Research Article
BibTex RIS Cite

Implementing novel expert systems in the design of personalized paediatric pyridoxine hydrochloride orodispersible tablets

Year 2024, Volume: 28 Issue: 5, 1704 - 1719, 28.06.2025

Abstract

This research implements a computer-aided formulation development algorithm based on a novel SeDeM-ODT expert system in establishing the design space for paediatric pyridoxine hydrochloride orodispersible tablets (ODTs) using Prosolv® ODTG2, Prosolv® EasyTab SP, and Ludiflash® systems. For each formulation ingredient, expert system-defined preformulation parameter values were experimentally determined according to standardized methods and then normalized to the theoretical radius range [0,10]. Expert diagrams were constructed and the quantitative performance of each ingredient was evaluated using parametric profile index (IPP), flowability (ff’), and compressibility (ffc) functions. The net direct compression capability was quantitatively expressed as the product of expert system reliability and IPP. Direct compression was conducted in an eccentric tablet press and properties were evaluated using weight, dimension, disintegration test, contact angle, tensile strength, x-ray diffraction, and Fourier-transform infrared spectroscopy. The ODTs dissolution profiles were fitted and compared using zero-order, first-order, Hixson-Crowell, and Hopfenberg models. Results of the expert diagram of pyridoxine hydrochloride indicated suboptimal normalized radii values in 8 out of 12 parameters, implying a compromised mechanical zone (ff’=3.61, ffc=2.11). By setting a target ffc for the optimized formulation mix at 5.0, the predicted proportions of the fillers to remedy the direct compression deficits of the drug were computed as 89.00%, 83.23%, and 76.62% for Prosolv® ODTG2 (ffc=5.36), Prosolv® EasyTab SP (ffc=5.58), and Ludiflash® (ffc=5.88), respectively. The produced ODTs were of acceptable target quality, hence the SeDeM-ODT system was considered a reliable formulation tool for establishing the design space of this particular drug-filler systems.

References

  • [1]] Turner MA, Catapano M, Hirschfeld S, Giaquinto C. Paediatric drug development: The impact of evolving regulations. Adv Drug Deliv Rev. 2014 ;73:2–13.
  • [2] van Riet-Nales DA, Römkens EG, Saint-Raymond A, Kozarewicz P, Schobben AF, Egberts TC, Rademaker CM. Oral medicines for children in the European paediatric investigation plans. PLoS One. 2014;9(6):e98348. https://doi.org/10.1371%2Fjournal.pone.0098348.
  • [3] Matsuo K, Palmer JB. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am. 2008;19(4):691-707, vii. https://doi.org/10.1016%2Fj.pmr.2008.06.001.
  • [4] Kean EA, Adeleke OA. Orally disintegrating drug carriers for paediatric pharmacotherapy. Eur J Pharm Sci. 2023;182:106377. https://doi.org/10.1016/j.ejps.2023.106377.
  • [5] Khan D, Kirby D, Bryson S, Shah M, Rahman Mohammed A. Paediatric specific dosage forms: Patient and formulation considerations. Int J Pharm. 2022;616:121501. https://doi.org/10.1016/j.ijpharm.2022.121501.
  • [6] Tuleu C, Orlu M, Wright D. Design and manufacture of medicines for paediatric and geriatric populations. In: Aulton M, Taylor K, editors. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines. 5th ed. London: Elsevier; 2018. p. 804–19.
  • [7] FDA. Orally Disintegrating Tablets FDA [Internet]. 2008 [cited 2022 Jun 14]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/orally-disintegrating-tablets
  • [8] Ahmed TA. Study the pharmacokinetics, pharmacodynamics and hepatoprotective activity of rosuvastatin from drug loaded lyophilized orodispersible tablets containing transfersomes nanoparticles. J Drug Deliv Sci Technol. 2021;63:102489. https://doi.org/10.1016/j.jddst.2021.102489.
  • [9] granules Stange U, Führling C, Gieseler H. Freeze drying of orally disintegrating tablets containing taste masked naproxen sodium in blisters. by Pharm Dev Technol. 2015;20(8):1018-1024. https://doi.org/10.3109/10837450.2014.959179.
  • [10] Musazzi UM, Selmin F, Ortenzi MA, Mohammed GK, Franzé S, Minghetti P, Cilurzo F. Personalized orodispersible films hot melt ram extrusion 3D printing. Int J Pharm. 2018;551(1-2):52-59. https://doi.org/10.1016/j.ijpharm.2018.09.013.
  • [11] Allahham N, Fina F, Marcuta C, Kraschew L, Mohr W, Gaisford S, Basit AW, Goyanes A. Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron. Pharmaceutics. 2020;12(2):110. https://doi.org/10.3390/pharmaceutics12020110.
  • [12] Onuki Y, Sugiura D, Kumada S, Kobayashi R, Nakamura T, Kogawa T, Sakai H, Okada K. The Molded Tablet, a disintegrant-free orally disintegrating tablet, resists thickening solution-reduced drug dissolution. J Drug Deliv Sci Technol. 2022;69:103179. https://doi.org/10.1016/j.jddst.2022.103179.
  • [13] Suárez-González J, Magariños-Triviño M, Díaz-Torres E, Cáceres-Pérez AR, Santoveña-Estévez A, Fariña JB. Individualized orodispersible pediatric dosage forms obtained by molding and semi-solid extrusion by 3D printing: A comparative study for hydrochlorothiazide. J Drug Deliv Sci Technol. 2021;66:102884. https://doi.org/10.1016/j.jddst.2021.102884.
  • [14] Hannan PA, Khan JA, Khan A, Safiullah S. Oral Dispersible System: A New Approach in Drug Delivery System. Indian J Pharm Sci. 2016;78(1):2.
  • [15] Dasankoppa FS, Sajjanar VM, Sholapur H, Nanjundaswamy NG, Kubasad KA, Walvekar PM. Application of SeDeM ODT expert system in formulation development of orodispersible tablets of antihyperlipidemic agent. J Young Pharm. 2017;9(2):203–208.
  • [16] Aguilar JE, Montoya EG, Lozano PP, Negre JMS, Carmona MM, Grau JRT. New SeDeM-ODT expert system: an expert system for formulation of orodispersible tablets obtained by direct compression. In: Formulation Tools for Pharmaceutical Development. 2013;137–54. https://doi.org/10.1533/9781908818508.137.
  • [17] Türkmen Ö, Beba Pozharani L, Amel M. Formulation and in vitro evaluation of pramipexole orally disintegrating tablets for pediatric restless leg syndrome. J Res Pharm. 2023;27(5):1808–1820. http://dx.doi.org/10.29228/jrp.465.
  • [18] Salim I, Kehinde OA, Abdulsamad A, Khalid GM, Gwarzo MS. Physicomechanical Behaviour of Novel Directly Compressible Starch-MCC-Povidone Composites and their Application in Ascorbic Acid Tablet Formulation. Br J Pharm. 2018;3(1):527. https://doi.org/10.5920/bjpharm.2018.03
  • [19] Carlin BAC. Direct Compression and the Role of Filler-binders. In: Augsburger LL, Hoag SW, editors. Pharmaceutical Dosage Forms: Tablets. 3rd ed. Informa; 2008. p. 173–246.
  • [20] Mirani AG, Patankar SP, Borole VS, Pawar AS, Kadam VJ. Direct compression high functionality excipient using coprocessing technique: a brief review. Curr Drug Deliv. 2011;8(4):426-435. https://doi.org/10.2174/156720111795767960.
  • [21] Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment--a review. Int J Pharm. 2014;473(1-2):64-72. https://doi.org/10.1016/j.ijpharm.2014.06.055.
  • [22] Gohel MC, Jogani PD. A review of co-processed directly compressible excipients. J Pharm Pharm Sci. 2005;8(1):76 93.
  • [23] Djuris J, Ibric S, Djuric Z. Quality-by-design in pharmaceutical development. In: Computer-Aided Applications in Pharmaceutical Technology. 2013;1–16.
  • [24] Salim I, Olowosulu AK, Abdulsamad A, Gwarzo MS, Khalid GM, Ahmad NT, Eichie FE, Kurfi FS. Application of SeDeM Expert System in the development of novel directly compressible co-processed excipients via co-processing. Futur J Pharm Sci 2021; 7:135. https://doi.org/10.1186/s43094-021-00253-z.
  • [25] Suñé-Negre JM, Roig M, Fuster R, Hernández C, Ruhí R, García-Montoya E, Pérez-Lozano P, Miñarro M, Ticó JR. New classification of directly compressible (DC) excipients in function of the SeDeM Diagarm Expert System. Int J Pharm. 2014;470(1–2):15–27. https://doi.org/10.1016/j.ijpharm.2014.04.068.
  • [26] Deb PK, Al-Attraqchi O, Al-Qattan MN, Raghu Prasad M, Tekade RK. Applications of Computers in Pharmaceutical Product Formulation. In: Dosage Form Design Parameters. Elsevier; 2018. p. 665–703.
  • [27] Djekic L, Vasiljevic D, Primorac M. Computer-aided formulation development. In: Computer-Aided Applications in Pharmaceutical Technology. Elsevier; 2013. p. 17–29.
  • [28] Castañeda Hernández O, Domínguez-Robles J, Caraballo I, Bernad MJ, Melgoza Contreras LM. Comparison between polymeric excipients using SeDeM expert system in combination with mathematical modeling and quality control tools. J Drug Deliv Sci Technol. 2023 Sep 1;86:104750
  • [29] Figuera-Figuera A, Suñé-Pou M, Pérez-Lozano P, García-Montoya E, Amela-Navarro J, Suñé-Negre JM. SeDeM as a Tool to Validate Drug Substance Manufacturing Processes and Assess Scalability and Suitability for Direct Compression: Supplier Screening. Pharmaceutics [Internet]. 2023 Aug 1 [cited 2024 Aug 8];15(8):2034. https://doi.org/10.3390/pharmaceutics15082034
  • [30] Khan A, Iqbal Z, Ibrahim M, Nasir F, Ullah Z. Prediction of the effect of taste masking on disintegration behavior, mechanical strength and rheological characteristics of highly water soluble drug (itopride HCl); an application of SeDeM-ODT expert system. Powder Technol. 2015;284:411–417. https://doi.org/10.1016/j.powtec.2015.06.062.
  • [31] Aguilar-Díaz JE, García-Montoya E, Pérez-Lozano P, Suñé-Negre JM, Miñarro M, Ticó JR. SeDeM expert system a new innovator tool to develop pharmaceutical forms. Drug Dev Ind Pharm. 2014;40(2):222-236. https://doi.org/10.3109/03639045.2012.756007.
  • [32] Rauf-Ur-Rehman, Shoaib MH, Ahmed FR, Yousuf RI, Siddiqui F, Saleem MT, Qazi F, Khan MZ, Irshad A, Bashir L, Naz S, Farooq M, Mahmood ZA. SeDeM expert system with I-optimal mixture design for oral multiparticulate drug delivery: An encapsulated floating minitablets of loxoprofen Na and its in silico physiologically based pharmacokinetic modeling. Front Pharmacol. 2023;14:1066018. https://doi.org/10.3389/fphar.2023.1066018.
  • [33] Pérez P, Suñé-Negre JM, Miñarro M, Roig M, Fuster R, García-Montoya E, Hernández C, Ruhí R, Ticó JR. A new expert systems (SeDeM diagram) for control batch powder formulation and preformulation drug products. Eur J Pharm Biopharm. 2006;64(3):351-359. https://doi.org/10.1016/j.ejpb.2006.06.008.
  • [34] Campiñez MD, Casas M, Caraballo I. Characterisation of the Ability of Carbamazepine for Processing It through Direct Compression Applying the New Expert System SeDeM. Int J Clin Pharmacol Pharmacother. 2016;2016(1).
  • [35] Saurí J, Millán D, Suñé-Negre JM, Pérez-Lozano P, Sarrate R, Fàbregas A, Carrillo C, Miñarro M, Ticó JR, García Montoya E. The use of the SeDeM diagram expert system for the formulation of Captopril SR matrix tablets by direct compression. Int J Pharm. 2014;461(1–2):38–45. https://doi.org/10.1016/j.ijpharm.2013.11.029.
  • [36] Aguilar-Díaz JE, García-Montoya E, Suñe-Negre JM, Pérez-Lozano P, Miñarro M, Ticó JR. Predicting orally disintegrating tablets formulations of ibuprophen tablets: An application of the new SeDeM-ODT expert system. Eur J Pharm Biopharm. 2012;80(3):638-648. https://doi.org/10.1016/j.ejpb.2011.12.012.
  • [37] Nofrerias I, Nardi A, Suñé-Pou M, Suñé-Negre JM, García-Montoya E, Pérez-Lozano P, Miñarro M, Bataille B, Ticó JR. Formulation of Direct Compression Zidovudine Tablets to Correlate the SeDeM Diagram Expert System and the Rotary Press Simulator Styl’ONE Results. AAPS PharmSciTech. 2019;21(1):1. https://doi.org/10.1208/s12249-019 1542-5.
  • [38] Sipos E, Oltean AR, Szabó ZI, Rédai EM, Nagy GD. Application of SeDeM expert systems in preformulation studies of pediatric ibuprofen ODT tablets. Acta Pharm. 2017;67(2):237–246. https://doi.org/10.1515/acph-2017-0017.
  • [39] George ME, Pinkerton MK, Back KC. Therapeutics of monomethylhydrazine intoxication. Toxicol Appl Pharmacol. 1982 Apr 1;63(2):201–8.
  • [40] McCormick DB. Pyridoxine. Encyclopedia of Toxicology: Third Edition. 2014 Jan 1;1165–1166.
  • [41] Gaikwad SS, Kothule AM, Morade YY, Patil SS, Laddha UD, Kshirsagar SJ, Salunkhe KS. An overview of the implementation of SeDeM and SSCD in various formulation developments. Int J Pharm. 2023 Mar 25;635:122699. https://doi.org/10.1016/j.ijpharm.2023.122699.
  • [42] Dai S, Xu B, Shi G, Liu J, Zhang Z, Shi X, Qiao Y. SeDeM expert system for directly compressed tablet formulation: A review and new perspectives. Powder Technol. 2019;342:517–527. https://doi.org/10.1016/j.powtec.2018.10.027.
  • [43] Scholtz JC, Steenekamp JH, Hamman JH, Tiedt LR. The SeDeM Expert Diagram System: Its performance and predictability in direct compressible formulations containing novel excipients and different types of active ingredients. Powder Technol. 2017;312:222–236. https://doi.org/10.1016/j.powtec.2017.02.019.
  • [44] Leuenberger H. Application of percolation theory in powder technology. Vol. 10, Advanced Powder Technology. VSP BV; 1999. p. 323–352.
  • [45] Imbert C, Tchoreloff P, Leclerc B, Couarraze G. Indices of tableting performance and application of percolation theory to powder compaction. Eur J Pharm Biopharm. 1997;44(3):273–282.
  • [46] Galdón E, Casas M, Gayango M, Caraballo I. First study of the evolution of the SeDeM expert system parameters based on percolation theory: Monitoring of their critical behavior. Eur J Pharm Biopharm. 2016;109:158–164. https://doi.org/10.1016/j.ejpb.2016.10.004.
  • [47] Li Z, Lin X, Shen L, Hong Y, Feng Y. Composite particles based on particle engineering for direct compaction. Int J Pharm. 2017;519(1-2):272-286. https://doi.org/10.1016/j.ijpharm.2017.01.030.
  • [48] Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009;6(2):197-208. https://doi.org/10.1517/17425240802708978.
  • [49] Salim I, Olowosulu AK, Abdulsamad A. A study on the effect of biconvex compact shape factors on prediction of dilution potential from tensile strength–compaction force data of coprocessed diluents. Bull Nat Res Cent 2022; 46:1
  • [50] Mistry P, Batchelor H; SPaeDD-UK project (Smart Paediatric Drug Development - UK). Evidence of acceptability of oral paediatric medicines: a review. J Pharm Pharmacol. 2017;69(4):361-376. https://doi.org/10.1111/jphp.12610
  • [51] Buckton G. Surface and interfaces. In: Aulton ME, Taylor KM, editors. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines. 5th ed. London: Elsevier; 2018. p. 47–59.
  • [52] Srivastava M, Rani P, Singh NP, Yadav RA. Experimental and theoretical studies of vibrational spectrum and molecular structure and related properties of pyridoxine (vitamin B6). Spectrochim Acta A Mol Biomol Spectrosc. 2014;120:274–286. https://doi.org/10.1016/j.saa.2013.09.133.
  • [53] Pyridoxine Hydrochloride Tablets [Internet]. [cited 2023 Nov 17]. Available from: https://doi.usp.org/USPNF/USPNF_M72070_01_01.html
  • [54] Khan A. Optimization of the process variables of roller compaction, on the basis of granules characteristics (flow, mechanical strength, and disintegration behavior): an application of SeDeM-ODT expert system. Drug Dev Ind Pharm. 2019;45(9):1537-1546. https://doi.org/10.1080/03639045.2019.1634094.
  • [55] Pitt KG, Heasley MG. Determination of the tensile strength of elongated tablets. Powder Technol. 2013;238:169–175. https://doi.org/10.1016/j.powtec.2011.12.060.
  • [56] Shi P, Ma Y, Han D, Du S, Zhang T, Li Z. Uncovering the solubility behavior of vitamin B6 hydrochloride in three aqueous binary solvents by thermodynamic analysis and molecular dynamic simulation. J Mol Liq. 2019;283:584 595. https://doi.org/10.1016/j.molliq.2019.03.082.
  • [57] Lamour G, Hamraoui A, Buvailo A, Xing Y, Keuleyan S, Prakash V, Eftekhari-Bafrooei A, Borguet E. Contact Angle Measurements Using a Simplified Experimental Setup. J Chem Educ. 2010;87(12):1403–1407. [
  • 58] Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J 2010;12(3):263. https://doi.org/10.1208/s12248-010-9185-1.
There are 58 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Delivery Technologies
Journal Section Articles
Authors

Ilyasu Salim 0000-0002-6961-5703

Garba Mohammed Khalid 0000-0003-4045-7702

Abubakar Sadiq Wada 0000-0001-8221-1159

Suleiman Danladi 0000-0002-2017-3887

Fatima Shuaibu Kurfı 0000-0003-1652-6931

Mahmud Sani Gwarzo 0000-0001-8030-7974

Publication Date June 28, 2025
Submission Date November 18, 2023
Acceptance Date January 3, 2024
Published in Issue Year 2024 Volume: 28 Issue: 5

Cite

APA Salim, I., Khalid, G. M., Wada, A. S., Danladi, S., et al. (2025). Implementing novel expert systems in the design of personalized paediatric pyridoxine hydrochloride orodispersible tablets. Journal of Research in Pharmacy, 28(5), 1704-1719.
AMA Salim I, Khalid GM, Wada AS, Danladi S, Kurfı FS, Gwarzo MS. Implementing novel expert systems in the design of personalized paediatric pyridoxine hydrochloride orodispersible tablets. J. Res. Pharm. July 2025;28(5):1704-1719.
Chicago Salim, Ilyasu, Garba Mohammed Khalid, Abubakar Sadiq Wada, Suleiman Danladi, Fatima Shuaibu Kurfı, and Mahmud Sani Gwarzo. “Implementing Novel Expert Systems in the Design of Personalized Paediatric Pyridoxine Hydrochloride Orodispersible Tablets”. Journal of Research in Pharmacy 28, no. 5 (July 2025): 1704-19.
EndNote Salim I, Khalid GM, Wada AS, Danladi S, Kurfı FS, Gwarzo MS (July 1, 2025) Implementing novel expert systems in the design of personalized paediatric pyridoxine hydrochloride orodispersible tablets. Journal of Research in Pharmacy 28 5 1704–1719.
IEEE I. Salim, G. M. Khalid, A. S. Wada, S. Danladi, F. S. Kurfı, and M. S. Gwarzo, “Implementing novel expert systems in the design of personalized paediatric pyridoxine hydrochloride orodispersible tablets”, J. Res. Pharm., vol. 28, no. 5, pp. 1704–1719, 2025.
ISNAD Salim, Ilyasu et al. “Implementing Novel Expert Systems in the Design of Personalized Paediatric Pyridoxine Hydrochloride Orodispersible Tablets”. Journal of Research in Pharmacy 28/5 (July 2025), 1704-1719.
JAMA Salim I, Khalid GM, Wada AS, Danladi S, Kurfı FS, Gwarzo MS. Implementing novel expert systems in the design of personalized paediatric pyridoxine hydrochloride orodispersible tablets. J. Res. Pharm. 2025;28:1704–1719.
MLA Salim, Ilyasu et al. “Implementing Novel Expert Systems in the Design of Personalized Paediatric Pyridoxine Hydrochloride Orodispersible Tablets”. Journal of Research in Pharmacy, vol. 28, no. 5, 2025, pp. 1704-19.
Vancouver Salim I, Khalid GM, Wada AS, Danladi S, Kurfı FS, Gwarzo MS. Implementing novel expert systems in the design of personalized paediatric pyridoxine hydrochloride orodispersible tablets. J. Res. Pharm. 2025;28(5):1704-19.