Review
BibTex RIS Cite

Novel and promising approaches in COVID-19 treatment

Year 2021, Volume: 25 Issue: 6, 772 - 784, 28.06.2025

Abstract

Novel coronavirus or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe respiratory infectious disease, known as coronavirus disease-19 (COVID-19). Over the past few months, a considerable rise in the incidence rate and prevalence of COVID-19 infection have been witnessed. Considering the high disease burden and rapid spread of the COVID-19 and no effective treatment is currently existing, stem cells, engineered nanobiomaterials, natural killer cells based therapy, RNA metabolites and extracellular vesicles are promising alternatives to tackle devastating epidemic. This review spotlights the applications and potential of above-mentioned methods in the treatment of COVID-19.

References

  • [1] Khalilov R, Hosainzadegan M, Eftekhari A, Nasibova A, Hasanzadeh A, Vahedi P, Hosain Zadegan H. Overview of the environmental distribution, resistance, mortality, and genetic diversity of new coronavirus (COVID-19). Adv Biol Earth Sci. 2020; 5: 7-12.Review Article
  • [2] Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020; 20(5): 533-534.
  • [3] Khalilov R, Hosainzadegan M, Eftekhari A, Hasanzadeh A, Zadegan HH, Nasibova A. Necessity of different countries to deal with similar phenomena of COVID-19 coronavirus. Adv Biol Earth Sci. 2020;5:5-6.
  • [4] Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gong Q, Liao J, Yang H, Hou W, Zhang Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020; 395(10226): 809-815.
  • [5] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020; 395(10229): 1033- 1034.
  • [6] Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, Zhang LJ. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology. 2020; 296(2): E15-E25.
  • [7] Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol. 2020; 92(6): 568-576.
  • [8] Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020; 395(10228): 931-4.
  • [9] Morens DM, Taubenberger JK, Fauci AS. The persistent legacy of the 1918 influenza virus. N Engl J Med. 2009; 361(3): 225-9.
  • [10] Valette M, Allard JP, Aymard M, Millet V. Susceptibilities to rimantadine of influenza A/H1N1 and A/H3N2 viruses isolated during the epidemics of 1988 to 1989 and 1989 to 1990. Antimicrob Agents Chemother. 1993; 37(10): 2239-40.
  • [11] Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA. Pathogenesis and transmission of swine- origin 2009 A(H1N1) influenza virus in ferrets. Science. 2009; 325(5939): 481-3.
  • [12] Claas EC, de Jong JC, van Beek R, Rimmelzwaan GF, Osterhaus AD. Human influenza virus A/HongKong/156/97 (H5N1) infection. Vaccine. 1998; 16(9-10): 977-8.
  • [13] Reid AH, Fanning TG, Janczewski TA, Taubenberger JK. Characterization of the 1918 "Spanish" influenza virus neuraminidase gene. Proc Natl Acad Sci U S A. 2000; 97(12): 6785-6790.
  • [14] Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, Farzan M, Wohlford-Lenane C, Perlman S, McCray PB Jr. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005; 79(23): 14614-21.
  • [15] Jiang M, Xue Z, Li Y, Liu H, Zeng S, Hao J. A soft X-ray activated lanthanide scintillator for controllable NO release and gas-sensitized cancer therapy. Nanoscale Horiz. 2020; 5, 268.
  • [16] Ahmadian E, Pennefather PS, Eftekhari A, Heidari R, Eghbal MA. Role of renin-angiotensin system in liver diseases: an outline on the potential therapeutic points of intervention. Expert Rev Gastroenterol Hepatol. 2016;10(11):1279-88.
  • [17] Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010; 128(1): 119-28.
  • [18] Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS- CoV-2 Spike Glycoprotein. Cell. 2020; 181(2): 281-292.e6.
  • [19] Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R Jr, Nunneley JW, Barnard D, Pöhlmann S, McKerrow JH, Renslo AR, Simmons G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res. 2015; 116: 76- 84.
  • [20] Pillay TS. Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. J Clin Pathol. 2020; 73(7):366-9.
  • [21] Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020; 30(4): 343- 355.
  • [22] Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020; 109: 102433. Review Article [23] Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Tissot Dupont H, Honoré S, Colson P, Chabrière E, La Scola B, Rolain JM, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 56(1): 105949.
  • [24] Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, Liao X, Gu Y, Cai Q, Yang Y, Shen C, Li X, Peng L, Huang D, Zhang J, Zhang S, Wang F, Liu J, Chen L, Chen S, Wang Z, Zhang Z, Cao R, Zhong W, Liu Y, Liu L. Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study. Engineering (Beijing). 2020; 6(10): 1192- 1198.
  • [25] Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, Daßler-Plenker J, Guerci P, Huynh C, Knight JS, Loda M, Looney MR, McAllister F, Rayes R, Renaud S, Rousseau S, Salvatore S, Schwartz RE, Spicer JD, Yost CC, Weber A, Zuo Y, Egeblad M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020; 217(6): e20200652.
  • [26] Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020; 6(3): 427-433.
  • [27] Focosi D, Anderson AO, Tang JW, Tuccori M. Convalescent Plasma Therapy for COVID-19: State of the Art. Clin Microbiol Rev. 2020; 33(4): e00072-20.
  • [28] Roback JD, Guarner J. Convalescent Plasma to Treat COVID-19: Possibilities and Challenges. JAMA. 2020; 323(16): 1561-1562.
  • [29] Zhao Q, He Y. Challenges of Convalescent Plasma Therapy on COVID-19. J Clin Virol. 2020; 127: 104358.
  • [30] Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020; 323(16): 1582-1589.
  • [31] Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, Mourão MPG, Brito-Sousa JD, Baía-da-Silva D, Guerra MVF, Hajjar LA, Pinto RC, Balieiro AAS, Pacheco AGF, Santos JDO Jr, Naveca FG, Xavier MS, Siqueira AM, Schwarzbold A, Croda J, Nogueira ML, Romero GAS, Bassat Q, Fontes CJ, Albuquerque BC, Daniel-Ribeiro CT, Monteiro WM, Lacerda MVG; CloroCovid-19 Team. Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV- 2) Infection: A Randomized Clinical Trial. JAMA Netw Open. 2020; 3(4): e208857.
  • [32] Millán-Oñate J, Millan W, Mendoza LA, Sánchez CG, Fernandez-Suarez H, Bonilla-Aldana DK, Rodríguez-Morales AJ. Successful recovery of COVID-19 pneumonia in a patient from Colombia after receiving chloroquine and clarithromycin. Ann Clin Microbiol Antimicrob. 2020; 19(1): 16.
  • [33] Hantoushzadeh S, Norooznezhad AH. Possible Cause of Inflammatory Storm and Septic Shock in Patients Diagnosed with (COVID-19). Arch Med Res. 2020; 51(4): 347-348.
  • [34] Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M, Resta M, Falco M, Albano G, Menicanti L. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020; 18(7): 1747-1751.
  • [35] Wang J. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study. J Chem Inf Model. 2020; 60(6): 3277-3286.
  • [36] Atluri S, Manchikanti L, Hirsch JA. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Physician. 2020; 23(2): E71-E83.
  • [37] Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Front Immunol. 2020; 11: 1563.
  • [38] Riedel RN, Pérez-Pérez A, Sánchez-Margalet V, Varone CL, Maymó JL. Stem cells and COVID-19: are the human amniotic cells a new hope for therapies against the SARS-CoV-2 virus?. Stem Cell Res Ther. 2021;12(1):1-9.
  • [39] Ji F, Li L, Li Z, Jin Y, Liu W. Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019. Stem Cells Transl Med. 2020;9(7):813-4.
  • [40] Khoury M, Cuenca J, Cruz FF, Figueroa FE, Rocco PRM, Weiss DJ. Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. Eur Respir J. 2020; 55(6): 2000858.
  • [41] Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020; 368(6490): 473-474. Review Article [42] Rashidzadeh H, Danafar H, Rahimi H, Mozafari F, Salehiabar M, Rahmati MA, Rahamooz-Haghighi S, Mousazadeh N, Mohammadi A, Ertas YN, Ramazani A. Nanotechnology against the novel coronavirus (severe acute respiratory syndrome coronavirus 2): diagnosis, treatment, therapy and future perspectives. Nanomedicine. 2021;16(6):497-516.
  • [43] Caracciolo M, Correale P, Mangano C, Foti G, Falcone C, Macheda S, Cuzzola M, Conte M, Falzea AC, Iuliano E, Morabito A. Efficacy and Effect of Inhaled Adenosine Treatment in Hospitalized COVID-19 Patients. Front Immunol. 2021; 12: 734.
  • [44] Antonio AS, Wiedemann LM, Veiga-Junior VF. Natural products' role against COVID-19. RSC Advances. 2020; 10(39): 23379-93.
  • [45] Ramaiah MJ. mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID- 19. Gene Rep. 2020; 20: 100765.
  • [46] O'Driscoll L. Extracellular vesicles from mesenchymal stem cells as a Covid-19 treatment. Drug Discov Today. 2020; 25(7): 1124-1125.
  • [47] Kumar S, Zhi K, Mukherji A, Gerth K. Repurposing Antiviral Protease Inhibitors Using Extracellular Vesicles for Potential Therapy of COVID-19. Viruses. 2020; 12(5): 486.
  • [48] Muraca M, Pessina A, Pozzobon M, Dominici M, Galderisi U, Lazzari L, Parolini O, Lucarelli E, Perilongo G, Baraldi E. Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia?. J Control Release. 2020; 325: 135-40.
There are 46 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biotechnology, Pharmaceutical Toxicology
Journal Section Reviews
Authors

Zahra Asefy

Hamid Rashidzadeh

Ali Mohammadi

Muhammed Hamitoğlu

Hande Sipahi

Ahmet Aydın

Sinem Helvacıoğlu

Rovshan Khalilov

Renad Ibragimovich Zhdanov

Hossein Danafar

Amir Hasanzadeh

Aziz Eftekhari

Publication Date June 28, 2025
Published in Issue Year 2021 Volume: 25 Issue: 6

Cite

APA Asefy, Z., Rashidzadeh, H., Mohammadi, A., Hamitoğlu, M., et al. (2025). Novel and promising approaches in COVID-19 treatment. Journal of Research in Pharmacy, 25(6), 772-784.
AMA Asefy Z, Rashidzadeh H, Mohammadi A, Hamitoğlu M, Sipahi H, Aydın A, Helvacıoğlu S, Khalilov R, Zhdanov RI, Danafar H, Hasanzadeh A, Eftekhari A. Novel and promising approaches in COVID-19 treatment. J. Res. Pharm. July 2025;25(6):772-784.
Chicago Asefy, Zahra, Hamid Rashidzadeh, Ali Mohammadi, Muhammed Hamitoğlu, Hande Sipahi, Ahmet Aydın, Sinem Helvacıoğlu, Rovshan Khalilov, Renad Ibragimovich Zhdanov, Hossein Danafar, Amir Hasanzadeh, and Aziz Eftekhari. “Novel and Promising Approaches in COVID-19 Treatment”. Journal of Research in Pharmacy 25, no. 6 (July 2025): 772-84.
EndNote Asefy Z, Rashidzadeh H, Mohammadi A, Hamitoğlu M, Sipahi H, Aydın A, Helvacıoğlu S, Khalilov R, Zhdanov RI, Danafar H, Hasanzadeh A, Eftekhari A (July 1, 2025) Novel and promising approaches in COVID-19 treatment. Journal of Research in Pharmacy 25 6 772–784.
IEEE Z. Asefy, “Novel and promising approaches in COVID-19 treatment”, J. Res. Pharm., vol. 25, no. 6, pp. 772–784, 2025.
ISNAD Asefy, Zahra et al. “Novel and Promising Approaches in COVID-19 Treatment”. Journal of Research in Pharmacy 25/6 (July 2025), 772-784.
JAMA Asefy Z, Rashidzadeh H, Mohammadi A, Hamitoğlu M, Sipahi H, Aydın A, Helvacıoğlu S, Khalilov R, Zhdanov RI, Danafar H, Hasanzadeh A, Eftekhari A. Novel and promising approaches in COVID-19 treatment. J. Res. Pharm. 2025;25:772–784.
MLA Asefy, Zahra et al. “Novel and Promising Approaches in COVID-19 Treatment”. Journal of Research in Pharmacy, vol. 25, no. 6, 2025, pp. 772-84.
Vancouver Asefy Z, Rashidzadeh H, Mohammadi A, Hamitoğlu M, Sipahi H, Aydın A, Helvacıoğlu S, Khalilov R, Zhdanov RI, Danafar H, Hasanzadeh A, Eftekhari A. Novel and promising approaches in COVID-19 treatment. J. Res. Pharm. 2025;25(6):772-84.