Research Article
BibTex RIS Cite

LC-MS /MS characterization and biological activities of Morina persica L. (Caprifoliaceae)

Year 2024, Volume: 28 Issue: 4, 961 - 973, 28.06.2025

Abstract

The study aimed to comprehensively identify the phenolic fingerprint of Morina persica L. (Caprifoliaceae) and evaluate its various biological activities. LC-MS/MS analysis of 70% Morina persica methanol extract revealed the presence of 27 phytochemicals, with quinic acid, chlorogenic acid, and rutin being the major phenolics. The antioxidant, antibacterial, antiproliferative, and cytotoxic activities were evaluated for biological screening. The results showed that the methanolic extract of M. persica has a moderate DPPH radical scavenging and ferric-reducing capacity, indicating antioxidant activity. M. persica was observed to have a sufficient antiproliferative effect against cancer cells and low cytotoxicity against normal cells. Moreover, M. persica demonstrated good antibacterial activity against Clostridium perfringens, Enterococcus faecalis, and Escherichia coli. These data suggest that the methanolic extract of M. persica could be considered both an industrial source of quinic acid and a potential biologically active ingredient for developing drug formulations.

References

  • [1] Safaeian R, Ghareghan F, Ghanbarian G. The evaluation of essential oil composition of Morina Persica L. As an endemic ethnoveterinary plant in Iran. Heliyon 2021; 1: 1-5. http://dx.doi.org/10.2139/ssrn.3984076
  • [2] Kumar A, Varshney VK, Rawat MSM, Martinez JR, Stashenko EE. Chemical composition of the essential oil of Morina longifolia Wall. leaves. J Herbs Spices Med Plants. 2013; 19(4): 348-356. http://dx.doi.org/10.1080/10496475.2013.800624
  • [3] Güner A, Aslan S, Ekim T, Vural M, Babaç MT. Türkiye bitkileri listesi:(Vascular Plants) first ed., Nezahat Gökyiǧit Botanik Bahçesi Yayınları, İstanbul, Türkiye, 2012.
  • [4] Bodakhe SH, Ram A, Pandey DP. A new aromatic glycoside from Morina longifolia Wall. Asian J Chem. 2010; 22(4): 2789-2793.
  • [5] Zhu Y, Lü ZP, Xue CB, Wu WS. New triterpenoid saponins and neolignans from Morina kokonorica. Helv Chim Acta. 2009; 92(3): 536-545. https://doi.org/10.1002/hlca.200800216
  • [6] Teng R, Xie H, Liu X, Wang D, Yang C. A novel acylated flavonol glycoside from Morina nepalensis var. alba. Fitoterapia. 2002; 73(1): 95-96. https://doi.org/10.1016/S0367-326X(01)00324-0
  • [7] Su BN, Takaishi Y. Morinins HK. Four novel phenylpropanol ester lipid metabolites from Morina chinensis. J Nat Prod. 1999; 62(9): 1325-1327. https://doi.org/10.1021/np990145n
  • [8] Su BN, Takaishi Y, Kusumi T, Morinols AL. Twelve novel sesquineolignans and neolignans with a new carbon skeleton from Morina chinensis. Tetrahedron. 1999; 55(51): 14571-14586. https://doi.org/10.1016/S0040-4020(99)00933-3
  • [9] Baser K, Kürkçüoglu M. Composition of the essential oil of Morina persica L. flowers. J Essent Oil Res. 1998; 10(1): 117-118. https://doi.org/10.1080/10412905.1998.9700856
  • [10] Tashev A, Pancheva E. The Melliferous plants of the Bulgarian flora—Conservation importance. Forestry. 2011; 17(2): 228-237.
  • [11] Tasdemir D, Dönmez A, Çalıs I, Rüedi P. Evaluation of biological activity of Turkish plants. Rapid screening for the antimicrobial, antioxidant, and acetylcholinesterase inhibitory potential by TLC bioautographic methods. Pharm Biol. 2004; 42(4-5): 374-383. https://doi.org/10.1080/13880200490519695
  • [12] Tasdemir D, Brun R, Perozzo R, Dönmez A. Evaluation of antiprotozoal and plasmodial enoyl‐ACP reductase inhibition potential of turkish medicinal plants. Phytother Res. 2005; 19(2): 162-166. https://doi.org/10.1002/ptr.1648
  • [13] Mocan A, Zengin G, Uysal A, Gunes E, Mollica A, Degirmenci NS, Alpsoy L, Aktumsek A. Biological and chemical insights of Morina persica L.: A source of bioactive compounds with multifunctional properties. J Funct Foods. 2016; 25: 94-109. https://doi.org/10.1016/j.jff.2016.05.010
  • [14] Tosun F, Akyüz Kızılay Ç, Şener B, Vural M. The evaluation of plants from Turkey for in vitro antimycobacterial activity. Pharm Biol. 2005; 43(1): 58-63. https://doi.org/10.1080/13880200590903372
  • [15] Sadi G, Kaya A, Yalcin HA, Emsen B, Kocabas A, Kartal DI, Altay A. Wild edible mushrooms from Turkey as possible anticancer agents on HepG2 cells together with their antioxidant and antimicrobial properties. Int J Med Mushrooms. 2016; 18(1): 83-95. https://doi.org/10.1615/IntJMedMushrooms.v18.i1.100
  • [16] Córdoba E, Muñoz J, Blázquez M, González F, Ballester A. Leaching of chalcopyrite with ferric ion. Part II: Effect of redox potential. Hydrometallurgy. 2008; 93(3-4): 88-96. https://doi.org/10.1016/j.hydromet.2008.04.016
  • [17] Nurgali K, Jagoe RT, Abalo R. Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?. Front. Pharmacol. 2018; 9: 245-249. https://doi.org/10.3389/fphar.2018.00245
  • [18] Powers MP. The ever-changing world of gene fusions in cancer: a secondary gene fusion and progression. Oncogen. 2019; 38(47): 7197-7199. https://doi.org/10.1038/s41388-019-1057-2
  • [19] Conti L, Macedi E, Giorgi C, Valtancoli B, Fusi V. Combination of light and Ru (II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coord Chem Rev. 2022; 469: 214-256. https://doi.org/10.1016/j.ccr.2022.214656
  • [20] Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004; 39(1): 1-15. https://doi.org/10.1002/jms.585
  • [21] Mocan A, Zengin G, Uysal A, Gunes E, Mollica A, Degirmenci NS, Alpsoy L, Aktumsek A. Biological and chemical insights of Morina persica L.: A source of bioactive compounds with multifunctional properties. J Funct Foods. 2016; 25: 94-109. https://doi.org/10.1016/j.jff.2016.05.010
  • [22] Pero RW, Lund H, Leanderson T. Antioxidant metabolism induced by quinic acid. Increased urinary excretion of tryptophan and nicotinamide. Phytother Res. 2009 ;23(3): 335-346. https://doi.org/10.1002/ptr.2628
  • [23] Özbek H. Cydonia oblonga Mill. In: Dereli Gürağaç FT, Ilhan M, Belwal T. (Eds). Novel Drug Targets With Traditional Herbal Medicines. Springer, Sweden, 2022. Pp. 209-228.
  • [24] Wang GF, Shi LP, Ren YD, Liu QF, Liu HF, Zhang RJ, Li Z, Zhu FH, He PL, Tang W, Tao PZ, Li C, Zhao WM, Zuo JP. Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. Antivir Res. 2009; 83(2): 186-190. https://doi.org/10.1016/j.antiviral.2009.05.002
  • [25] Toghyani Khorasgani A, Amini Khoei H, Shadkhast M, Salimian S, Majidian M, Habibian Dehkordi S. Quinic acid through mitigation of oxidative stress in the hippocampus exerts analgesic effect in male mice. Adv Herb Med 2021; 7(2): 1-11.
  • [26] Arya A, Al Obaidi MMJ, Shahid N, Noordin MIB, Looi CY, Wong WF, Khaing SL, Mustafa MR. Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: a mechanistic study. Food Chem Toxicol. 2014; 71: 183-196. https://doi.org/10.1016/j.fct.2014.06.010
  • [27] Samimi S, Ardestani MS, Dorkoosh FA. Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells. J Drug Deliv Sci Technol. 2021; 61: 102-187. https://doi.org/10.1016/j.jddst.2020.102287
  • [28] Singh A, Chauhan SS, Tripathi V. Quinic acid attenuates oral cancer cell proliferation by downregulating cyclin D1 expression and Akt signaling. Pharmacogn Mag. 2018; 14(55): 14-19.
  • [29] Ayseli MT, Ayseli Yİ. Flavors of the future: Health benefits of flavor precursors and volatile compounds in plant foods. Trends Food Sci Technol. 2016; 48: 69-77. https://doi.org/10.1016/j.tifs.2015.11.005
  • [30] Onakpoya I, Spencer E, Thompson M, Heneghan C. The effect of chlorogenic acid on blood pressure: a systematic review and meta-analysis of randomized clinical trials. J Hum Hypertens. 2015; 29(2): 77-81. https://doi.org/10.1038/jhh.2014.46
  • [31] Santana Gálvez J, Cisneros Zevallos L, Jacobo Velázquez DA. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules. 2017; 22(3): 358-379. https://doi.org/10.3390/molecules22030358
  • [32] Xu D, Hu L, Xia X, Song J, Li L, Song E, Song Y. Tetrachlorobenzoquinone induces acute liver injury, up-regulates HO-1 and NQO1 expression in mice model: the protective role of chlorogenic acid. Environ Toxicol Pharmacol. 2014; 37(3): 1212-1220. https://doi.org/10.1016/j.etap.2014.04.022
  • [33] Liu CC, Zhang Y, Dai BL, Ma YJ, Zhang Q, Wang Y, Yang H. Chlorogenic acid prevents inflammatory responses in IL‑1β‑stimulated human SW‑1353 chondrocytes, a model for osteoarthritis. Mol Med Rep. 2017; 16(2): 1369-1675. https://doi.org/10.3892/mmr.2017.6698
  • [34] Nieoczym D, Socała K, Raszewski G, Wlaź P. Effect of quercetin and rutin in some acute seizure models in mice. Prog Neuro-Psychopharmacol. Biol Psychiatry. 2014; 54: 50-58. https://doi.org/10.1016/j.pnpbp.2014.05.007
  • [35] Javed H, Khan M, Ahmad A, Vaibhav K, Ahmad M, Khan A, Ashafaq M, Islam F, Siddiqui MS, Safhi MM, Islam F. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience. 2012; 210: 340-352. https://doi.org/10.1016/j.neuroscience.2012.02.046
  • [36] Selvaraj G, Kaliamurthi S, Thirungnasambandam R, Vivekanandan L, Balasubramanian T. Anti-nociceptive effect in mice of thillai flavonoid rutin. Biomed Environ Sci. 2014; 27(4): 295-259. https://doi.org/10.3967/bes2014.052
  • [37] Srinivasan K, Kaul C, Ramarao P. Partial protective effect of rutin on multiple low dose streptozotocin-induced diabetes in mice. Indian J Pharmacol. 2005; 37(5): 327
  • [38] Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco. 2001; 56(9): 683-687. https://doi.org/10.1016/S0014-827X(01)01111-9
  • [39] Chen W, Jin M, Wu W. Experimental study on inhibitory effect of rutin against platelet activation induced by platelet activating factor in rabbits. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2002; 22(4): 283-285. PMID: 12584792
  • [40] Dubey S, Ganeshpurkar A, Bansal D, Dubey N. Experimental studies on bioactive potential of rutin. Chron Young Sci. 2013; 4(2): 153-163. https://doi.org/10.4103/2229-5186.115556
  • [41] Jung CH, Lee JY, Cho CH, Kim CJ. Anti-asthmatic action of quercetin and rutin in conscious guinea-pigs challenged with aerosolized ovalbumin. Arch Pharm Res. 2007; 30(12): 1599-1607. https://doi.org/10.1007/BF02977330
  • [42] Alonso Castro AJ, Domínguez F, García Carrancá A. Rutin exerts antitumor effects on nude mice bearing SW480 tumor. Arch Med Res. 2013; 44(5): 346-351. https://doi.org/10.1016/j.arcmed.2013.06.002
  • [43] Araruna MK, Brito SA, Morais Braga MF, Santos KK, Souza TM, Leite TR. Evaluation of antibiotic & antibiotic modifying activity of pilocarpine & rutin. Indian J Med Res. 2012; 135(2) :252-254.
  • [44] De Clercq E, Field HJ. Antiviral prodrug the development of successful prodrug strategies for antiviral chemotherapy. Br J Pharmacol. 2006; 147(1): 1-11. https://doi.org/10.1038/sj.bjp.0706446
  • [45] Khan RA, Khan MR, Sahreen S. CCl4-induced hepatotoxicity: protective effect of rutin on p53, CYP2E1 and the antioxidative status in rat. Complement Altern Med. 2012; 12(1) :1-6. https://doi.org/10.1186/1472-6882-12-178
  • [46] Zanvar AA, Badole SL, Shende PS, Hegde MV, Bodhankar SL. Cardiovascular effects of hesperidin: A flavanone glycoside. In: Watson RR, Preedy VR, Zibadi. (Eds). Polyphenols in human health and disease: Elsevier, Sweden, 2014. pp. 989-992.
  • [47] Lee J, Kim DH, Kim JH. Combined administration of naringenin and hesperetin with optimal ratio maximizes the anticancer effect in human pancreatic cancer via down regulation of FAK and p38 signaling pathway. Phytomedicine. 2019; 58: 152-162. https://doi.org/10.1016/j.phymed.2018.11.022
  • [48] Wilmsen PK, Spada DS, Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J Agric Food Chem. 2005; 53(12) :4757-4761. https://doi.org/10.1021/jf0502000
  • [49] Panda S, Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin‐3‐O‐glucoside. Biofactors. 2007; 31(3‐4): 201-210. https://doi.org/10.1002/biof.5520310307
  • [50] JiménezAliaga K, BermejoBescós P, Benedí J, MartínAragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011; 89(25-26): 939-945. https://doi.org/10.1016/j.lfs.2011.09.023
  • [51] Sudan S, Rupasinghe HV. Quercetin-3-O-glucoside induces human DNA topoisomerase II inhibition, cell cycle arrest and apoptosis in hepatocellular carcinoma cells. Anticancer Res. 2014;34(4):1691-1699.
  • [52] Sholkamy EN, Ahmed MS, Yasser MM, Mostafa AA. Antimicrobial quercetin 3-O-glucoside derivative isolated from Streptomyces antibioticus strain ess_amA8. J King Saud Univ Sci. 2020; 32(3): 1838-1844. https://doi.org/10.1016/j.jksus.2020.01.026
  • [53] Bilginer S, Gözcü S, Güvenalp Z. Molecular docking study of several seconder metabolites from medicinal plants as potential ınhibitors of COVID-19 main protease. Turk J Pharm Sci. 2022;19(4): 431-441. https://doi.org/10.4274/tjps.galenos.2021.83548
  • [54] Taiwo FO, Oyedeji O, Osundahunsi MT. Antimicrobial and antioxidant properties of kaempferol-3-O-glucoside and 1-(4-hydroxyphenyl)-3-phenylpropan-1-one ısolated from the leaves of Annona muricata (Linn.). J Pharm Res Int. 2019; 26: 1-13. https://doi.org/10.9734/JPRI/2019/v26i330138
  • [55] Zang Y, Zhang D, Yu C, Jin C, Igarashi K. Antioxidant and hepatoprotective activity of kaempferol 3-O-β-D-(2, 6-di-O-α-L-rhamnopyranosyl) galactopyronoside against carbon tetrachloride-induced liver injury in mice. Food Sci Biotechnol. 2017; 26(4): 1071-1076. https://doi.org/10.1007/s10068-017-0170-7
  • [56] Zarei A, Ramazani A, Pourmand S, Sattari A, Rezaei A, Moradi S. In silico evaluation of COVID-19 main protease interactions with honeybee natural products for discovery of high potential antiviral compounds. Nat Prod Res. 2022; 36(16): 4254-4260. https://doi.org/10.1080/14786419.2021.1974435
  • [57] Parveen Z, Deng Y, Saeed MK, Dai R, Ahamad W, Yu YH. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. J Pharm Soc Jpn. 2007; 127(8): 1275-1279. https://doi.org/10.1248/yakushi.127.1275
  • [58] Gözcü S, Ugan RA, Özbek H, Gündoğdu B, Guvenalp Z. Antidiabetic and antioxidant properties of Paeonia mascula L.: In vitro and in vivo studies, and phytochemical analysis. Fitoterapia. 2023; 170: 105658. https://doi.org/10.1016/j.fitote.2023.105658
  • [59] Wang Y, Tang C, Zhang H. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J Food Drug Anal. 2015; 23(2): 310-317. https://doi.org/10.1016/j.jfda.2014.10.002
  • [60] Ahmad M, Gilani AUH, Aftab K, Ahmad VU. Effects of kaempferol‐3‐O‐rutinoside on rat blood pressure. Phytother Res. 1993; 7(4): 314-316. https://doi.org/10.1002/ptr.2650070411
  • [61] Liana L, Rizal R, Widowati W, Fioni F, Akbar K, Fachrial E, Ehrich Lister N. Antioxidant and anti-hyaluronidase activities of dragon fruit peel extract and kaempferol-3-O-rutinoside. J Kedokteran Brawijaya. 2019; 30(4): 247-252. https://doi.org/10.21776/ub.jkb.2019.030.04.3
  • [62] Hu WH, Dai DK, Zheng BZY, Duan R, Chan GKL, Dong TTX, Qin QW, Wah-Keung Tsim K. The binding of kaempferol-3-O-rutinoside to vascular endothelial growth factor potentiates anti-inflammatory efficiencies in lipopolysaccharide-treated mouse macrophage RAW264. 7 cells. Phytomedicine. 2021; 80: 153400. https://doi.org/10.1016/j.phymed.2020.153400
  • [63] Iqbal S, Bhanger M. Effect of season and production location on antioxidant activity of Moringa oleifera leaves grown in Pakistan. J Food Compost Anal. 2006; 19(6-7): 544-551. https://doi.org/10.1016/j.jfca.2005.05.001
  • [64] Soh Y, Kim JA, Sohn NW, Lee KR, Kim SY. Protective effects of quinic acid derivatives on tetrahydropapaveroline-induced cell death in C6 glioma cells. Biol Pharm Bull. 2003; 26(6): 803-807. https://doi.org/10.1248/bpb.26.803
  • [65] Samanta SK, Bhattacharya K, Mandal C, Pal BC. Identification and quantification of the active component quercetin 3-O-rutinoside from Barringtonia racemosa, targets mitochondrial apoptotic pathway in acute lymphoblastic leukemia. J Asian Nat Prod Res. 2010; 12(8): 639-648. https://doi.org/10.1080/10286020.2010.489040
  • [66] Feng R, Lu Y, Bowman LL, Qian Y, Castranova V, Ding M. Inhibition of activator protein-1, NF-κB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. J Biol Chem. 2005; 280(30): 2788-2795. https://doi.org/10.1074/jbc.M503347200
  • [67] Gözcü S, Polat KH. Thermosensitive ın situ gelling system for dermal drug delivery of rutin. Turk J Pharm Sci. 2023; 20(2): 78-83. https://doi.org/10.4274/tjps.galenos.2022.00334
  • [68] Benali T, Bakrim S, Ghchime R, Benkhaira N, El Omari N, Balahbib A. Taha D, Zengin G, Hasan MM, Bibi S, Bouyahya A Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol Genet Eng Rev. 2022; 1: 1-30. https://doi.org/10.1080/02648725.2022.2122303
  • [69] Holetz FB, Pessini GL, Sanches NR, Cortez DAG, Nakamura CV, Dias Filho BP. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem Inst Oswaldo Cruz. 2002; 97: 1027-1031. https://doi.org/10.1590/S0074-02762002000700017
  • [70] Bai J, Wu Y, Bu Q, Zhong K, Gao H. Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches. LWT. 2022; 153: 112441. https://doi.org/10.1016/j.lwt.2021.112441
  • [71] Rigano D, Formisano C, Basile A, Lavitola A, Senatore F, Rosselli S, Bruno M. Antibacterial activity of flavonoids and phenylpropanoids from Marrubium globosum ssp. libanoticum. Phytother Res. 2007; 21(4): 395-397. https://doi.org/10.1002/ptr.2061
  • [72] Mager D. Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med. 2006; 4(1): 1-18. https://doi.org/10.1186/1479-5876-4-14
  • [73] Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, Englyst H, Williams HF, Rhodes JM. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology. 2004; 127(1): 80-93. https://doi.org/10.1053/j.gastro.2004.03.054
  • [74] Kim NH, Park JP, Jeon SH, Lee YJ, Choi HJ, Jeong KM, Lee JG, Choi SP, Lim JH, Kim YH, Kim YS, Kim YM, Hwang MH, Cho JW, Moon Y, Oh SK, Jeong JW. Purulent pericarditis caused by group G streptococcus as an initial presentation of colon cancer. J Korean Med Sci. 2002; 17(4): 571-573. https://doi.org/10.3346/jkms.2002.17.4.571
  • [75] Kullander J, Forslund O, Dillner J. Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2009; 18(2): 472-478. https://doi.org/10.1158/1055-9965.EPI-08-0905
  • [76] Yilmaz MA. Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation. Ind Crops Prod. 2020; 149: 112-147. https://doi.org/10.1016/j.indcrop.2020.112347
  • [77] Zengin G, Sarikurkcu C, Aktumsek A, Ceylan R. Sideritis galatica Bornm.: a source of multifunctional agents for the management of oxidative damage, Alzheimer's's and diabetes mellitus. J Funct Foods. 2014; 11: 538-547. https://doi.org/10.1016/j.jff.2014.08.011
  • [78] Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002; 10(3) :178-182. https://doi.org/10.38212/2224-6614.2748
  • [79] Liyana Pathirana CM, Shahidi F. Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J Agric Food Chem. 2005; 53(7): 2433-2440. https://doi.org/10.1021/jf049320i
  • [80] Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986; 44(6): 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  • [81] Aydın A, Ökten S, Erkan S, Bulut M, Özcan E, Tutar A, Eren T. In vitro anticancer and antibacterial activities of brominated ındeno [1, 2‐b] qinoline amines supported with molecular docking and MCDM. ChemistrySelect. 2021; 6(13): 3286-3295. https://doi.org/10.1002/slct.202004753
  • [82] Aydin A, Karadağ A, Tekin Ş, Korkmaz N, Özdemir A. Two new coordination polymers containing dicyanidoargentate (I) and dicyanidoaurate (I): synthesis and characterization, and a detailed in vitro investigation of their anticancer activities on some cancer cell lines. Turk J Chem. 2015; 39(3): 532-549. https://doi.org/10.3906/kim-1412-13
  • [83] Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, Banat IM. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett. 2016; 38(6): 1015-1019. https://doi.org/10.1007/s10529-016-2079-2
There are 83 citations in total.

Details

Primary Language English
Subjects Pharmacognosy
Journal Section Articles
Authors

Sefa Gözcü 0000-0002-0735-4229

Zeynep Akşit 0000-0002-0349-0223

Samed Şimşek 0000-0001-8451-3425

Ali Kandemir 0000-0003-1902-9631

Ali Aydın

Mustafa Abdullah Yılmaz 0000-0002-4090-7227

Hüseyin Akşit 0000-0002-1509-851X

Publication Date June 28, 2025
Published in Issue Year 2024 Volume: 28 Issue: 4

Cite

APA Gözcü, S., Akşit, Z., Şimşek, S., Kandemir, A., et al. (2025). LC-MS /MS characterization and biological activities of Morina persica L. (Caprifoliaceae). Journal of Research in Pharmacy, 28(4), 961-973.
AMA Gözcü S, Akşit Z, Şimşek S, Kandemir A, Aydın A, Yılmaz MA, Akşit H. LC-MS /MS characterization and biological activities of Morina persica L. (Caprifoliaceae). J. Res. Pharm. July 2025;28(4):961-973.
Chicago Gözcü, Sefa, Zeynep Akşit, Samed Şimşek, Ali Kandemir, Ali Aydın, Mustafa Abdullah Yılmaz, and Hüseyin Akşit. “LC-MS /MS Characterization and Biological Activities of Morina Persica L. (Caprifoliaceae)”. Journal of Research in Pharmacy 28, no. 4 (July 2025): 961-73.
EndNote Gözcü S, Akşit Z, Şimşek S, Kandemir A, Aydın A, Yılmaz MA, Akşit H (July 1, 2025) LC-MS /MS characterization and biological activities of Morina persica L. (Caprifoliaceae). Journal of Research in Pharmacy 28 4 961–973.
IEEE S. Gözcü, Z. Akşit, S. Şimşek, A. Kandemir, A. Aydın, M. A. Yılmaz, and H. Akşit, “LC-MS /MS characterization and biological activities of Morina persica L. (Caprifoliaceae)”, J. Res. Pharm., vol. 28, no. 4, pp. 961–973, 2025.
ISNAD Gözcü, Sefa et al. “LC-MS /MS Characterization and Biological Activities of Morina Persica L. (Caprifoliaceae)”. Journal of Research in Pharmacy 28/4 (July 2025), 961-973.
JAMA Gözcü S, Akşit Z, Şimşek S, Kandemir A, Aydın A, Yılmaz MA, Akşit H. LC-MS /MS characterization and biological activities of Morina persica L. (Caprifoliaceae). J. Res. Pharm. 2025;28:961–973.
MLA Gözcü, Sefa et al. “LC-MS /MS Characterization and Biological Activities of Morina Persica L. (Caprifoliaceae)”. Journal of Research in Pharmacy, vol. 28, no. 4, 2025, pp. 961-73.
Vancouver Gözcü S, Akşit Z, Şimşek S, Kandemir A, Aydın A, Yılmaz MA, Akşit H. LC-MS /MS characterization and biological activities of Morina persica L. (Caprifoliaceae). J. Res. Pharm. 2025;28(4):961-73.