Review
BibTex RIS Cite

Harnessing honey's nutraceutical potential for oral health

Year 2024, Volume: 28 Issue: 5, 1632 - 1652, 28.06.2025

Abstract

Honey is one of the oldest natural compounds that come from ancient times to nowadays with health benefits. It has been used for the treatment of several diseases, but its role in oral health faces real skepticism due to the high concentration of carbohydrates in its composition. Many studies over the years have confirmed several pharmacological activities such as antioxidant, antibacterial, antihistaminic, etc. It is composed of different chemical compounds like carbohydrates, proteins, amino acids, vitamins, minerals, organic acids, phenolic compounds, and volatile substances. Honey contains many enzymes such as invertase, catalase, glucose oxidase, and acid phosphorylase, as well as traces of vitamins B2, B4, B5, B6, B11, and vitamin C, minerals such as calcium, iron, zinc, potassium, magnesium. A promising challenge is the use of honey as a targeting product obtained from green synthesis, with high-efficiency thanks to nanotechnology. This study aims to investigate the potential benefits of honey in oral health, leveraging its diverse biological activity like antimicrobial, and antioxidant effects. Additionally, our scope was to provide scientific evidence supporting the use of honey in dentistry, emphasizing its broader health benefits and novel applications in oral health care.

References

  • [1] GBD 2017 Oral Disorders Collaborators; Bernabe E, Marcenes W, Hernandez CR, Bailey J, Abreu LG, Alipour V, Amini S, Arabloo J, Arefi Z, Arora A, Ayanore MA, Bärnighausen TW, Bijani A, Cho DY, Chu DT, Crowe CS, Demoz GT, Demsie DG, Dibaji Forooshani ZS, Du M, El Tantawi M, Fischer F, Folayan MO, Futran ND, Geramo YCD, HajMirzaian A, Hariyani N, Hasanzadeh A, Hassanipour S, Hay SI, Hole MK, Hostiuc S, Ilic MD, James SL, Kalhor R, Kemmer L, Keramati M, Khader YS, Kisa S, Kisa A, Koyanagi A, Lalloo R, Le Nguyen Q, London SD, Manohar ND, Massenburg BB, Mathur MR, Meles HG, Mestrovic T, Mohammadian-Hafshejani A, Mohammadpourhodki R, Mokdad AH, Morrison SD, Nazari J, Nguyen TH, Nguyen CT, Nixon MR, Olagunju TO, Pakshir K, Pathak M, Rabiee N, Rafiei A, Ramezanzadeh K, Rios-Blancas MJ, Roro EM, Sabour S, Samy AM, Sawhney M, Schwendicke F, Shaahmadi F, Shaikh MA, Stein C, Tovani-Palone MR, Tran BX, Unnikrishnan B, Vu GT, Vukovic A, Warouw TSS, Zaidi Z, Zhang ZJ, Kassebaum NJ. Global, Regional, and National Levels and Trends in Burden of Oral Conditions from 1990 to 2017: A Systematic Analysis for the Global Burden of Disease 2017 Study. J Dent Res. 2020;99(4):362-373. https://doi.org/10.1177/0022034520908533.
  • [2]World Health Organization. Prevention and Treatment of Dental Caries with Mercury-Free Products and Minimal Intervention: WHO Oral Health Briefing Note Series; World Health Organization: Geneva, Switzerland, 2022. https://www.who.int/publications-detail-redirect/9789240046184. [3] Kassebaum NJ, Smith AGC, Bernabé E, Fleming TD, Reynolds AE, Vos T, Murray CJL, Marcenes W; GBD 2015 Oral Health Collaborators. Global, regional, and national prevalence, ıncidence, and disability-adjusted life years for oral conditions for 195 countries, 1990-2015: A Systematic analysis for the global burden of diseases, ınjuries, and risk factors. J Dent Res. 2017; 96(4): 380-387. https://doi.org/10.1177/0022034517693566. [4] Chapple IL, Bouchard P, Cagetti MG, Campus G, Carra MC, Cocco F, Nibali L, Hujoel P, Laine ML, Lingstrom P, Manton DJ, Montero E, Pitts N, Rangé H, Schlueter N, Teughels W, Twetman S, Van Loveren C, Van der Weijden F, Vieira AR, Schulte AG. Interaction of lifestyle, behaviour or systemic diseases with dental caries and periodontal diseases: consensus report of group 2 of the joint EFP/ORCA workshop on the boundaries between caries and periodontal diseases. J Clin Periodontol. 2017; 44 Suppl 18:S39-S51. https://doi.org/10.1111/jcpe.12685. [5] Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A. Dental caries. Nat Rev Dis Primers. 2017; 3: 17030. https://doi.org/10.1038/nrdp.2017.30.
  • [6] Wen PYF, Chen MX, Zhong YJ, Dong QQ, Wong HM. Global burden and ınequality of dental caries, 1990 to 2019. J Dent Res. 2022; 101(4): 392-399. https://doi.org/10.1177/00220345211056247.
  • [7] Zhang JS, Chu CH, Yu OY. Oral microbiome and dental caries development. Dent J (Basel). 2022; 10(10): 184. https://doi.org/10.3390/dj10100184.
  • [8] Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. New ınsights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): A Resource for the microbiome of the human aerodigestive tract. mSystems. 2018; 3(6): e00187-18. https://doi.org/10.1128/msystems.00187-18.
  • [9] Sánchez-Acedo M, Montiel-Company JM, Dasí-Fernández F, Almerich-Silla JM. Streptococcus mutans and Streptococcus sobrinus detection by Polymerase Chain Reaction and their relation to dental caries in 12 and 15-year-old schoolchildren in Valencia (Spain). Med Oral Patol Oral Cir Bucal. 2013; 18(6): e839-e845. https://doi.org/10.4317%2Fmedoral.18941.
  • [10] Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, Alcaraz LD, Mira A. A tissue-dependent hypothesis of dental caries. Caries Res. 2013. 47(6): 591–600. https://doi.org/10.1159/000351663.
  • [11] Bustamante M, Oomah BD. probiotics as an adjunct therapy for the treatment of halitosis, dental caries and periodontitis. Probiotics Antimicrob Proteins. 2020; 12(2): 325–334. https://doi.org/10.1007/s12602-019-9521-4.
  • [12] Havsed K, Stensson M. Bacterial composition and metabolomics of dental plaque from adolescents. Front Cell Infect Microbiol. 2021; 11: 716493. https://doi.org/10.3389/fcimb.2021.716493.
  • [13] Prince A, Roy S, McDonald D. Exploration of the antimicrobial synergy between selected natural substances on Streptococcus mutans to ıdentify candidates for the control of dental caries. Microbiol Spectr. 2022; 10(3): e0235721. https://doi.org/10.1128/spectrum.02357-21.
  • [14] Sruthi KS, Yashoda R, Puranik PM. Effectiveness of manuka honey and chlorhexidine mouthwash on gingivitis and Streptococcus mutans count among children: A randomized controlled trial. J Ind Assoc Public Health Dent. 2021; 19(4): 259-263. https://doi.org/10.4103/jiaphd.jiaphd_225_20.
  • [15] Tungare S, Paranjpe AG. Diet and Nutrition to Prevent Dental Problems. 2023 Jul 10. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. http://www.ncbi.nlm.nih.gov/books/nbk534248/.
  • [16] Takenaka S, Ohsumi T, Noiri Y. Evidence-based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. Jpn Dent Sci Rev. 2019; 55(1): 33-40. https://doi.org/10.1016/j.jdsr.2018.07.001.
  • [17] Philip N, Suneja B, Walsh LJ. Ecological approaches to dental caries prevention: Paradigm shift or shibboleth? Caries Res. 2018; 52(1-2): 153-165. https://doi.org/10.1159/000484985.
  • [18] Saad H, Escoube R, Babajko S, Houari S. Fluoride intake through dental care products: A systematic review. Front Oral Health. 2022; 3: 916372. https://doi.org/10.3389/froh.2022.916372.
  • [19] Malcangi G, Patano A, Morolla R, De Santis M, Piras F, Settanni V, Mancini A, Di Venere D, Inchingolo F, Inchingolo AD, Dipalma G, Inchingolo AM. Analysis of dental enamel remineralization: A systematic review of technique comparisons. Bioengineering (Basel). 2023;10(4):472. https://doi.org/10.3390/bioengineering10040472.
  • [20] Spatafora G, Li Y, He X, Cowan A, Tanner ACR. The evolving microbiome of dental caries. Microorganisms. 2024; 12(1): 121. https://doi.org/10.3390/microorganisms12010121.
  • [21] Siddiqui R, Badran Z, Boghossian A, Alharbi AM, Alfahemi H, Khan NA. The increasing importance of the oral microbiome in periodontal health and disease. Future Sci OA. 2023;9(8):FSO856. https://doi.org/10.2144/fsoa-20230062.
  • [22] Dagli N, Sinha, S, Haque M, Kumar S. Exploring the perspective of oral microbiome studies in pubmed database: a bibliometric appraisal. Cureus. 2024; 16: e53824. https://doi.org/10.7759/cureus.53824.
  • [23] Kozak M, Pawlik A. The Role of the Oral Microbiome in the Development of Diseases. Int J Mol Sci. 2023;24(6):5231. https://doi.org/10.3390/ijms24065231.
  • [24] Hbibi A. Sikkou K, Khedid K, El Hamzaoui S, Bouziane A, Benazza, D. Antimicrobial activity of honey in periodontal disease: A systematic review. J Antimicrob Chemother. 2020, 75(4): 807-826. https://doi.org/10.1093/jac/dkz527.
  • [25] Badders J, Coblens O, Ranasinghe V, Shabani S. Medical honey in head and neck cancer. Cureus. 2024;16(1):e52822. https://doi.org/10.7759/cureus.52822.
  • [26] Gucwa K, Kusznierewicz B, Milewski S, Van Dijck P, Szweda P. Antifungal activity and synergism with azoles of Polish propolis. Pathogens. 2018; 7(2): 56. https://doi.org/10.3390/pathogens7020056.
  • [27] Temple NJ. A rational definition for functional foods: A perspective. Front Nutr. 2022, 29: 957516. https://doi.org/10.3389/fnut.2022.957516.
  • [28] De Felice SL. The nutraceutical revolution: its impact on food industry R&D, Trends Food Sci Technol. 1995, 6(2): 5961. https://doi.org/10.1016/S0924-2244(00)88944-X.
  • [29] Santini A, Cammarata SM, Capone G, Ianaro A, Tenore GC, Pani L, Novellino E. Nutraceuticals: opening the debate for a regulatory framework. Br J Clin Pharmacol. 2018;84(4):659-672. https://doi.org/10.1111/bcp.13496.
  • [30] Mackin C, Dahiya D, Nigam PS. Honey as a natural nutraceutical: Its combinational therapeutic strategies applicable to blood ınfections—septicemia, HIV, SARS-CoV-2, Malaria. Pharmaceuticals. 2023; 16(8): 1154. https://doi.org/10.3390/ph16081154.
  • [31] Ramsay EI, Rao S, Madathil L, Hegde SK, Baliga-Rao MP, George T, Baliga MS. Honey in oral health and care: A mini review. J Oral Biosci. 2019; 61(1): 32-36. https://doi.org/10.1016/j.job.2018.12.003.
  • [32] Jicman D, Sârbu MI, Fotea S, Nechifor A, Bălan G, Anghele M, Vasile CI, Niculeț E, Sârbu N, Rebegea L-F, Tatu AL. Oral mucositis ınduced by chemoradiotherapy in head and neck cancer—A short review about the therapeutic management and the benefits of bee honey. Medicina. 2022; 58(6):751. https://doi.org/10.3390/medicina58060751.
  • [33] Aga MB, Sharma V, Dar AH, Dash KK, Singh A, Shams R, Khan SA. Comprehensive review on functional and nutraceutical properties of honey. eFood. 2023; 4: e71. https://doi.org/10.1002/efd2.71.
  • [34] Choudhary P, Tushir S, Bala M, Sharma S, Sangha MK, Rani H, Yewle NR, Kumar P, Singla D, Chandran D, Kumar M, Mekhemar M. Exploring the potential of bee-derived antioxidants for maintaining oral hygiene and dental health: A comprehensive review. Antioxidants. 2023; 12(7): 1452. https://doi.org/10.3390/antiox12071452.
  • [35] Pashte VV, Pashte SV, Said PP. Nutraceutical properties of natural honey to fight health issues: A comprehensive review. J Pharmacogn Phytochem 2020; 9(5): 234-242.https://doi.org/10.22271/phyto.2020.v9.i5d.12220.
  • [36] Cenzato N, Khijmatgar S, Carloni P, Dongiovanni P, Meroni M, Del Fabbro M, Tartaglia GM. What is the use of nutraceuticals in dentistry? A scoping review. Eur Rev Med Pharmacol Sci. 2023; 27(11): 4899–4913. https://doi.org/10.26355/eurrev_202306_32607.
  • [37] Dama A, Shpati K, Daliu P, Dumur S, Gorica E, Santini A. Targeting metabolic diseases: The role of nutraceuticals in modulating oxidative stress and ınflammation. Nutrients 2024, 16(4), 507. https://doi.org/10.3390/nu16040507.
  • [38] Escured O, Seijo MC. Honey: Chemical composition, stability and authenticity. Foods. 2019; 8(11): 577. https://doi.org/10.3390/foods8110577.
  • [39] Scholz MBDS, Quinhone Júnior A, Delamuta BH, Nakamura JM, Baudraz MC, Reis MO, Kato T, Pedrão MR, Dias LF, Dos Santos DTR, Kitzberger CSG, Bianchini FP. Indication of the geographical origin of honey using its physicochemical characteristics and multivariate analysis. J Food Sci Technol. 2020;57(5):1896-1903. https://doi.org/10.1007/s13197-019-04225-3.
  • [40] Pita-Calvo C, Vázquez M. Honeydew honeys: A review on the characterization and authentication of botanical and geographical origins. J Agric Food Chem. 2018; 66(11): 2523-2537. https://doi.org/10.1021/acs.jafc.7b05807.
  • [41] Lazarević K.B, Jovetić M.S, Tešić ŽL. physicochemical parameters as a tool for the assessment of origin of honey. J AOAC Int. 2017; 100(4): 840-851. https://doi.org/10.5740/jaoacint.17-0143.
  • [42] Alaerjani WMA, Abu-Melha S, Alshareef RMH, Al-Farhan BS, Ghramh HA, Al-Shehri BMA, Bajaber MA, Khan KA, Alrooqi MM, Modawe GA, Mohammed MEA. Biochemical reactions and their biological contributions in honey. Molecules. 2022; 27(15): 4719. https://doi.org/10.3390/molecules27154719.
  • [43] Yang W, Zhang C, Li C, Huang ZY, Miao X. Pathway of 5-hydroxymethyl-2-furaldehyde formation in honey. J Food Sci Technol. 2019; 56(5): 2417-2425. https://doi.org/10.1007/s13197-019-03708-7.
  • [44] STANDARD FOR HONEY CXS 12-19811 Adopted in 1981. Revised in 1987, 2001. Amended in 2019, 2022, Available at https://www.fao.org/fao-who-codexalimentarius/sh proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCX S%2B12-1981%252Fcxs_012e.pdf Accessed April 24, 2024
  • [45] Marcolin LC, Ramos Lima L, Arias JLde O, Berrio ACB, Kupski L, Barbosa SC, Primel EG. Meliponinae and Apis mellifera honey in southern Brazil: Physicochemical characterization and determination of pesticides. Food Chem. 2021; 363: 130175. https://doi.org/10.1016/j.foodchem.2021.130175.
  • [46] LeBlanc BW, Eggleston G, Sammataro D, Cornett C, Dufault R, Deeby T, St Cyr E. Formation of hydroxymethylfurfural in domestic high-fructose corn syrup and its toxicity to the honey bee (Apis mellifera). J Agric Food Chem. 2009; 57(16): 7369-7376. https://doi.org/10.1021/jf9014526.
  • [47] Sakač MB, Jovanov PT, Marić AZ, Pezo LL, Kevrešan ŽS, Novaković AR, Nedeljković NM. Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem. 2019; 276: 15-21. https://doi.org/10.1016/j.foodchem.2018.09.149.
  • [48] Kadri SM, Zaluski R, Orsi RO. Nutritional and mineral contents of honey extracted by centrifugation and pressed processes. Food Chem. 2017; 218: 237-241. https://doi.org/10.1016/j.foodchem.2016.09.071.
  • [49] Kieliszek M, Piwowarek K, Kot A.M, Wojtczuk M, Roszko M, Bryła M, Petkoska TA. Recent advances and opportunities related to the use of bee products in food processing. Food Sci Nutr. 2023; 11: 4372-4397. https://doi.org/10.1002/fsn3.3411.
  • [50] Bereksi-Reguig D, Bouchentouf S, Allali H, Adamczuk A, Kowalska G, Kowalski R. Trace elements and heavy metal contents in west Algerian natural honey. J Anal Methods Chem. 2022; 2022: 7890856. https://doi.org/10.1155/2022/7890856.
  • [51] Seraglio SKT, Schulz M, Brugnerotto P, Silva B, Gonzaga LV, Fett R, Costa ACO. Quality, composition and health protective properties of citrus honey: A review. Food Res Int. 2021; 143: 110268. https://doi.org/10.1016/j.foodres.2021.110268.
  • [52] Rossano R, Larocca M, Polito T, Perna AM, Padula MC, Martelli G, Riccio P. What are the proteolytic enzymes of honey and what they do tell us? A fingerprint analysis by 2-D zymography of unifloral honeys. PLoS One. 2012; 7(11): e49164. https://doi.org/10.1371/journal.pone.0049164.
  • [53] Alaerjani WMA, Abu-Melha S, Alshareef RMH, Al-Farhan BS, Ghramh HA, Al-Shehri BMA, Bajaber MA, Khan KA, Alrooqi MM, Modawe GA, Mohammed MEA. Biochemical reactions and their biological contributions in honey. Molecules. 2022 ;27(15):4719. https://doi.org/10.3390/molecules27154719.
  • [54] Alaerjani WMA, Mohammed MEA. Impact of floral and geographical origins on honey quality parameters in Saudi Arabian regions. Sci Rep. 2024 Apr 15;14(1):8720. https://doi.org/10.1038/s41598-024-59359-y. [55] Enzymatic and Nonenzymatic Food Spoilage. In Food Microbiology: Principles into Practice, eds O. Erkmen and T.F. Bozoglu. 2016. https://doi.org/10.1002/9781119237860.ch24.
  • [56] Habib HM, Kheadr E, Ibrahim WH. Inhibitory effects of honey from arid land on some enzymes and protein damage. Food Chem. 2021;364:130415. https://doi.org/10.1016/j.foodchem.2021.130415.
  • [57] D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R. Bioavailability of the polyphenols: Status and controversies. Int J Mol Sci. 2010; 11(4): 1321–1342. https://doi.org/10.3390%2Fijms11041321.
  • [58] Walle T. Absorption and metabolism of flavonoids. Free Radic Biol Med. 2004, 36(7): 829–837. https://doi.org/10.1016/j.freeradbiomed.2004.01.002.
  • [59] Schramm DD, Karim M, Schrader HR, Holt RR, Cardetti M, Keen CL. Honey with high levels of antioxidants can provide protection to healthy human subjects. J Agric Food Chem. 2003. 51(6): 1732–1735. https://doi.org/10.1021/jf025928k.
  • [60] Spencer JP, Chowrimootoo G, Choudhury R, Debnam ES, Srai SK, Rice-Evans C. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett. 1999; 458(2): 224–230. https://doi.org/10.1016/s0014 5793(99)01160-6.
  • [61] Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Sign. 2013; 18: 1818–1892. https://doi.org/10.1089%2Fars.2012.4581.
  • [62] Hussain SA, Sulaiman AA, Alhaddad H, Alhadidi Q. Natural polyphenols: Influence on membrane transporters. J Intercult Ethnopharmacol. 2016. 5(1): 97–104. https://doi.org/10.5455%2Fjice.20160118062127.
  • [63] Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Asp Med. 2010; 31: 446–467. https://doi.org/10.1016/j.mam.2010.09.007.
  • [64] Cianciosi D, Forbes-Hernández TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP, Zhang J, Bravo Lamas L, Martínez Flórez S, Agudo Toyos P, Quiles JL, Giampieri F, Battino M. Phenolic compounds in honey and their associated health benefits: A review. Molecules. 2018;23(9):2322. https://doi.org/10.3390/molecules23092322.
  • [65] Kuś PM, Szweda P, Jerković I, Tuberoso CIG. Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett Appl Microbiol. 2016; 62(3): 269–276. https://doi.org/10.1111/lam.12541.
  • [66] Sultana S, Foster K, Lim LY, Hammer K, Locher C. A review of the phytochemistry and bioactivity of clover honeys (Trifolium spp.). Foods. 2022; 11(13):1901. https://doi.org/10.3390/foods11131901.
  • [67] Chu LI, Berahim Z, Mohamad S, Shahidan WNS, Yhaya MF, Zainuddin SLA. Phytochemical compounds of raw versus methanol-extracted Kelulut, Tualang, and Manuka honeys. Cureus. 2023; 15(4): e38297. https://doi.org/10.7759/cureus.38297.
  • [68] McLoone P, Tabys D, Yunussova S, Zhumbayeva A, Verrall S, Sungurtas J, Austin C, Allwood JW, McDougall GJ. Qualitative phytochemical analysis and in vitro investigation of the immunomodulatory properties of honeys produced in Kazakhstan. Nat Prod Res. 2023;37(6):996-1001. https://doi.org/10.1080/14786419.2022.2095382.
  • [69] Bankova V, Popova M, Trusheva B. The phytochemistry of the honeybee. Phytochemistry. 2018;155:1-11. https://doi.org/10.1016/j.phytochem.2018.07.007.
  • [70] Mureşan CI, Buttstedt A. pH-dependent stability of honey bee (Apis mellifera) major royal jelly proteins. Sci Rep. 2019; 9: 9014. https://doi.org/10.1038/s41598-019-45460-0.
  • [71] Lotfinia F, Norouzi M-R, Ghasemi-Mobarakeh L, Naeimirad M. Anthocyanin/honey-ıncorporated alginate hydrogel as a bio-based pH-responsive/antibacterial/antioxidant wound dressing. J Funct Biomater. 2023; 14(2):72. https://doi.org/10.3390/jfb14020072.
  • [72] McArdle C, Coyle S, Santos D. The impact of wound pH on the antibacterial properties of Medical Grade Honey when applied to bacterial isolates present in common foot and ankle wounds. An in vitro study. J Foot Ankle Res 2023; 16(1): 66. https://doi.org/10.1186/s13047-023-00653-9.
  • [73] Huyop F, Ullah S, Abdul Wahab R, Huda N, Sujana IGA, Saloko S, Andriani AASPR, Antara NS, Gunam IBW. Physicochemical and antioxidant properties of Apis cerana honey from Lombok and Bali Islands. PLoS One. 2024;19(4):e0301213. https://doi.org/10.1371/journal.pone.0301213.
  • [74] da Silva PM, Gauche C, Gonzaga LV, Costa AC, Fett R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016; 196: 309-323. https://doi.org/10.1016/j.foodchem.2015.09.051.
  • [75] Mokhtari S, Sanati I, Abdolahy S, Hosseini Z. Evaluation of the effect of honey on the healing of tooth extraction wounds in 4 - to 9-year-old children. Niger J Clin Pract. 2019; 22(10): 1328-1334. https://doi.org/10.4103/njcp.njcp_102_19.
  • [76] Curuțiu C, Dițu LM, Grumezescu AM, Holban AM. Polyphenols of Honeybee origin with applications in dental medicine. Antibiotics. 2020; 9(12):856. https://doi.org/10.3390/antibiotics9120856.
  • [77] Martinello M, Mutinelli F. Antioxidant activity in bee products: A review. Antioxidants (Basel). 2021; 10(1): 71. https://doi.org/10.3390/antiox10010071.
  • [78] Khan H, Sureda A, Belwal T, Çetinkaya S, Süntar İ, Tejada S, Devkota HP, Ullah H, Aschner M. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev. 2019;18(7):647-657. https://doi.org/10.1016/j.autrev.2019.05.001.
  • [79] Abbasi AJ, Mohammadi F, Bayat M, Gema SM, Ghadirian H, Seifi H, Bayat H, Bahrami N. Applications of Propolis in Dentistry: A Review. Ethiop J Health Sci. 2018;28(4):505-512. https://doi.org/10.4314/ejhs.v28i4.16.
  • [80] Babaee N, Hosseinkazemi H, Pouramir M, Khakbaz Baboli O, Salehi M, Khadir F, Bijani A, Mehryari M. Salivary oxidant/ antioxidant status and hematological parameters in patients with recurrent aphthous stomatitis. Caspian J Intern Med. 2016;7(1):13-18.
  • [81] Samarghandian S, Farkhondeh T, Samini F. Honey and health: A review of recent clinical research. Pharmacogn Res. 2017;9(2):121-127. https://doi.org/10.4103/0974-8490.204647.
  • [82] Aghel S, Pouramir M, Moghadamnia AA, Moslemi D, Molania T, Ghassemi L, Motallebnejad M. Effect of Iranian Propolis on Salivary Total Antioxidant Capacity in Gamma-irradiated Rats. J Dent Res Dent Clin Dent Prospects. 2014;8(4):235-259. https://doi.org/10.5681/joddd.2014.042.
  • [83] El-Sharkawy HM, Anees MM, Van Dyke TE. Propolis ımproves periodontal status and glycemic control in patients with type 2 Diabetes Mellitus and chronic periodontitis: A randomized clinical trial. J Periodontol. 2016; 87(12): 1418 1426. https://doi.org/10.1902/jop.2016.150694.
  • [84] Giammarinaro E, Marconcini S, Genovesi A, Poli G, Lorenzi C, Covani U. Propolis as an adjuvant to non-surgical periodontal treatment: A clinical study with salivary anti-oxidant capacity assessment. Minerva Stomatol. 2018;67(5):183-188. https://doi.org/10.23736/s0026-4970.18.04143-2.
  • [85] Kumari S, Naik P, Vishma BL, Salian SR, Devkar RA, Khan S, Mutalik S, Kalthur G, Adiga SK. Mitigating effect of Indian propolis against mitomycin C induced bone marrow toxicity. Cytotechnology. 2016;68(5):1789-1800. https://doi.org/10.1007/s10616-015-9931-4. http://dx.doi.org/10.29228/jrp.840 J Res Pharm 2024; 28(5): 1632-1652.
  • [86] Bonamigo T, Campos JF, Alfredo TM, Balestieri JB, Cardoso CA, Paredes-Gamero EJ, de Picoli Souza K, Dos Santos EL. Antioxidant, cytotoxic, and toxic activities of propolis from two native bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides. Oxid Med Cell Longev. 2017;2017:1038153. https://doi.org/10.1155/2017/1038153.
  • [87] Özkök D, Silici S. Antioxidant activities of honeybee products and their mixtures. Food Sci Biotechnol. 2017;26(1):201 206. https://doi.org/10.1007/s10068-017-0027-0.
  • [88] Kocot J, Kiełczykowska M, Luchowska-Kocot D, Kurzepa J, Musik I. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxid Med Cell Longev. 2018;2018:7074209. https://doi.org/10.1155/2018/7074209.
  • [89] Petti S, Scully C. Polyphenols, oral health and disease: A review. J Dent. 2009;37(6):413-423. https://doi.org/10.1016/j.jdent.2009.02.003.
  • [90] Ding Y, Yao H, Yao Y, Fai LY, Zhang Z. Protection of dietary polyphenols against oral cancer. Nutrients. 2013; 5(6): 2173-2191. https://doi.org/10.3390/nu5062173.
  • [91] Chatterjee A, Saluja M, Agarwal G, Alam M. Green tea: A boon for periodontal and general health. J Indian Soc Periodontol. 2012; 16(2): 161-167. https://doi.org/10.4103/0972-124x.99256.
  • [92] Combarros-Fuertes P, Estevinho LM, Dias LG, Castro JM, Tomás-Barberán FA, Tornadijo ME, Fresno-Baro JM. Bioactive components and antioxidant and antibacterial activities of different varieties of honey: A screening prior to clinical application. J Agric Food Chem. 2019;67(2):688-698. https://doi.org/10.1021/acs.jafc.8b05436.
  • [93] Colmenares-Cuevas SI, Contreras-Oliva A, Salinas-Ruiz J, Hidalgo-Contreras JV, Flores-Andrade E, García-Ramírez EJ. Development and study of the functional properties of marshmallow enriched with bee (Apis mellifera) honey and encapsulated probiotics (Lactobacillus rhamnosus). Front Nutr. 2024; 11: 1353530. https://doi.org/10.3389/fnut.2024.1353530.
  • [94] Khataybeh B, Jaradat Z, Ababneh Q. Anti-bacterial, anti-biofilm and anti-quorum sensing activities of honey: A review. J Ethnopharmacol. 2023;317:116830. https://doi.org/10.1016/j.jep.2023.116830.
  • [95] Machado A, Zamora-Mendoza L, Alexis F, Álvarez-Suarez JM. Use of plant extracts, bee-derived products, and probiotic-related applications to fight multidrug-resistant pathogens in the post-antibiotic era. Futur Pharmacol. 2023; 3(3): 535-567. https://doi.org/10.3390/futurepharmacol3030034.
  • [96] Taş-Küçükaydın M, Tel-Çayan G, Çayan F, Küçükaydın S, Çiftçi BH, Ceylan Ö, Duru ME. Chemometric classification of chestnut honeys from different regions in Turkey based on their phenolic compositions and biological activities. Food Chem. 2023; 415: 135727. https://doi.org/10.1016/j.foodchem.2023.135727.
  • [97] Feng T, Liu M, Liu G, Chen M, Sun L, Wang M, Ren X. Characterization and classification of non-herbal honey and herb honey with the chemometric approach. Eur Food Res Technol. 2022; 3: 777-785. https://doi.org/10.1007/s00217-022-04175-9.
  • [98] Gurinovich GV, Soldatova SS. Antioxidative activity of bee honey and propolis in meat systems. Latest achievements in the field of medicine, health care and health-saving technologies. Collection of materials of the first international congress. Under the general editorship of A.Y. Prosekov. Kemerovo, 2022. Publisher: Kemerovo State University. http://dx.doi.org/10.21603/-I-IC-34
  • [99] Hassan NH, Cacciola F, Chong NS, Arena K, Marriott PJ, Wong YF. An updated review of extraction and liquid chromatography techniques for analysis of phenolic compounds in honey. J Food Comp Analy. 2022; 114: 104751. https://doi.org/10.1016/j.jfca.2022.104751.
  • [100] Bazaid AS, Alamri A, Almashjary MN, Qanash H, Almishaal AA, Amin J, Binsaleh NK, Kraiem J, Aldarhami A, Alafnan A. Antioxidant, anticancer, antibacterial, antibiofilm properties and gas chromatography and mass spectrometry analysis of Manuka Honey: A nature’s bioactive honey. Appl Sci. 2022; 12(19):9928. https://doi.org/10.3390/app12199928.
  • [101] Farkas ÁBVL, Kõszegi T, Csepregi R, Kerekes E, Horváth G, Szabó P, Gaál K, Kocsis M. Antibacterial and biofilm degradation effects of hungarian honeys linked with botanical origin, antioxidant capacity and mineral content. Front Nutr. 2022; 9: 953470. https://doi.org/10.3389%2Ffnut.2022.953470.
  • [102] Obey JK, Ngeiywa MM, Lehesvaara M, Kauhanen J, von Wright A, Tikkanen-Kaukanen C. Antimicrobial activity of commercial organic honeys against clinical isolates of human pathogenic bacteria. Org Agr. 2022; 12: 267–277. https://doi.org/10.1007/s13165-022-00389-z.
  • [103] Wang RS, Dong PH, Shuai XX, Chen MS. Evaluation of different black mulberry fruits (Morus nigra L.) based on phenolic compounds and antioxidant activity. Foods. 2022; 11(9): 1252. https://doi.org/10.3390/foods11091252.
  • [104] Lawag IL, Lim L-Y, Joshi R, Hammer KA, Locher C. A comprehensive survey of phenolic constituents reported in monofloral honeys around the globe. Foods. 2022; 11(8):1152. https://doi.org/10.3390/foods11081152.
  • [105] Ibrahim HR, Nanbu F, Miyata T. Potent antioxidant peptides derived from honey major protein enhance tolerance of eukaryotic cells toward oxidative stress. Food Prod Process Nutr. 2021; 3: 11. https://doi.org/10.1186/s43014-021 00052-2.
  • [106] Wang L, Ning F, Liu T, Huang X, Zhang J, Liu Y, Wu D, Luo L. Physicochemical properties, chemical composition, and antioxidant activity of Dendropanax dentiger honey. LWT. 2021, 147(4): 111693. https://doi.org/10.1016/j.lwt.2021.111693.
  • [107] Mărgăoan R, Topal E, Balkanska R, Yücel B, Oravecz T, Cornea-Cipcigan M, Vodnar DC. Monofloral honeys as a potential source of natural antioxidants, minerals and medicine. Antioxidants. 2021; 10:1023. https://doi.org/10.3390/antiox10071023.
  • [108] Collins W, Lowen N, Blake DJ. Caffeic acid esters are effective bactericidal compounds against Paenibacilluslarvae by altering ıntracellular oxidant and antioxidant levels. Biomolecules. 2019;9(8):312. https://doi.org/10.3390/biom9080312.
  • [109] Sartore S, Boyd S, Slabaugh D, Jain N, Piepenbrink B, Blount S, Alla Z, Cheso W, Belanger H, Arnold TP. Honey and its antimicrobial properties: A function of a single component, or the sum of its parts? Cureus. 2021; 13: e17718. https://doi.org/10.7759/cureus.17718.
  • [110] Alvarez-Suarez JM, Tulipani S, Díaz D, Estevez Y, Romandini S, Giampieri F, Damiani E, Astolfi P, Bompadre S, Battino M. Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food Chem Toxicol. 2010; 48(8-9): 2490-2499. https://doi.org/10.1016/j.fct2010.06.021.
  • [111] Romário-Silva D, Alencar SM, Bueno-Silva B, Sardi JdCO, Franchin M, Carvalho RDPd, Ferreira TedSA, Rosalen PL Antimicrobial activity of honey against oral microorganisms: Current reality, methodological challenges and solutions. Microorganisms. 2022; 10: 2325. https://doi.org/10.3390/microorganisms10122325.
  • [112] Albaridi NA. Antibacterial potency of honey. Int J Microbiol. 2019; 2019: 1–10. https://doi.org/10.1155/2019/2464507.
  • [113] Bucekova M, Buriova M, Pekarik L, Majtan V, Majtan J. Phytochemicals-mediated production of hydrogen peroxide ıs crucial for high antibacterial activity of Honeydew Honey. Sci Rep. 2018; 8(1): 9061. https://doi.org/10.1038/s41598-018-27449-3.
  • [114] Kuś PM, Szweda P, Jerković I, Tuberoso CIG. Activity of Polish unifloral honeys against pathogenic bacteria and ıts correlation with colour, phenolic content, antioxidant capacity and other parameters. Lett Appl Microbiol. 2016; 62: 269–276. https://doi.org/10.1111/lam.12541.
  • [115] Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed. 2011; 1: 154–160. https://doi.org/10.1016/S2221-1691(11)60016-6.
  • [116] Bowen WH, Lawrence RA. Comparison of the cariogenicity of cola, honey, cow milk, human milk, and sucrose. Pediatrics. 2005; 116(4): 921–926. https://doi.org/10.1542/peds.2004-2462.
  • [117] Safii SH, Tompkins GR, Duncan WJ. Periodontal application of Manuka Honey: Antimicrobial and demineralising effects ın vitro. Int J Dent. 2017; 2017: 9874535. https://doi.org/10.1155/2017/9874535.
  • [118] Grobler SR, Du Toit IJ, Basson NJ. The effect of honey on human tooth enamel in vitro observed by electron microscopy and microhardness measurements. Archiv Oral Biol. 1994; 39: 147-153. https://doi.org/10.1016/0003 9969(94)90110-90114.
  • [119] Ahmadi-Motamayel F, Rezaei-Soufi L, Kiani L, Alikhani MY, Poorolajal J, Moghadam M. Effects of honey, glucose, and fructose on the enamel demineralization depth. J Den Sci. 2013; 8: 147-150. https://doi.org/10.1016/j.jds.2012.02.004.
  • [120] Habluetzel A, Schmid C, Carvalho TS, Lusi A, Eick S. Impact of honey on dental erosion and adhesion of early bacterial colonizers. Sci Rep. 2018; 8: 10936. https://doi.org/10.1038/s41598-018-29188-x.
  • [121] Celik ZC, Yavlal GO, Yanıkoglu F, Kargul B, Tagtekin D, Stookey GK, Peker S, Hayran O. Do Ginger Extract, Natural Honey and Bitter Chocolate Remineralize Enamel Surface as Fluoride Toothpastes? An In-Vitro Study. Niger J Clin Pract. 2021;24(9):1283-1288. https://doi.org/10.4103/njcp.njcp_683_20.
  • [122] Senthilkumar V, Ramesh S. Remineralisation potential of grape seed, ginger honey-an in vitro study. Int J Dent Oral Sci. 2021;08(02):1739-1743. http://dx.doi.org/10.19070/2377-8075-21000343.
  • [123] Gazzani G, Daglia M, Papetti A. Food components with anticaries activity. Curr Opin Biotechnol. 2012; 23(2): 153 159. https://doi.org/10.1016/j.copbio.2011.09.003.
  • [124] Jeon JG, Rosalen PL, Falsetta ML, Koo H. Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res. 2011;45(3):243-263. https://doi.org/10.1159/000327250.
  • [125] Grabek-Lejko D, Hyrchel T. The antibacterial properties of Polish Honey against streptococcus mutans—A causative agent of dental caries. Antibiotics. 2023, 12(11): 1640. https://doi.org/10.3390/antibiotics12111640.
  • [126] Nassar HMLiM, Gregory RL. Effect of honey on Streptococcus mutans growth and biofilm formation. Appl Environ Microbiol. 2012; 78(2): 536-540. https://doi.org/10.1128/AEM.05538-11.
  • [127] Ahmadi-Motamayel F, Hendi SS, Alikhani MY, Khamverdi Z. Antibacterial activity of honey on cariogenic bacteria. J Dent (Tehran). 2013; 10(1): 10-15.
  • [128] Badet C, Quero F. The in vitro effect of manuka honeys on growth and adherence of oral bacteria. Anaerobe. 2011; 17(1): 19-22. https://doi.org/10.1016/j.anaerobe.2010.12.007.
  • [129] Schmidlin PR, English H, Duncan W, Belibasakis GN, Thurnheer T. Antibacterial potential of Manuka honey against three oral bacteria in vitro. Swiss Dent J. 2014; 124(9): 922-924. https://doi.org/10.61872/sdj-2014-09-01.
  • [130] Abdelmegid F, Al-Agamy M, Alwohaibi A, Ka'abi H, Salama F. Effect of honey and green tea solutions on Streptococcus mutans. J Clin Pediat Dent. 2015; 39(5): 435-441. https://doi.org/10.17796/1053-4628-39.5.435.
  • [131] Yadav N, Garla B, Reddy V, Tandon S, Prasad S. Antimicrobial effect of honey on Streptococcus mutans of dental plaque. J Oral Health Commun Dent 2014; 8(2): 72-75.
  • [132] Rupesh S, Winnier JJ, Nayak UA, Rao AP, Reddy NV, Peter J. Evaluation of the effects of manuka honey on salivary levels of mutans streptococci in children: A pilot study. J Ind Soc Pedod Prev Dent. 2014; 32(3): 212–219. https://doi.org/10.4103/0970-4388.135827.
  • [133] Johnston M, Mcbride M, Dahiya D, Owusu-Apenten R. Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiol. 2018; 4(4): 655–664. http://dx.doi.org/10.3934/microbiol.2018.4.655.
  • [134] Nolan VC, Harrison J, Wright JEE, Cox JAG. Clinical significance of Manuka, and medical-grade honey for antibiotic resistant ınfections: A systematic review. Antibiotics 2020; 9(11): 766. https://doi.org/10.3390/antibiotics9110766.
  • [135] Ibrahim MA, Berahim Z, Ahmad A, Taib H. The effect of locally delivered Tualang honey on healing of periodontal tissues during non-surgical periodontal therapy. IIUM J Orofac Health Sci. 2021; 2(2): 16–26. https://doi.org/10.31436/ijohs.v2i2.65.
  • [136] Ahmed S, Othman NH. Review of the medicinal effects of tualang honey and a comparison with manuka honey. Malays J Med Sci. 2013;20(3):6-13.
  • [137] Tan HT, Rahman RA, Gan SH, Halim AS, Hassan SA, Sulaiman SA, Kirnpal-Kaur B. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. BMC Complement Altern Med. 2009; 9: 34. https://doi.org/10.1186/1472-6882-9-34.
  • [138] Morroni G, Alvarez-Suarez JM, Brenciani A, Simoni S, Fioriti S, Pugnaloni A, Giampieri F, Mazzoni L, Gasparrini M, Marini E, Mingoia M, Battino M, Giovanetti E. Comparison of the antimicrobial activities of four honeys from three countries (New Zealand, Cuba, and Kenya). Front Microbiol. 2018; 9: 1378. https://doi.org/10.3389/fmicb.2018.01378.
  • [139] Voidarou C, Antoniadou M, Rozos G, Alexopoulos A, Giorgi E, Tzora A, Skoufos I, Varzakas T, Bezirtzoglou E. An ın vitro study of different types of Greek honey as potential natural antimicrobials against dental caries and other oral pathogenic microorganisms. Case study simulation of oral cavity conditions. Appl Sci. 2021; 11(14): 6318. https://doi.org/10.3390/app11146318.
  • [140] Basson NJ, Grobler SR. Antimicrobial activity of two South African honeys produced from indigenous Leucospermum cordifolium and Erica species on selected micro-organisms. BMC Complement Altern Med. 2008; 8: 41. https://doi.org/10.1186/1472-6882-8-41.
  • [141] Wilkinson JM, Cavanagh HMA. Antibacterial activity of 13 honeys against Escherichia coli and Pseudomonas aueruginosa. J Med Food. 2005; 8(1): 100-103. https://doi.org/10.1089/jmf.2005.8.100.
  • [142] Bogdanov S. Nature and origin of the antibacterial substances in honey. LWT—Food Sci Technol. 1997; 30(7): 748 753. https://doi.org/10.1006/fstl.1997.0259.
  • [143] Ahmadi-Motamayel F, Hendi SS, Alikhani MY, Khamverdi Z. Antibacterial activity of honey on cariogenic bacteria. J Dent (Tehran). 2013;10(1):10-15.
  • [144] Badawy OF, Shafii SS, Tharwat EE, Kamal AM. Antibacterial activity of bee honey and its therapeutic usefulness against Escherichia coli O157:H7 and Salmonella typhimurium infection. Rev Sci Tech. 2004;23(3):1011-1022. https://doi.org/10.20506/rst.23.3.1543.
  • [145] Gumilar MS, Fitria KT, Lubis S. Antibacterial activity of Jambi Forest Honey on cariogenic bacteria Lactobacillus acidophilus. 4th Riau Medical Scientific and Expo 2022. NST Proceedings. (2022). pages 1-11. http://dx.doi.org/10.11594/nstp.2022.2801.
  • [146] Deglovic J, Majtanova N, Majtan J. Antibacterial and antibiofilm effect of honey in the prevention of dental caries: A recent perspective. Foods 2022; 11(17): 2670. https://doi.org/10.3390/foods11172670.
  • [147] Wang S, Qiu Y, Zhu F. An updated review of functional ingredients of Manuka honey and their value-added innovations. Food Chem. 2024; 440: 138060. https://doi.org/10.1016/j.foodchem.2023.138060.
  • [148] Kwakman PHS, Velde AAt, de Boer L, Speijer D, Christina Vandenbroucke-Grauls MJ, Zaat SAJ. How honey kills bacteria. FASEB J. 2010; 24(7): 2576-2582. https://doi.org/10.1096/fj.09-150789.
  • [149] Gunes NL, Belenli AD, Hranitz JM, Mengilig S, Selova S. Stress responses of honeybees to organic acid and essential oil treatments against varroa mites. J Apic Res. 2017; 56(2): 175-181. http://dx.doi.org/10.1080/00218839.2017.1291229.
  • [150] Almasaudi S. The antibacterial activities of honey. Saudi J Biol Sci. 2021; 28(4): 2188-2196. https://doi.org/10.1016/j.sjbs.2020.10.017.
  • [151] Henriques AF, Jenkins RE, Burton NF, Cooper RA. The effect of Manuka honey on the structure of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2011; 30(2): 167-171. https://doi.org/10.1007/s10096-010-1065-1
  • [152] Oral health. (2023, March 14). Available from: www.who.int. https://www.who.int/news-room/fact sheets/detail/oral-health#:~:text=Most%20cases%20are%20dental%20caries. Accessed April 5, 2024
  • [153] https://www.who.int/news/item/18-11-2022-who-highlights-oral-health-neglect-affecting-nearly-half-of-the world-s-population. Accessed April 5, 2024
  • [154] Isola G. The impact of diet, nutrition and nutraceuticals on oral and periodontal health. Nutrients. 2020; 12(9): 2724. https://doi.org/10.3390/nu12092724.
  • [155] Guthmiller, J.M, Novak, K.F. Periodontal Diseases. In: Brogden KA, Guthmiller JM, editors. Polymicrobial Diseases. Washington (DC): ASM Press; 2002. Chapter 8. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2496/
  • [156] Opšivač D, Musić L, Badovinac A, Šekelja A, Božić D. Therapeutic Manuka honey as an adjunct to non-surgical periodontal therapy: A 12-month follow-up, split-mouth pilot study. Materials (Basel, Switzerland). 2023; 16(3): 1248. https://doi.org/10.3390/ma16031248.
  • [157] Gunsolley JC. A meta-analysis of six-month studies of antiplaque and antigingivitis agents. J Am Dent Assoc (1939). 2006; 137(12): 1649–1657. https://doi.org/10.14219/jada.archive.2006.0110.
  • [158] Haraszthy VI, Sreenivasan PK, Zambon JJ. Community-level assessment of dental plaque bacteria susceptibility to triclosan over 19 years. BMC Oral Health. 2014; 14: 61 https://doi.org/10.1186/1472-6831-14-61.
  • [159] Klukowska M, Zou Y, Ponce D, Amini P. Rapid antigingivitis efficacy of a novel stannous fluoride dentrifice: Results from a 12-week randomized controlled clinical trial. Compend Contin Educ Dent. 2021; 42: e5-e9.
  • [160] Quintas V, Prada-López I, Donos N, Suárez-Quintanilla D, Tomás I. Antiplaque effect of essential oils and 0.2% chlorhexidine on an in situ model of oral biofilm growth: A randomised clinical trial. PloS One. 2015; 10: e0117177. https://doi.org/10.1371/journal.pone.0117177.
  • [161] Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A small molecule with controversial roles. Antibiotics. 2022: 11: 735. https://doi.org/10.3390/antibiotics11060735.
  • [162] Poppolo Deus F, Ouanounou A. Chlorhexidine in dentistry: Pharmacology, uses, and adverse effects. Int Dent J. 2022; 72: 269–277. https://doi.org/10.1016/j.identj.2022.01.005.
  • [163] Ulfa Y, Sulistiawati, Hema A, Budi A, Fairuz M. The effect of 10% forest honey rinsing on dental plaque score for children aged 9–12 years. Sci Dent J. 2020; 4: 54-58. https://doi.org/10.4103/SDJ.SDJ_49_19.
  • [164] Al-Kubaisi MW, Hassan Al-Ghurabi B. Evaluation of Manuka honey effects on dental plaque and bacterial load (Clinical Study). J Med Chem Sci. 2023; 6: 365-375. https://doi.org/10.26655/JMCHEMSCI.2023.2.17.
  • [165] Nayak PA, Nayak UA, Mythili R. Effect of Manuka honey, chlorhexidine gluconate and xylitol on the clinical levels of dental plaque. Contemp Clin Dent. 2010; 1: 214–217. https://doi.org/10.4103/0976-237X.76386.
  • [166] Atwa AD, AbuShahba RY, Mostafa M, Hashem MI. Effect of honey in preventing gingivitis and dental caries in patients undergoing orthodontic treatment. Saudi Dent J. 2014; 26: 108–114. https://doi.org/10.1016/j.sdentj.2014.03.001.
  • [167] Bansal A, Ingle AN, Kaur N, Ingle K, Charania Z. Effect of gum massage therapy with honey and olive oil on common pathogenic oral micro-organisms: A randomized controlled clinical trial. J Int Oral Health 2015; 7(11): 63-66.
  • [168] Ahmadi-Motamayel F, Akbari E, Mahjoub R, Alikhani MY, Poorolajal J. Effect of chewing gum containing Glycyrrhiza glabra, honey, and vitamin E on oral health. J Herb Med. 2024; 43: 100831. https://doi.org/10.1016/j.hermed.2023.100831.
  • [169] Keskin M, Kaya G, Keskin S. Nanotechnology in Honey. In: Nanotechnology in Functional Foods (eds T. Bhattacharya and S. Ahmed), 2022. https://doi.org/10.1002/9781119905059.ch4.
  • [170] Keskin Ş, Mayda N, Keskin M, Özkök A. Investigation of Bilecik honeys in terms of melissopalynology and chemical analyses. Gıda. 2020; 45(2): 275 – 289. https://doi.org/10.15237/gida.GD19107.
  • [171] Keskin M, Keskin Ş, Kolaylı S. Health-promoting benefits of honey. In: Preparation of Phytopharmaceuticals for the Management of Disorders. Academic Press, Elsevier, 2021, pp 303 – 306.
  • [172] Philip D. Honey mediated green synthesis of gold nanoparticles. Spectrochim Acta Part A: Mol Biomol Spect. 2009; 73: 650–653. https://doi.org/10.1016/j.saa.2009.03.007.
  • [173] Ghramh HA, Ibrahim EH, Kilany M. Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles production by Sidr honey from three different sources. Food Sci Nutr. 2020; 8: 445 – 455. https://doi.org/10.1002%2Ffsn3.1328.
  • [174] Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts . Biotechnol Adv. 2013; 31(2): 346-356. https://doi.org/10.1016/j.biotechadv.2013.01.003.
  • [175] Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron. 2014; 60: 292-298. https://doi.org/10.1016/j.bios.2014.04.046.
  • [176] Al-Brahim JS, Mohammed AE. Antioxidant, cytotoxic and antibacterial potential of biosynthesized nanoparticles using bee honey from two different floral sources in Saudi Arabia. Saudi J Biol Sci. 2020; 27(1): 363-373. https://doi.org/10.1016/j.sjbs.2019.10.006.
  • [177] Boldeiu A, Simion M, Mihalache I, Radoi A, Banu M, Varasteanu P, Kusko M. Comparative analysis of honey and citrate stabilized gold nanoparticles: In vitro interaction with proteins and toxicity studies. J Photochem Photobiol B: Biol. 2019; 197: 111519. https://doi.org/10.1016/j.jphotobiol.2019.111519.
  • [178] Neupane BP, Chaudhary D, Paudel S, Timsina S, Chapagain B, Jamarkattel N, Tiwari BR. Himalayan honey loaded iron oxide nanoparticles: Synthesis, characterization and study of antioxidant and antimicrobial activities Int J Nanomed. 2019; 14: 3533 – 3541. https://doi.org/10.2147/IJN.S196671.
  • [179] Balasooriya ER, Jayasinghe CD, Jayawardena UA, Ruwanthika RWD, de Silva RM, Udagama PV. Honey mediated green synthesis of nanoparticles: New era of safe nanotechnology. J Nanomater. 2017; 1-10. https://doi.org/10.1155/2017/5919836. Journal of Research in Pharmacy Eriksen et al. Honey's nutraceutical potential for oral health Review Article nanoparticles
  • [180] Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV. A novel one-pot 'green' synthesis of stable silver using soluble starch. Carbohydr Res. 2006; 341(12): 2012-2018. https://doi.org/10.1016/j.carres.2006.04.042.
  • [181] Abou-Shaara HF, Staron M, Staroňová D. Potential applications of nanotechnology in apiculture. Entomol Appl Sci Lett. 2020; 7(4): 1-8.
  • [182] Bonsignore G, Patrone M, Martinotti S, Ranzato E. "Green" Biomaterials: The promising role of honey. J Funct Biomater. 2021; 12(4): 72. https://doi.org/10.3390/jfb12040072.
There are 178 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Nilena Eriksen 0000-0002-6439-3734

Kleva Shpati 0000-0002-3213-1158

Entela Haloci 0000-0003-2992-8307

Erda Qorri 0000-0002-5079-6815

Xhini Rizaj 0000-0001-6292-5859

Publication Date June 28, 2025
Submission Date June 13, 2024
Acceptance Date July 23, 2024
Published in Issue Year 2024 Volume: 28 Issue: 5

Cite

APA Eriksen, N., Shpati, K., Haloci, E., Qorri, E., et al. (2025). Harnessing honey’s nutraceutical potential for oral health. Journal of Research in Pharmacy, 28(5), 1632-1652.
AMA Eriksen N, Shpati K, Haloci E, Qorri E, Rizaj X. Harnessing honey’s nutraceutical potential for oral health. J. Res. Pharm. July 2025;28(5):1632-1652.
Chicago Eriksen, Nilena, Kleva Shpati, Entela Haloci, Erda Qorri, and Xhini Rizaj. “Harnessing honey’s Nutraceutical Potential for Oral Health”. Journal of Research in Pharmacy 28, no. 5 (July 2025): 1632-52.
EndNote Eriksen N, Shpati K, Haloci E, Qorri E, Rizaj X (July 1, 2025) Harnessing honey’s nutraceutical potential for oral health. Journal of Research in Pharmacy 28 5 1632–1652.
IEEE N. Eriksen, K. Shpati, E. Haloci, E. Qorri, and X. Rizaj, “Harnessing honey’s nutraceutical potential for oral health”, J. Res. Pharm., vol. 28, no. 5, pp. 1632–1652, 2025.
ISNAD Eriksen, Nilena et al. “Harnessing honey’s Nutraceutical Potential for Oral Health”. Journal of Research in Pharmacy 28/5 (July 2025), 1632-1652.
JAMA Eriksen N, Shpati K, Haloci E, Qorri E, Rizaj X. Harnessing honey’s nutraceutical potential for oral health. J. Res. Pharm. 2025;28:1632–1652.
MLA Eriksen, Nilena et al. “Harnessing honey’s Nutraceutical Potential for Oral Health”. Journal of Research in Pharmacy, vol. 28, no. 5, 2025, pp. 1632-5.
Vancouver Eriksen N, Shpati K, Haloci E, Qorri E, Rizaj X. Harnessing honey’s nutraceutical potential for oral health. J. Res. Pharm. 2025;28(5):1632-5.