Development and validation of an RP-HPLC method to compare the apoptotic activity of quercetin found in marketed dietary supplements
Year 2024,
Volume: 28 Issue: 5, 1653 - 1664, 28.06.2025
Ümit Can Erim
,
Nese Ayşit
Abstract
Quercetin is a ubiquitous bioactive flavonoid found in broad selection of dietary supplements. It has potential beneficial health effects and induces therapeutic activity in many diseases including different types of cancer. Quercetin exerts cytotoxic activity in cancer and induces apoptotic cell death. Albeit, each dietary supplement consists of impurities, which in turn diminish the biological activity of the quercetin. Herein, we extracted quercetin from 5 different marketed dietary supplements in tablet formulation and detected their quercetin content by developing and validating an RP-HPLC method. We further investigated the cytotoxic activity of quercetin and its role in apoptosis through mitochondrial pathway in MCF-7 and 4T1 breast cancer cell lines. Our findings demonstrated that the quercetin content in all formulations was less than the amount stated in the labeling information, nevertheless they exerted significant cytotoxic activities in breast cancer cells. We revealed that formulations with high quercetin content induced apoptosis through restoring the tumor suppression activity of p53 and activating downstream caspases, whereas the formulation with low quercetin content potentially induced non-apoptotic cell death. Our work illustrates the involvement of quercetin in apop
References
- [1] Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, Lampen A. Safety Aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018;62(1). https://doi.org/10.1002/mnfr.201700447
- [2] Boots AW, Haenen GRMM, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(2–3): 325–337. https://doi.org/10.1016/j.ejphar.2008.03.008
- [3] Fideles SOM, de Cássia Ortiz A, Buchaim DV, de Souza Bastos Mazuqueli Pereira E, Parreira MJBM, de Oliveira Rossi J, da Cunha MR, de Souza AT, Soares WC, Buchaim RL. Influence of the neuroprotective properties of quercetin on regeneration and functional recovery of the nervous system. Antioxidants (Basel). 2023;12(1). https://doi.org/10.3390/antiox12010149
- [4] Azeem M, Hanif M, Mahmood K, Ameer N, Chughtai FRS, Abid U. An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review. Polym Bull (Berl). 2023;80(1): 241–262. https://doi.org/10.1007/s00289-022-04091-8
- [5] Rahman MA, Shorobi FM, Uddin MN, Saha S, Hossain MA. Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models. In Silico Pharmacol. 2022;10(1):17. https://doi.org/10.1007/s40203-022-00132-2
- [6] Morimoto R, Hanada A, Matsubara C, Horio Y, Sumitani H, Ogata T, Isegawa Y. Anti-influenza A virus activity of flavonoids in vitro: a structure-activity relationship. J Nat Med. 2023;77(1): 219–227. https://doi.org/10.1007/s11418-022-01660-z
- [7] Lee S, Lee HH, Shin YS, Kang H, Cho H. The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch Pharm Res. 2017;40(5): 623–630. https://doi.org/10.1007/s12272-017-0898-x
- [8] Vargas JE, Puga R, de Faria Poloni J, Saraiva Macedo Timmers LF, Porto BN, Norberto de Souza O, Bonatto D, Condessa Pitrez PM, Tetelbom Stein R. A network flow approach to predict protein targets and flavonoid backbones to treat respiratory syncytial virus infection. Biomed Res Int. 2015;2015:301635. https://doi.org/10.1155/2015/301635
- [9] Raghav A, Giri R, Agarwal S, Kala S, Jeong G-B. Protective role of engineered extracellular vesicles loaded quercetin nanoparticles as anti-viral therapy against SARS-CoV-2 infection: A prospective review. Front Immunol. 2022;13:1040027. https://doi.org/10.3389/fimmu.2022.1040027
- [10] Murata M, Komatsu S, Miyamoto E, Oka C, Lin I, Kumazoe M, Yamashita S, Fujimura Y, Tachibana H. Quercetin up-regulates the expression of tumor-suppressive microRNAs in human cervical cancer. Biosci Microbiota Food Health. 2023;42(1): 87–93. https://doi.org/10.12938/bmfh.2022-056
- [20] Ren M-X, Deng X-H, Ai F, Yuan G-Y, Song H-Y. Effect of quercetin on the proliferation of the human ovarian cancer cell line SKOV-3 in vitro. Exp Ther Med. 2015;10(2): 579–583. https://doi.org/10.3892/etm.2015.2536
- [21] Deng X-H, Song H-Y, Zhou Y-F, Yuan G-Y, Zheng F-J. Effects of quercetin on the proliferation of breast cancer cells and expression of survivin in vitro. Exp Ther Med. 2013;6(5): 1155–1158. https://doi.org/10.3892/etm.2013.1285
- [22] Ren K-W, Li Y-H, Wu G, Ren J-Z, Lu H-B, Li Z-M, Han X-W. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int J Oncol. 2017;50(4): 1299–1311. https://doi.org/10.3892/ijo.2017.3886
- [23] Busch C, Burkard M, Leischner C, Lauer UM, Frank J, Venturelli S. Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin Epigenetics. 2015;7(1): 64. https://doi.org/10.1186/s13148-015-0095-z
- [24] Sahpazidou D, Geromichalos GD, Stagos D, Apostolou A, Haroutounian SA, Tsatsakis AM, Tzanakakis GN, Hayes AW, Kouretas D. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicol Lett. 2014;230(2): 218–224. https://doi.org/10.1016/j.toxlet.2014.01.042
- [25] Granado-Serrano AB, Angeles Martín M, Bravo L, Goya L, Ramos S. Time-course regulation of quercetin on cell survival/proliferation pathways in human hepatoma cells. Mol Nutr Food Res. 2008;52(4): 457–464. https://doi.org/10.1002/mnfr.200700203
- [26] Youn H, Jeong J-C, Jeong YS, Kim E-J, Um S-J. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol Pharm Bull. 2013;36(6): 944–951. https://doi.org/10.1248/bpb.b12-01004
- [27] Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem. 2007;18(7): 427–442. https://doi.org/10.1016/j.jnutbio.2006.11.004
- [28] Jakubowicz-Gil J, Paduch R, Piersiak T, Głowniak K, Gawron A, Kandefer-Szerszeń M. The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells. Biochem Pharmacol. 2005;69(9): 1343–1350. https://doi.org/10.1016/j.bcp.2005.01.022
- [29] Ferraresi R, Troiano L, Roat E, Lugli E, Nemes E, Nasi M, Pinti M, Fernandez MIG, Cooper EL, Cossarizza A. Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radic Res. 2005;39(11): 1249–1258. https://doi.org/10.1080/10715760500306935
- [30] Kim H, Moon JY, Ahn KS, Cho SK. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid Med Cell Longev. 2013;2013:596496. https://doi.org/10.1155/2013/596496
- [31] Kim GT, Lee SH, Kim J Il, Kim YM. Quercetin regulates the sestrin 2-AMPK-p38 MAPK signaling pathway and induces apoptosis by increasing the generation of intracellular ROS in a p53-independent manner. Int J Mol Med. 2014;33(4): 863–869. https://doi.org/10.3892/ijmm.2014.1658
- [32] Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary B, Raghavan SC. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep. 2016;6:24049. https://doi.org/10.1038/srep24049
- [33] Jeong J-H, An JY, Kwon YT, Rhee JG, Lee YJ. Effects of low dose quercetin: cancer cell-specific inhibition of cell cycle progression. J Cell Biochem. 2009;106(1): 73–82. https://doi.org/10.1002/jcb.21977
- [34] Mu C, Jia P, Yan Z, Liu X, Li X, Liu H. Quercetin induces cell cycle G1 arrest through elevating Cdk inhibitors p21 and p27 in human hepatoma cell line (HepG2). Methods Find Exp Clin Pharmacol. 2007;29(3): 179–183. https://doi.org/10.1358/mf.2007.29.3.1092095
- [35] Zhang J, Yi T, Liu J, Zhao Z, Chen H. Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells. J Agric Food Chem. 2013;61(9): 2188–2195. https://doi.org/10.1021/jf305263r
- [36] Tokino T, Nakamura Y. The role of p53-target genes in human cancer. Crit Rev Oncol Hematol. 2000;33(1): 1–6. https://doi.org/10.1016/s1040-8428(99)00051-7
- [37] Vaseva A V, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta. 2009;1787(5): 414–420. https://doi.org/10.1016/j.bbabio.2008.10.005
- [38] Frank AK, Pietsch EC, Dumont P, Tao J, Murphy ME. Wild-type and mutant p53 proteins interact with mitochondrial caspase-3. Cancer Biol Ther. 2011;11(8): 740–745. https://doi.org/10.4161/cbt.11.8.14906
- [39] Gulsoy Toplan G, Kurkcuoglu M, Goger F, İşcan G, Ağalar HG, Mat A, Baser KHC, Koyuncu M, Sarıyar G. Composition and biological activities of Salvia veneris Hedge growing in Cyprus. Ind Crops Prod. 2017;97: 41–48. https://doi.org/10.1016/j.indcrop.2016.11.055
- [40] van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731: 237–245. https://doi.org/10.1007/978-1-61779-080-5_20