Research Article
BibTex RIS Cite

Phosholipid trafficking between serum-HDL-erythrocyte in various conditions associated with circadian disturbances

Year 2024, Volume: 28 Issue: 4, 1107 - 1123, 28.06.2025

Abstract

Circadian disturbances are known to affect lipid metabolism. Most of the phospholipid metabolites have been shown to be under circaian control by metabolomics studies. Moreover, genes related to glycerolipid synthesis were reported to be circadianly regulated. Data from various studies revealed a relationship between glycerolipid metabolism and circadian misalignments. Some proteins responsible for transfer of phospholipids among plasma lipoproteins or membranes include phospholipid transfer proteins (PLTP), lecithin cholesterol acyltransferase (LCAT), secretory phospholipase A2 (sPLA2), endothelial lipase (EL), exhibits circadian oscillation. However no data are available as to whether circadian disturbances can influence phospholipid trafficking among HDL, erythrocytes and serum. To this end, , four conditions associated with circadian disturbances including type 2 diabetes, prediabetes with metformin usage, psoriasis and night-shift work were investigated for phospholipid trafficking. Indices of circadian misalignments, plasma melatonin and cortisol levels, were determined by ELISA and chemiluminescence methods respectively. Serum levels of PLTP, LCAT, EL and sPLA2 levels were analyzed by ELISA. Phospholipid compositions were investigated by two-dimensional HPTLC and/or HPLC. Results by HPLC indicated that PE/PC ratios in erythrocyte lysates of diabetes and metformin groups were found to be significantly lower compared to that of controls which might be associated with the lower levels of LCAT, EL and PLTP levels measured. Altered plasma melatonin levels indicated circadian misalignments in these conditions. However, in psoriasis and night-shift groups, circadian indexes did not match with the PE/PC ratios in erythrocytes as it was in diabetes and metformin groups. We therefore conclude that circadian as well as metabolic disturbances both might have a role in phospholipid trafficking.

References

  • [1] Bedrosian TA, Fonken LK, Nelson RJ. Endocrine Effects of Circadian Disruption. Annu Rev Physiol. 2016;78:109–131. https://doi.org/10.1146/annurev-physiol-021115-105102.
  • [2] Foster RG, Peirson SN, Wulff K, Winnebeck E, Vetter C, Roenneberg T. Sleep and circadian rhythm disruption in social jetlag and mental illness. Prog Mol Biol Transl Sci. 2013;119:325–346. https://doi.org/10.1016/b978-0-12-396971-2.00011-7.
  • [3] Roenneberg T, Allebrandt K V., Merrow M, Vetter C. Social jetlag and obesity. Curr Biol. 2012;22(10):939–943. https://doi.org/10.1016/j.cub.2012.03.038.
  • [4] Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514-529. https://doi.org/10.1016/j.cell.2014.09.048.
  • [5] Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016; 354(6315):1004-1008. https://doi.org/10.1126%2Fscience.aah4968
  • [6] Portaluppi F, Tiseo R, Smolensky MH, Hermida RC, Ayala DE, Fabbian F. Circadian rhythms and cardiovascular health. Sleep Med Rev. 2012;16(2):151–166. https://doi.org/10.1016/j.smrv.2011.04.003
  • [7] Weljie AM, Meerlo P, Goel N, Sengupta A, Kayser MS, Abel T, Birnbaum MJ, Dinges DF, Sehgal A. Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt. Proc Natl Acad Sci U S A. 2015;112(8):2569-2574. https://doi.org/10.1073/pnas.1417432112.
  • [8] Ang JE, Revell V, Mann A, Mäntele S, Otway DT, Johnston JD, Thumser AE, Skene DJ, Raynaud F. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach. Chronobiol Int. 2012;29(7):868-881. https://doi.org/10.3109/07420528.2012.699122.
  • [9] Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol. 2008;4(10):1–13. https://doi.org/10.1371/journal.pcbi.1000193.
  • [10] Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, Panda S, Hogenesch JB. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009;5(4):e1000442. https://doi.org/10.1371/journal.pgen.1000442.
  • [11] Loizides-Mangold U, Perrin L, Vandereycken B, Betts JA, Walhin JP, Templeman I, Chanon S, Weger BD, Durand C, Robert M, Paz Montoya J, Moniatte M, Karagounis LG, Johnston JD, Gachon F, Lefai E, Riezman H, Dibner C. Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc Natl Acad Sci U S A. 2017;114(41):E8565-E8574. https://doi.org/10.1073/pnas.1705821114
  • [12] Dantas-Ferreira RF, Raingard H, Dumont S, Schuster-Klein C, Guardiola-Lemaitre B, Pevet P, Challet E. Melatonin potentiates the effects of metformin on glucose metabolism and food intake in high-fat-fed rats. Endocrinol Diabetes Metab. 2018;1(4):e00039. https://doi.org/10.1002/edm2.39
  • [13] Barnea M, Haviv L, Gutman R, Chapnik N, Madar Z, Froy O. Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim Biophys Acta. 2012;1822(11):1796–806. https://doi.org/10.1016/j.bbadis.2012.08.005
  • [14] Bacaksiz A, Akif Vatankulu M, Sonmez O, Erdogan E, Tasal A, Turfan M, Ertas G, Sevgili E, Dizman D, Onsun N. Non-dipping nocturnal blood pressure in psoriasis vulgaris. Wien Klin Wochenschr. 2012;124(23-24):822-829. https://doi.org/10.1007/s00508-012-0294-y.
  • [15] Escobar C, Salgado-Delgado R, Gonzalez-Guerra E, Tapia Osorio A, Angeles-Castellanos M, Buijs RM. Circadian disruption leads to loss of homeostasis and disease. Sleep Disord. 2011;2011:964510. https://doi.org/10.1155/2011/964510
  • [16] Himbert S, Alsop RJ, Rose M, Hertz L, Dhaliwal A, Moran-Mirabal JM, Verschoor CP, Bowdish DM, Kaestner L, Wagner C, Rheinstädter MC. The molecular structure of human red blood cell membranes from highly oriented, solid supported multi-lamellar membranes. Sci Rep. 2017;7:39661. https://doi.org/10.1038/srep39661.
  • [17] Bligh, E.G. and Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–917. https://doi.org/10.1139/o59-099.
  • [18] Warnick GR, Benderson J, Albers JJ. Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clin Chem. 1982;28(6):1379–1388. https://doi.org/10.1093/clinchem/28.6.1379.
  • [19] Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15(3):434-443. https://doi.org/10.2174/1570159x14666161228122115.
  • [20] Javeed N, Matveyenko AV. Circadian etiology of type 2 diabetes mellitus. Physiology. 2018;33(2):138–150. https://doi.org/10.1152/physiol.00003.2018.
  • [21] Barnea M, Cohen-Yogev T, Chapnik N, Madar Z, Froy O. Effect of metformin and lipid emulsion on the circadian gene expression in muscle cells. Int J Biochem Cell Biol. 2014;53(2014):151–161. https://doi.org/10.1016/j.biocel.2014.05.014.
  • [22] Åkerstedt T. Shift work and disturbed sleep/wakefulness. Occup Med (Chic Ill). 2003;53(2):89–94. https://doi.org/10.1093/occmed/kqg046.
  • [23] Buxton OM, Cain SW, O'Connor SP, Porter JH, Duffy JF, Wang W, Czeisler CA, Shea SA. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci Transl Med. 2012;4(129):129ra43. https://doi.org/10.1126/scitranslmed.3003200.
  • [24] Knutsson A. Health disorders of shift workers. Occup Med (Chic Ill). 2003;53(2):103–108. https://doi.org/10.1093/occmed/kqg048.
  • [25] Kulkarni K, Schow M, Shubrook JH. Shift Workers at Risk for Metabolic Syndrome. J Am Osteopath Assoc. 2020;120(2):107-117. https://doi.org/10.7556/jaoa.2020.020.
  • [26] Dumont M, Lanctôt V, Cadieux-Viau R, Paquet J. Melatonin production and light exposure of rotating night workers. Chronobiol Int. 2012;29(2):203–210. https://doi.org/10.3109/07420528.2011.647177.
  • [27] Mozzanica N, Tadini G, Radaelli A, Negri M, Pigatto P, Morelli M, Frigerio U, Finzi A, Esposti G, Rossi D. Plasma melatonin levels in psoriasis. Acta Derm Venereol. 1988;68(4):312-316.
  • [28] Ando N, Nakamura Y, Aoki R, Ishimaru K, Ogawa H, Okumura K, Shibata S, Shimada S, Nakao A. Circadian gene clock regulates psoriasis-like skin ınflammation in mice. J Invest Dermatol. 2015;135(12):3001-3008. https://doi.org/10.1038/jid.2015.316.
  • [29] Chua EC, Shui G, Lee IT, Lau P, Tan LC, Yeo SC, Lam BD, Bulchand S, Summers SA, Puvanendran K, Rozen SG, Wenk MR, Gooley JJ. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc Natl Acad Sci U S A. 2013;110(35):14468-14473. https://doi.org/10.1073/pnas.1222647110.
  • [30] Wells IC, Peitzmeier G, Vincent JK. Lecithin: Cholesterol acyltransferase and lysolecithin in coronary atherosclerosis. Exp Mol Pathol. 1986;45(3):303–310. https://doi.org/10.1016/0014-4800(86)90019-5.
  • [31] Kunnen S, Van Eck M. Lecithin:cholesterol acyltransferase: Old friend or foe in atherosclerosis? J Lipid Res. 2012;53:1783–1799. https://doi.org/10.1194/jlr.R024513.
  • [32] Calabresi L, Simonelli S, Gomaraschi M, Franceschini G. Genetic lecithin: Cholesterol acyltransferase deficiency and cardiovascular disease. Atherosclerosis. 2012;222(2):299–306. https://doi.org/10.1016/j.atherosclerosis.2011.11.034.
  • [33] Marquez AB, Nazir S, van der Vorst EPC. High-density lipoprotein modifications : a pathological consequence or cause of disease progression, Biomedicines. 2020; 8: 549. https://doi.org/10.3390/biomedicines8120549.
  • [34] Nakhjavani M, Rajab A, Rabizadeh S, Bitaraf M, Ghanei A, Esteghamati A, Mirmiranpour H. Lecithin-cholesterol acyltransferase (LCAT) activity is lower in patients with type 2 diabetes in the presence of metabolic syndrome. Bioact Compd Heal Dis. 2020;3(4):66–73. https://doi.org/10.31989/bchd.v3i4.690.
  • [35] Nakhjavani M, Morteza A, Karimi R, Banihashmi Z, Esteghamati A. Diabetes induces gender gap on LCAT levels and activity. Life Sci. 2013;92(1):51–54. https://doi.org/10.1016/j.lfs.2012.10.026.
  • [36] Albers JJ, Chen CH, Adolphson JL. Lecithin:cholesterol acyltransferase (LCAT) mass; its relationship to LCAT activity and cholesterol esterification rate. J Lipid Res. 1981;22(8):1206–1213. https://doi.org/10.1016/S0022-2275(20)37313-2.
  • [37] Quintão EC, Medina WL, Passarelli M. Reverse cholesterol transport in diabetes mellitus. Diabetes Metab Res Rev. 2000;16(4):237-250. https://doi.org/10.1002/1520-7560(200007/08)16:<237::aid-dmrr>3.0.co;2-9.
  • [38] Yazdanyar A, Yeang C, Jiang XC. Role of phospholipid transfer protein in high-density lipoprotein-mediated reverse cholesterol transport. Curr Atheroscler Rep. 2011;13(3):242–248. https://doi.org/10.1007/s11883-011-0172-5.
  • [39] Jiang XC, Yu Y. The Role of Phospholipid Transfer Protein in the Development of Atherosclerosis. Curr Atheroscler Rep. 2021;23(3):9. https://doi.org/10.1007/s11883-021-00907-6.
  • [40] Shiu SWM, Tan KCB, Huang Y, Wong Y. Type 2 diabetes mellitus and endothelial lipase. Atherosclerosis. 2008;198(2):441–447. https://doi.org/10.1016/j.atherosclerosis.2008.03.012.
  • [41] Huuskonen J, Ekström M, Tahvanainen E, Vainio A, Metso J, Pussinen P, Ehnholm C, Olkkonen VM, Jauhiainen M. Quantification of human plasma phospholipid transfer protein (PLTP): relationship between PLTP mass and phospholipid transfer activity. Atherosclerosis. 2000;151(2):451-461. https://doi.org/10.1016/s0021-9150(99)00429-3.
  • [42] Choi SY, Hirata KI, Ishida T, Quertermous T, Cooper AD. Endothelial lipase: A new lipase on the block. J Lipid Res. 2002;43(11):1763–1769. https://dxdoi.org/10.1194/jlr.R200011-JLR200.
  • [43] Potočnjak I, Trbušić M, Terešak SD, Radulović B, Pregartner G, Berghold A, Tiran B, Marsche G, Degoricija V, Frank S. Metabolic syndrome modulates association between endothelial lipase and lipid/lipoprotein plasma levels in acute heart failure patients. Sci Rep. 2017;7(1):1165. https://doi.org/10.1038/s41598-017-01367-2.
  • [44] Shao S, Chen J, Swindell WR, Tsoi LC, Xing X, Ma F, Uppala R, Sarkar MK, Plazyo O, Billi AC, Wasikowski R, Smith KM, Honore P, Scott VE, Maverakis E, Kahlenberg JM, Wang G, Ward NL, Harms PW, Gudjonsson JE. Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris. JCI Insight. 2021;6(20):e15191. https://doi.org/10.1172/jci.insight.151911.
  • [45] Gao Y, Lu J, Bao X, Yi X, Peng C, Chen W, Zhen T, Shi Y, Xing K, Zhu S, Ding Y. Inhibition of phospholipases suppresses progression of psoriasis through modulation of inflammation. Exp Biol Med (Maywood). 2021;246(11):1253-1262. https://doi.org/10.1177/1535370221993424.
  • [46] Nowowiejska J, Baran A, Flisiak I. Aberrations in lipid expression and metabolism in psoriasis. Int J Mol Sci. 2021;22(12):6561. https://doi.org/10.3390/ijms22126561.
  • [47] Paiva-Lopes MJ, Delgado Alves J. Psoriasis-associated vascular disease: The role of HDL. J Biomed Sci. 2017;24(1):73. https://doi.org/10.1186/s12929-017-0382-4.
  • [48] Pietrzak A, Michalak-Stoma A, Chodorowska G, Szepietowski JC. Lipid disturbances in psoriasis: an update. Mediators Inflamm. 2010;2010:535612. https://doi.org/10.1155/2010/535612.
  • [49] Sato H, Kato R, Isogai Y, Saka G, Ohtsuki M, Taketomi Y, Yamamoto K, Tsutsumi K, Yamada J, Masuda S, Ishikawa Y, Ishii T, Kobayashi T, Ikeda K, Taguchi R, Hatakeyama S, Hara S, Kudo I, Itabe H, Murakami M. Analyses of group III secreted phospholipase A2 transgenic mice reveal potential participation of this enzyme in plasma lipoprotein modification, macrophage foam cell formation, and atherosclerosis. J Biol Chem. 2008;283(48):33483-33497. https://doi.org/10.1074/jbc.m804628200.
  • [50] Ramezani M, Zavattaro E, Sadeghi M. Evaluation of serum lipid, lipoprotein, and apolipoprotein levels in psoriatic patients: A systematic review and meta-analysis of case-control studies. Postep Dermatol Alergol. 2019;36(6):692–707. https://doi.org/10.5114/ada.2019.91420.
  • [51] Medic G, Wille M, Hemels MEH. Short- and long-term health consequences of sleep disruption. Nat Sci Sleep. 2017;9:151–161. https://doi.org/10.2147/NSS.S134864.
  • [52] Chang W, Hatch GM, Wang Y, Yu F, Wang M. The relationship between phospholipids and insulin resistance: From clinical to experimental studies. J Cell Mol Med. 2019;23(2):702–710. https://doi.org/10.1111/jcmm.13984.
  • [53] Sprenger RR, Hermansson M, Neess D, Becciolini LS, Sørensen SB, Fagerberg R, Ecker J, Liebisch G, Jensen ON, Vance DE, Færgeman NJ, Klemm RW, Ejsing CS. Lipid molecular timeline profiling reveals diurnal crosstalk between the liver and circulation. Cell Rep. 2021;34(5):108710. https://doi.org/10.1016/j.celrep.2021.108710.
  • [54] Artykbaeva G, Saatov T. Phospholipid metabolism in patients with type I and 2 diabetes mellitus. Endocr Abstr. 2020;3947:20–22. https://doi.org/10.1530/endoabs.70.AEP448.
  • [55] Kravets TY, Stepovaya EA, Koshchevets TY, Matyusheva NB, Bulanova AA, Mukhacheva OV, Ananina EA. [Erythrocyte membranes in metabolic syndrome]. Probl Endokrinol (Mosk). 2009 Oct 15;55(5):23-25. Russian. https://doi.org/10.14341/probl200955523-25
  • [56] van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta - Biomembr . 2017;1859(9):1558–1572. https://doi.org/10.1016/j.bbamem.2017.04.006.
  • [57] Gooley JJ, Chua ECP. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J Genet Genomics. 2014;41(5):231–250. https://doi.org/10.1016/j.jgg.2014.04.001.
There are 57 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry
Journal Section Articles
Authors

Fatma Ölmez Budak 0000-0003-4196-9224

Emine Koç 0000-0003-3122-7104

Saliha Büyüktuncel 0000-0001-7269-6594

Harika Gözükara Bağ 0000-0003-1208-4072

Serpil Şener 0000-0002-7012-2666

Bahri Evren 0000-0001-7490-2937

İbrahim Şahin 0000-0002-6231-0034

Kürşat Kaya 0000-0002-6353-7791

Tayfun Güldür 0000-0002-1623-2880

Publication Date June 28, 2025
Submission Date January 31, 2024
Acceptance Date March 22, 2024
Published in Issue Year 2024 Volume: 28 Issue: 4

Cite

APA Ölmez Budak, F., Koç, E., Büyüktuncel, S., Gözükara Bağ, H., et al. (2025). Phosholipid trafficking between serum-HDL-erythrocyte in various conditions associated with circadian disturbances. Journal of Research in Pharmacy, 28(4), 1107-1123.
AMA Ölmez Budak F, Koç E, Büyüktuncel S, Gözükara Bağ H, Şener S, Evren B, Şahin İ, Kaya K, Güldür T. Phosholipid trafficking between serum-HDL-erythrocyte in various conditions associated with circadian disturbances. J. Res. Pharm. July 2025;28(4):1107-1123.
Chicago Ölmez Budak, Fatma, Emine Koç, Saliha Büyüktuncel, Harika Gözükara Bağ, Serpil Şener, Bahri Evren, İbrahim Şahin, Kürşat Kaya, and Tayfun Güldür. “Phosholipid Trafficking Between Serum-HDL-Erythrocyte in Various Conditions Associated With Circadian Disturbances”. Journal of Research in Pharmacy 28, no. 4 (July 2025): 1107-23.
EndNote Ölmez Budak F, Koç E, Büyüktuncel S, Gözükara Bağ H, Şener S, Evren B, Şahin İ, Kaya K, Güldür T (July 1, 2025) Phosholipid trafficking between serum-HDL-erythrocyte in various conditions associated with circadian disturbances. Journal of Research in Pharmacy 28 4 1107–1123.
IEEE F. Ölmez Budak, E. Koç, S. Büyüktuncel, H. Gözükara Bağ, S. Şener, B. Evren, İ. Şahin, K. Kaya, and T. Güldür, “Phosholipid trafficking between serum-HDL-erythrocyte in various conditions associated with circadian disturbances”, J. Res. Pharm., vol. 28, no. 4, pp. 1107–1123, 2025.
ISNAD Ölmez Budak, Fatma et al. “Phosholipid Trafficking Between Serum-HDL-Erythrocyte in Various Conditions Associated With Circadian Disturbances”. Journal of Research in Pharmacy 28/4 (July 2025), 1107-1123.
JAMA Ölmez Budak F, Koç E, Büyüktuncel S, Gözükara Bağ H, Şener S, Evren B, Şahin İ, Kaya K, Güldür T. Phosholipid trafficking between serum-HDL-erythrocyte in various conditions associated with circadian disturbances. J. Res. Pharm. 2025;28:1107–1123.
MLA Ölmez Budak, Fatma et al. “Phosholipid Trafficking Between Serum-HDL-Erythrocyte in Various Conditions Associated With Circadian Disturbances”. Journal of Research in Pharmacy, vol. 28, no. 4, 2025, pp. 1107-23.
Vancouver Ölmez Budak F, Koç E, Büyüktuncel S, Gözükara Bağ H, Şener S, Evren B, Şahin İ, Kaya K, Güldür T. Phosholipid trafficking between serum-HDL-erythrocyte in various conditions associated with circadian disturbances. J. Res. Pharm. 2025;28(4):1107-23.