Research Article
BibTex RIS Cite

Investigation of Atorvastatin interaction with human serum albumin: evaluation of pH effect and competitive binding with warfarin

Year 2022, Volume: 26 Issue: 5, 1386 - 1402, 28.06.2025

Abstract

The current research used a fluorescence quenching titrations method combined with UV-Vis and FTIR-ATR spectroscopy to investigate the molecular mechanism of atorvastatin interaction with human serum albumin (HSA). Thermodynamic evaluations and molecular docking simulations were used to investigate the mode of atorvastatin-HSA interaction and the contributed intramolecular forces in complex stabilization. Atorvastatin is a statin anti-lipid drug that has recently sparked interest due to its growth-factor-like properties and other pharmacological functions, necessitating detailed knowledge of its molecular mechanism of action. UV-Vis spectra analysis confirmed the formation of the HSA-atorvastatin complex while fitting the fluorescence quenching titrations data to the proper models revealed that complex formation is facilitated by a combined static and dynamic mechanism with a quenching constant value (KSV) of 2.25×104 M-1 at 298 K. FTIR studies showed the variation of the secondary structure of the HSA due to the complex formation with atorvastatin. Based on the thermodynamic evaluations, the complex formation probability was increased due to the improved diffusion and miscibility or conformational change of HSA. Although hydrophobic interactions contribute to atorvastatin-HSA complex formation. Decreased binding was observed both in acidic and basic pHs, which could be a result of variation in the contribution of COOH moiety of atorvastatin in complex formation at different pH. Molecular docking simulations confirmed competitive binding of atorvastatin and warfarin to the site I of HSA. The docking results revealed that the flexibility of the atorvastatin molecular structure is critical in improving the stability of the atorvastatin-HSA complex.

References

  • [1] Al-Bayyari N, Saadeh N, Hailat R, Al-Zeidaneen S. Assessment of atorvastatin effect on body weight and blood glucose levels among diabetic non-diabetic patients. Rom J Diabetes Nutr Metab Dis, 2017. 24(3): p. 255-262. [CrossRef]
  • [2] Sima P., Vannucci L., Vetvicka V. , Atherosclerosis as autoimmune disease. Ann. Transl. Med, 2018. 6(7): 116.
  • [3] Hajar, R., Statins: past and present. Heart views: Heart Views, 2011. 12(3): p. 121. ]CrossRef[
  • [4] Davignon, J., Beneficial cardiovascular pleiotropic effects of statins. Circulation, 2004. 109(23 Suppl 1): p. Iii39-43. [CrossRef]
  • [5] [5] Koushki Kh, Keshavarz S, Mashayekhi K, Sadeghi M, Deris Zayeri Z, Yousefi Taba M, Banach M, Al-Rasadi Kh, P. Johnston Th, Sahebkar A. [CrossRef]
  • [6] Lennernäs, H., Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet, 2003. 42(13): p. 1141-1160. [CrossRef]
  • [7] Yang, F., Y. Zhang, and H. Liang, Interactive association of drugs binding to human serum albumin. Int J Mol Sci, 2014. 15(3): p. 3580-3595. [CrossRef]
  • [8] Azam Safarnejada, M.S., Golamreza Dehghanb, Somaieh Soltanic, Binding of carvedilol to serum albumins investigated by multi-spectroscopic and molecular modeling methods. J Lumin, 2016. 176: p. 149-158.. [CrossRef]
  • [9] Poureshghi F, Ghandforoushan P, Safarnejad A, Soltani S. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods. J Photochem Photobiol B, 2017. 166: p. 187-192. [CrossRef]
  • [10] He, X.M. and D.C. Carter, Atomic structure and chemistry of human serum albumin. Nature, 1992. 358(6383): p. 209-215. [CrossRef]
  • [11] Meti, MD, Nandibewoor, ST, Joshi, SD, More, UA., Chimatadar, S. A. Multi-spectroscopic investigation of the binding interaction of fosfomycin with bovine serum albumin. J Pharm Anal, 2015. 5(4): p. 249-255. [CrossRef]
  • [12] Baig, M.H., Rahman, S., Rabbani, G., Imran, M., Ahmad, K., Choi, I. Multi-spectroscopic characterization of human serum albumin binding with cyclobenzaprine hydrochloride: insights from biophysical and in silico approaches. Int J Mol Sci, 2019. 20(3): p. 662. [CrossRef]
  • [13] Boens, N., Qin, W., Basarić, N., Hofkens, J., Ameloot, M., Pouget, J., VandeVen, M.Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal Chem, 2007. 79(5): p. 2137-2149. [CrossRef]
  • [14] Cahyana, Y. and M.H. Gordon, Interaction of anthocyanins with human serum albumin: Influence of pH and chemical structure on binding. Food Chem, 2013. 141(3): p. 2278-2285. [CrossRef]
  • [15] Ross, P.D. and S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability. Biochem, 1981. 20(11): p. 3096-3102. [CrossRef]
  • [16] Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., Choi, I. Binding of tolperisone hydrochloride with human serum albumin: effects on the conformation, thermodynamics, and activity of HSA. Mol Pharm, 2018. 15(4): p. 1445-1456. [CrossRef]
  • [17] Naik, P.N., S.T. Nandibewoor, and S.A. Chimatadar, Non-covalent binding analysis of sulfamethoxazole to human serum albumin: Fluorescence spectroscopy, UV–vis, FT-IR, voltammetric and molecular modeling. J Pharm Anal, 2015. 5(3): p. 143-152. [CrossRef]
  • [18] Wang, Q., Huang, C., Jiang, M., Zhu, Y., Wang, J., Chen, J., Shi, J, Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochim Acta A Mol Biomol Spectrosc, 2016. 156: p. 155-163. [CrossRef]
  • [19] Hu, W., Luo, Q., Wu, K., Li, X., Wang, F., Chen, Y., Xiong, S. The anticancer drug cisplatin can cross-link the interdomain zinc site on human albumin. Chem Commun, 2011. 47(21): p. 6006-6008. [CrossRef]
  • [20] Rabbani, G., Baig, M. H., Jan, A. T., Lee, E. J., Khan, M. V., Zaman, M., Choi, I. Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. Int J Biol Macromol, 2017. 105: p. 1572-1580. [CrossRef]
  • [21] Haghaei, H., Hosseini, S.R.A., Soltani, S., Fathi, F., Mokhtari, F., Karima, S., Rashidi, M.R., Kinetic and thermodynamic study of beta-Boswellic acid interaction with Tau protein investigated by surface plasmon resonance and molecular modeling methods. BioImpacts, 2020. 10(1): p. 17. [CrossRef]
  • [22] Tunç, S., O. Duman, and B.K. Bozoğlan, Studies on the interactions of chloroquine diphosphate and phenelzine sulfate drugs with human serum albumin and human hemoglobin proteins by spectroscopic techniques. J Lumin, 2013. 140: p. 87-94. [CrossRef]
  • [23] Kosa, T., T. Maruyama, and M. Otagiri, Species differences of serum albumins: I. Drug binding sites. Pharm Res, 1997. 14(11): p. 1607-1612. [CrossRef]
  • [24] Duman, O., S. Tunç, and B.K. Bozoğlan, Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy. J Fluoresc, 2013. 23(4): p. 659-669. [CrossRef]
  • [25] Aki, H. and M. Yamamoto, Thermodynamic characterization of drug binding to human serum albumin by isothermal titration microcalorimetry. J Pharm Sci, 1994. 83(12): p. 1712-1716. [CrossRef]
  • [26] Ayranci, E. and O. Duman, Binding of lead ion to bovine serum albumin studied by ion selective electrode. Protein Pept Lett, 2004. 11(4): p. 331-337. [CrossRef]
  • [27] Yu, M., Ding, Z., Jiang, F., Ding, X., Sun, J., Chen, S., Lv, G. Analysis of binding interaction between pegylated puerarin and bovine serum albumin by spectroscopic methods and dynamic light scattering. Spectrochim Acta A Mol Biomol Spectrosc, 2011. 83(1): p. 453-460. [CrossRef]
  • [28] Ayranci, E. and O. Duman, Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes. Food chem, 2004. 84(4): p. 539-543. [CrossRef]
  • [29] Engell, A. E., Svendsen, A. L., Lind, B. S., Andersen, C. L., Andersen, J. S., Willadsen, T. G., Pottegård, A. Drug‐drug interaction between warfarin and statins: A Danish cohort study. Br J Clin Pharmacol, 2021. 87(2): p. 694-699. [CrossRef]
  • [30] Andrus, M.R., Oral anticoagulant drug interactions with statins: case report of fluvastatin and review of the literature. Pharmacotherapy, 2004. 24(2): p. 285-290. [CrossRef]
  • [31] Herman, D., Locatelli, I., Grabnar, I., Peternel, P., Stegnar, M., Lainščak, M., Dolžan, V. The influence of co-treatment with carbamazepine, amiodarone and statins on warfarin metabolism and maintenance dose. Eur J Clin Pharmacol, 2006. 62(4): p. 291-296. [CrossRef]
  • [32] Mullokandov, E., Ahn, J., Szalkiewicz, A., Babayeva, M. Protein binding drug-drug interaction between warfarin and tizoxanide in human plasma. Austin J Pharmacol Ther, 2014. 2(7).
  • [33] Palleria, C., Di Paolo, A., Giofrè, C., Caglioti, C., Leuzzi, G., Siniscalchi, A., Gallelli, L. Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci, 2013. 18(7): p. 601.
  • [34] Tayyab, S. and S.R. Feroz, Serum albumin: clinical significance of drug binding and development as drug delivery vehicle. Adv Protein Chem Struct Biol, 2021. 123: p. 193-218. [CrossRef]
  • [35] Steinhardt, J., J. Krijn, and J.G. Leidy, Differences between bovine and human serum albumins. Binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration, and fluorescence effects. Biochem, 1971. 10(22): p. 4005-4015. [CrossRef]
  • [36] Kandagal, P., Ashoka, S., Seetharamappa, J., Shaikh, S., Jadegoud, Y., Ijare, O. B. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed Anal, 2006. 41(2): p. 393-399. [CrossRef]
  • [37] Gelamo, E., Silva, C., Imasato, H., Tabak, M. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. iochim Biophys Acta, 2002. 1594(1): p. 84-99. [CrossRef]
  • [38] Sułkowska, A., Interaction of drugs with bovine and human serum albumin. J Mol Struct, 2002. 614(1-3): p. 227-232. [CrossRef]
  • [39] Safarnejad, A., Shaghaghi, M., Dehghan, G., Soltani, S. Binding of carvedilol to serum albumins investigated by multi-spectroscopic and molecular modeling methods. J Lumin, 2016. 176: p. 149-158. [CrossRef]
  • [40] Farsad, S. A., Haghaei, H., Shaban, M., Zakariazadeh, M., Soltani, S. Investigations of the molecular mechanism of diltiazem binding to human serum albumin in the presence of metal ions, glucose and urea. J Biomol Struct Dyn, 2021: p. 1-12. [CrossRef]
  • [41] Shamsi, A., Anwar, S., Shahbaaz, M., Mohammad, T., Alajmi, M. F., Hussain, A., Islam, A. Evaluation of Binding of Rosmarinic Acid with Human Transferrin and Its Impact on the Protein Structure: Targeting Polyphenolic Acid-Induced Protection of Neurodegenerative Disorders. Oxid Med Cell Longev, 2020. [CrossRef]
  • [42] Usoltsev, D., Sitnikova, V., Kajava, A., Uspenskaya, M. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules, 2019. 9(8): p. 359. [CrossRef]
  • [43] Susi, H. and D.M. Byler, Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochem Biophys Res Commun, 1983. 115(1): p. 391-397. [CrossRef]
  • [44] Shahraeini, S. S., Akbari, J., Saeedi, M., Morteza-Semnani, K., Abootorabi, S., Dehghanpoor, M., Nokhodchi, A. Atorvastatin Solid Lipid Nanoparticles as a Promising Approach for Dermal Delivery and an Anti-inflammatory Agent. AAPS PharmSciTech, 2020. 21(7): p. 1-10. [CrossRef]
  • [45] Jahangiri, A., Barzegar-Jalali, M., Javadzadeh, Y., Hamishehkar, H., Adibkia, K. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method. Artif Cells Nanomed Biotechnol, 2017. 45(6): p. 1138-1145. [CrossRef]
  • [46] Ye, Z., Ying, Y., Yang, X.-l., Zheng, Z., Shi, J., Sun, Y., Huang, P. A spectroscopic study on the interaction between the anticancer drug erlotinib and human serum albumin. J Incl Phenom Macrocycl Chem, 2014. 78(1-4): p. 405-413. [CrossRef]
  • [47] Crouse, H. F., Potoma, J., Nejrabi, F., Snyder, D. L., Chohan, B. S., Basu, S. Quenching of tryptophan fluorescence in various proteins by a series of small nickel complexes. Dalton Trans, 2012. 41(9): p. 2720-2731. [CrossRef]
  • [48] Shamsi, A., Anwar, S., Mohammad, T., Alajmi, M. F., Hussain, A., Rehman, M., Hassan, M. MARK4 inhibited by AChE inhibitors, donepezil and Rivastigmine tartrate: insights into Alzheimer’s disease therapy. Biomolecules, 2020. 10(5): p. 789. [CrossRef]
  • [49] Aprodu, I., Dumitrașcu, L., Râpeanu, G., Bahrim, G.-E., Stănciuc, N. Spectroscopic and Molecular Modeling Investigation on the Interaction between Folic Acid and Bovine Lactoferrin from Encapsulation Perspectives. Foods, 2020. 9(6): p. 744. [CrossRef]
  • [50] Hashempour, S., Shahabadi, N., Adewoye, A., Murphy, B., Rouse, C., Salvatore, B. A., Mahdavian, E. Binding Studies of AICAR and Human Serum Albumin by Spectroscopic, Theoretical, and Computational Methodologies. Molecules, 2020. 25(22): p. 5410. [CrossRef]
  • [51] Wang, C., Wu, Q.H., Li, C.R., Wang, Z., Zang, X., QIN, N. Interaction of tetrandrine with human serum albumin: a fluorescence quenching study. Anal Sci, 2007. 23(4): p. 429-433. [CrossRef]
  • [52] Van de Weert, M. and L. Stella, Fluorescence quenching and ligand binding: A critical discussion of a popular methodology. J Mol Struct, 2011. 998(1-3): p. 144-150. [CrossRef]
  • [53] López-Yerena, A., Perez, M., Vallverdú-Queralt, A., Escribano-Ferrer, E. Insights into the Binding of Dietary Phenolic Compounds to Human Serum Albumin and Food-Drug Interactions. Pharmaceutics, 2020. 12(11): p. 1123. [CrossRef]
  • [54] Oliva, F. Y., Avalle, L. B., Cámara, O. R., De Pauli, C. P. Adsorption of human serum albumin (HSA) onto colloidal TiO2 particles, Part I. J Colloid Interface Sci, 2003. 261(2): p. 299-311. [CrossRef]
  • [55] Yasseen, Z.J. and M.O. El-Ghossain, Studies on binding of widely used drugs with human serum albumin at different temperatures and PHs. J Biomed Sci, 2016. 5(3). [CrossRef]
  • [56] Sreerama, N. and R.W. Woody, Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Anal Biochem, 2000. 287(2): p. 252-260.[CrossRef]
  • [57] Stern, R., Abel, R., Gibson, G. L., Besserer, J. Atorvastatin does not alter the anticoagulant activity of warfarin. J Clin Pharmacol, 1997. 37(11): p. 1062-1064. [CrossRef]
  • [58] Mozaffarnia, S., Parsaee, F., Payami, E., Karami, H., Soltani, S., Rashidi, M. R., Teimuri‐Mofrad, R. Design, Synthesis and Biological Assessment of Novel 2‐(4‐Alkoxybenzylidine)‐2, 3‐dihydro‐5, 6‐dimethoxy‐1H‐ inden‐1‐one Derivatives as hAChE and hBuChE Enzyme Inhibitors. ChemistrySelect, 2019. 4(32): p. 9376-9380. [CrossRef]
  • [59] Zakariazadeh, M., Barzegar, A., Soltani, S., Aryapour, H. Developing 2D-QSAR models for naphthyridine derivatives against HIV-1 integrase activity. Med Chem Res, 2015. 24(6): p. 2485-2504. [CrossRef]
There are 59 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Hossein Haghaei 0000-0001-9453-0886

Sheida Norouzi 0000-0002-7551-1396

Mostafa Zakariazadeh 0000-0003-3247-3876

Somaieh Soltani 0000-0002-0102-2960

Publication Date June 28, 2025
Published in Issue Year 2022 Volume: 26 Issue: 5

Cite

APA Haghaei, H., Norouzi, S., Zakariazadeh, M., Soltani, S. (2025). Investigation of Atorvastatin interaction with human serum albumin: evaluation of pH effect and competitive binding with warfarin. Journal of Research in Pharmacy, 26(5), 1386-1402.
AMA Haghaei H, Norouzi S, Zakariazadeh M, Soltani S. Investigation of Atorvastatin interaction with human serum albumin: evaluation of pH effect and competitive binding with warfarin. J. Res. Pharm. June 2025;26(5):1386-1402.
Chicago Haghaei, Hossein, Sheida Norouzi, Mostafa Zakariazadeh, and Somaieh Soltani. “Investigation of Atorvastatin Interaction With Human Serum Albumin: Evaluation of PH Effect and Competitive Binding With Warfarin”. Journal of Research in Pharmacy 26, no. 5 (June 2025): 1386-1402.
EndNote Haghaei H, Norouzi S, Zakariazadeh M, Soltani S (June 1, 2025) Investigation of Atorvastatin interaction with human serum albumin: evaluation of pH effect and competitive binding with warfarin. Journal of Research in Pharmacy 26 5 1386–1402.
IEEE H. Haghaei, S. Norouzi, M. Zakariazadeh, and S. Soltani, “Investigation of Atorvastatin interaction with human serum albumin: evaluation of pH effect and competitive binding with warfarin”, J. Res. Pharm., vol. 26, no. 5, pp. 1386–1402, 2025.
ISNAD Haghaei, Hossein et al. “Investigation of Atorvastatin Interaction With Human Serum Albumin: Evaluation of PH Effect and Competitive Binding With Warfarin”. Journal of Research in Pharmacy 26/5 (June 2025), 1386-1402.
JAMA Haghaei H, Norouzi S, Zakariazadeh M, Soltani S. Investigation of Atorvastatin interaction with human serum albumin: evaluation of pH effect and competitive binding with warfarin. J. Res. Pharm. 2025;26:1386–1402.
MLA Haghaei, Hossein et al. “Investigation of Atorvastatin Interaction With Human Serum Albumin: Evaluation of PH Effect and Competitive Binding With Warfarin”. Journal of Research in Pharmacy, vol. 26, no. 5, 2025, pp. 1386-02.
Vancouver Haghaei H, Norouzi S, Zakariazadeh M, Soltani S. Investigation of Atorvastatin interaction with human serum albumin: evaluation of pH effect and competitive binding with warfarin. J. Res. Pharm. 2025;26(5):1386-402.