potent drugs against human B-CLL through synergism between 6-mercaptopurine and allicin. Leuk. Res. 2012; 36(12): 1536–1540. https://doi.org/10.1016/j.leukres.2012.08.023
  • [55] Kashida T, Narasaki N, Sakai A, Tsujihara K, Tsuzurahara K, Naito K, Takeyama S. Study on the mechanism of immunopotentiating antitumor effect of 6-MPG, a water-soluble derivative of 6-mercaptopurine. Immunopharmacol. 1997; 37(1): 95–104. https://doi.org/10.1016/S0162-3109(97)00039-8
  • [56] Zhang W, Li Z, Zhou M, Wu F, Hou X, Luo H, Liu H, Han X, Yan G, Ding Z, Li R. Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl) coumarin derivatives as potential antitumor agents. Bioorganic Med. Chem. Lett. 2014; 24(3): 799–807. https://doi.org/10.1016/j.bmcl.2013.12.095
  • [57] Lv N, Sun M, Liu C, Li J. Design and synthesis of 2-phenylpyrimidine coumarin derivatives as anticancer agents. Bioorganic Med. Chem. Lett. 2017; 27(19): 4578–4581. https://doi.org/10.1016/j.bmcl.2017.08.044
  • [58] Mohamed TK, Batran RZ, Elseginy SA, Ali MM, Mahmoud AE. Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis. Bioorg. Chem. 2019; 85: 253–273. https://doi.org/10.1016/j.bioorg.2018.12.040
  • [59] Kamath PR, Sunil D, Ajees AA, Pai KSR, Das S. Some new indole–coumarin hybrids; Synthesis, anticancer and Bcl-2 docking studies. Bioorg. Chem. 2015; 63: 101–109. https://doi.org/10.1016/j.bioorg.2015.10.001
  • [60] Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg. Chem. 2020; 103: 104163. https://doi.org/10.1016/j.bioorg.2020.104163
  • [61] Cui QH, Li WB, Wang ZY, Xu KY, Wang S, Shi JT, Zhang LW, Chen SW. Design, synthesis and biological evaluation of coumarin derivatives as potential BRD4 inhibitors. Bioorg. Chem. 2022; 128: 106117. https://doi.org/10.1016/j.bioorg.2022.106117
  • [62] Belluti F, Fontana G, Bo LD, Carenini N, Giommarelli C, Zunino F. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorg. Med. Chem. 2010; 18(10): 3543–3550. https://doi.org/10.1016/j.bmc.2010.03.069
  • [63] Thakur A, Singla R, Jaitak F. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 2015; 101: 476–495. https://doi.org/10.1016/j.ejmech.2015.07.010
  • [64] Bisi A, Cappadone C, Rampa A, Farruggia G, Sargenti A, Belluti F, Di Martino RMC, Malucelli E, Meluzzi A, Iotti S, Gobbi S. Coumarin derivatives as potential antitumor agents: Growth inhibition, apoptosis induction and multidrug resistance reverting activity. Eur. J. Med. Chem. 2017; 127: 577–585. https://doi.org/10.1016/j.ejmech.2017.01.020
  • [65] Zhang L, Yao YC, Gao MY, Rong RX, Wang KR, Li XL, Chen H. Anticancer activity and DNA binding property of the trimers of triphenylethylene–coumarin hybrids. Chin. Chem. Lett. 2016; 27(11): 1708–1716. https://doi.org/10.1016/j.cclet.2016.05.027
  • [66] Natarajan R, Pasumalai M, Bhandare RR, Subramani AK, Shaik AB. 2D-Quantitative structure activity relationship (QSAR) modeling, docking studies, synthesis and in-vitro evaluation of 1,3,4-thiadiazole tethered coumarin derivatives as antiproliferative agents. J. Saudi Chem. Soc. 2021; 25(7): 101279. https://doi.org/10.1016/j.jscs.2021.101279
  • [67] Darband SG, Sadighparvar S, Yousefi B, Kaviani M, Pakdel FG, Mihanfar A, Rahimi Y, Mobaraki M, Majidinia M. Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis. Life Sci. 2020; 253: 117584. https://doi.org/10.1016/j.lfs.2020.117584
  • [68] Ferreira JRO, Cavalcanti BC, da Costa PM, de Arantes FFP, de Alvarenga ES, Maltha RGA, de Almeida Barbosa LC, Militão GCG, Pessoa C, Ferreira PMP. Induction of G2/M arrest, caspase activation and apoptosis by α-santonin derivatives in HL-60 cells. Toxicol. In Vitro. 2013; 27(5): 1458–1466. https://doi.org/10.1016/j.tiv.2013.03.010
  • [69] Arantes FFP, Barbosa LCA, Alvarenga ES, Demuner AJ, Bezerra DP, Ferreira JRO, Lotufo CLV, Pessoa C, Moraes MO. Synthesis and cytotoxic activity of α-santonin derivatives. Eur. J. Med. Chem. 2009; 44(9): 3739–3745. https://doi.org/10.1016/j.ejmech.2009.03.036
  • [70] Chinthakindi PK, Singh J, Gupta S, Nargotra A, Mahajan P, Kaul A, Ahmed Z, Koul S, Sangwan PL. Synthesis of α-santonin derivatives for diminutive effect on T and B-cell proliferation and their structure activity relationships. Eur. J. Med. Chem. 2017; 127: 1047–1058. https://doi.org/10.1016/j.ejmech.2016.11.018
  • [71] Khazir J, Singh PP, Reddy DM, Hyder I, Shafi S, Sawant SD, Chashoo G, Mahajan A, Alam MS, Saxena AK, Arvinda S, Gupta BD, Kumar HMS. Synthesis and anticancer activity of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of α-santonin. Eur. J. Med. Chem. 2013; 63: 279–289. https://doi.org/10.1016/j.ejmech.2013.01.003
  • [72] Khazir J, Riley DL, Chashoo G, Mir BA, Liles D, Islam MA, Singh SK, Vishwakarma RA, Pilcher LA. Design, synthesis and anticancer activity of Michael-type thiol adducts of α-santonin analogue with exocyclic methylene. Eur. J. Med. Chem. 2015; 101: 769–779. https://doi.org/10.1016/j.ejmech.2015.07.022
  • [73] Dangroo NA, Singh J, Dar AA, Gupta N, Chinthakindi PK, Kaul A, Khuroo MA, Sangwan PL. Synthesis of α-santonin derived acetyl santonous acid triazole derivatives and their bioevaluation for T and B-cell proliferation. Eur. J. Med. Chem. 2016; 120: 160–169. https://doi.org/10.1016/j.ejmech.2016.05.018
  • [74] Huo FSX, Guo Z. Anti-breast Cancer Potential of Natural and Synthetic Coumarin Derivatives. Curr. Top. Med. Chem. 2021; 21(18): 1692–1709. http://dx.doi.org/10.2174/1568026621666210303145430
There are 74 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

La Ode Sumarlin 0000-0001-8400-3329

Achmad Tjachja Nugraha 0000-0001-9184-7773

Anna Muawanah 0000-0001-7345-8475

Nur Ernita 0009-0000-4248-1437

Nurul Amilia 0009-0001-2842-7423

Publication Date June 28, 2025
Published in Issue Year 2023 Volume: 27 Issue: 5

Cite

APA Sumarlin, L. O., Nugraha, A. T., Muawanah, A., Ernita, N., et al. (2025). Characterization of the compound of longan honey from indonesia using LC-MS/MS and FTIR and the mechanism of inhibition of HEp-2 cells. Journal of Research in Pharmacy, 27(5), 2035-2057.
AMA Sumarlin LO, Nugraha AT, Muawanah A, Ernita N, Amilia N. Characterization of the compound of longan honey from indonesia using LC-MS/MS and FTIR and the mechanism of inhibition of HEp-2 cells. J. Res. Pharm. July 2025;27(5):2035-2057.
Chicago Sumarlin, La Ode, Achmad Tjachja Nugraha, Anna Muawanah, Nur Ernita, and Nurul Amilia. “Characterization of the Compound of Longan Honey from Indonesia Using LC-MS/MS and FTIR and the Mechanism of Inhibition of HEp-2 Cells”. Journal of Research in Pharmacy 27, no. 5 (July 2025): 2035-57.
EndNote Sumarlin LO, Nugraha AT, Muawanah A, Ernita N, Amilia N (July 1, 2025) Characterization of the compound of longan honey from indonesia using LC-MS/MS and FTIR and the mechanism of inhibition of HEp-2 cells. Journal of Research in Pharmacy 27 5 2035–2057.
IEEE L. O. Sumarlin, A. T. Nugraha, A. Muawanah, N. Ernita, and N. Amilia, “Characterization of the compound of longan honey from indonesia using LC-MS/MS and FTIR and the mechanism of inhibition of HEp-2 cells”, J. Res. Pharm., vol. 27, no. 5, pp. 2035–2057, 2025.
ISNAD Sumarlin, La Ode et al. “Characterization of the Compound of Longan Honey from Indonesia Using LC-MS/MS and FTIR and the Mechanism of Inhibition of HEp-2 Cells”. Journal of Research in Pharmacy 27/5 (July 2025), 2035-2057.
JAMA Sumarlin LO, Nugraha AT, Muawanah A, Ernita N, Amilia N. Characterization of the compound of longan honey from indonesia using LC-MS/MS and FTIR and the mechanism of inhibition of HEp-2 cells. J. Res. Pharm. 2025;27:2035–2057.
MLA Sumarlin, La Ode et al. “Characterization of the Compound of Longan Honey from Indonesia Using LC-MS/MS and FTIR and the Mechanism of Inhibition of HEp-2 Cells”. Journal of Research in Pharmacy, vol. 27, no. 5, 2025, pp. 2035-57.
Vancouver Sumarlin LO, Nugraha AT, Muawanah A, Ernita N, Amilia N. Characterization of the compound of longan honey from indonesia using LC-MS/MS and FTIR and the mechanism of inhibition of HEp-2 cells. J. Res. Pharm. 2025;27(5):2035-57.