Research Article
BibTex RIS Cite

Indian gooseberry (Phyllanthus emblica L.) based liposomes: Formulation, characterization, in vitro and ex vivo antioxidant activity evaluation

Year 2024, Volume: 28 Issue: 5, 1742 - 1757, 28.06.2025

Abstract

The research was focused on incorporating the polyphenols from Indian gooseberries (Phyllanthus emblica L.) in phospholipid nanocarriers, aiming to enhance skin penetration, bioavailability and stability. Design-Expert® aided in achieving the optimal liposomal formulation, characterized by particle size, zeta potential, and a polydispersity index. Liposomes were prepared by applying the film hydration method. The liposomes were further loaded into a hydrogel (Carbopol 934) for its controlled release and stabilizing effects on liposomes. Multiple antioxidant assessment methods DPPH, ABTS, FRAP, CUPRAC were performed. Additional evaluations encompassed FTIR, SEM, rheological studies, and in vitro/ex vivo diffusion comparisons between liposomal-loaded gel (GEL-LE) and pure extract with gel (GEL-E). Depending on the formulation and extract amount, the total antioxidant content per sample varies between 59.3-486.75 mg. When the optimal formulation (LE) contained 1.8 % soybean and 0.07 % cholesterol the mean particle size was 74.66 nm, zeta potential – -50.35 and polydispersity index– 0.3. In vitro results exhibited 42.28 % cumulative release for GEL-LE and GEL-E by 23.44 %. Ex vivo findings showed a 6% discrepancy in cumulative release (21% for GEL-LE). These outcomes emphasize liposomes' potential for enhanced antioxidant delivery and release, contributing to potential advancements in cosmetic and skincare applications.

References

  • [1] Phaniendra A, Jestadi DB, Periyasamy. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015; 30: 11-26. https://doi.org/10.1007/s12291-014-0446-0
  • [2] Pham-Huy LA, Hua He, Pham-Huy C. Free Radicals, antioxidants in disease and health. Int J Biomed Sci. 2008; 4(2): 89–96.
  • [3] Valko M, Leibfritz D, Moncola J, Cronin MT, Mazura M, Telser J Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1): 44-84. https://doi.org/10.1016/j.biocel.2006.07.001
  • [4] Ebadi M. Antioxidants and free radicals in health and disease: an introduction to reactive oxygen species, oxidative injury, neuronal cell death and therapy in neurodegenerative diseases. Prominent Press, Arizona. 2001; 38: 13-71.
  • [5] Stefanis L, Burke RE, Greene LA. Apoptosis in neurodegenerative disorders. Curr Opin Neurol. 1997; 10 (4): 299 305. https://doi.org/10.1097/00019052-199708000-00004
  • [6] Sastre J, Pellardo FV, Vina J. Glutathione, oxidative stress and aging. Age. 1996; 19: 129-139. https://doi.org/10.1007/BF02434082
  • [7] Levine M, Ramsey SC, Daruwara R. Criteria and recommendation for vitamin c intake. JAMA. 1999, 281 (15): 1415 1423. https://doi.org/10.1001/jama.281.15.1415
  • [8] Frie B, Stocker R, Ames BN. Antioxidant defences and lipid peroxidation in human blood plasma. Proc Natl Acad Sci. 1988; 85 (24): 9748-9752. https://doi.org/10.1073/pnas.85.24.9748
  • [9] Desam NR, Al-Rajab AJ. In: Pal D, Nayak AK. The importance of natural products in cosmetics. Bio Nat Prod Pharm Appl. 2021; 643-685. https://doi.org/10.1007/978-3-030-54027-2_19
  • [10] He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: topical formulations with sun protection factor (SPF). Biomed Pharmacother. 2020; 134: 111161. https://doi.org/10.1016/j.biopha.2020.111161
  • [11] Xu DP, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang JJ, Li HB. Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci. 2017; 18 (1): 96. https://doi.org/10.3390/ijms18010096
  • [12] Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5): 727-747. https://doi.org/10.1093/ajcn/79.5.727
  • [13] Jenab M, Riboli E, Ferrari P, Sabate J, Slimani N, Norat T, Friesen M, Tjønneland A, Olsen A, Overvad K, Boutron Ruault MC, Clavel-Chapelon F, Touvier M, Boeing H, Schulz M, Linseisen J, Nagel G, Trichopoulou A, Naska A, Oikonomou E, Krogh V, Panico S, Masala G, Sacerdote C, Tumino R, Peeters PH, Numans ME, Bueno-de Mesquita HB, Büchner FL, Lund E, Pera G, Sanchez CN, Sánchez MJ, Arriola L, Barricarte A, Quirós JR, Hallmans G, Stenling R, Berglund G, Bingham S, Khaw KT, Key T, Allen N, Carneiro F, Mahlke U, Del Giudice G, Palli D, Kaaks R, Gonzalez CA. Plasma and dietary vitamin C levels and risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Carcinogenesis. 2006;27(11):2250-2257. https://doi.org/10.1093/carcin/bgl096
  • [14] Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB. Resources and biological activities of natural polyphenols. Nutrients. 2014; 6 (12): 6020-6047. https://doi.org/10.3390/nu6126020
  • [15] Salomone F, Godos J, Zelber-Sagi S. Natural antioxidants for non-alcoholic fatty liver disease: Molecular targets and clinical perspectives. Liver Int. 2016; 36 (1): 5-20. https://doi.org/10.1111/liv.12975
  • [16] Balmus IM, Ciobica A, Trifan A, Stanciu C. The implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: clinical aspects and animal models. Saudi J Gastroenterol. 2016; 22(1): 3. https://doi.org/10.4103/1319-3767.173753
  • [17] Khan BA, Mahmood T, Menaa F, Shahzad Y, Yousaf AM, Hussain T, Ray SD. New perspectives on the efficacy of gallic acid in cosmetics & nanocosmeceuticals. Curr Pharm Des. 2018; 24(43): 5181-5187. https://doi.org/10.2174/1381612825666190118150614
  • [18] Neha K, Haider R, Pathak A, Yar MS. Medicinal prospects of antioxidants: A review. Eur J Med Chem. 2019; 178: 687-704. https://doi.org/10.1016/j.ejmech.2019.06.010
  • [19] Tewari S, Seshadri M, Poduval TB. Migration inhibition of normal rat thymocytes as an in vitro method for detecting cell-mediated immunity in rat and mouse. J Immunol Methods. 1982; 51(2): 231-239. https://doi.org/10.1016/0022-1759(82)90262-9
  • [20] Sabu MC, Kuttan R. Antidiabetic activity of medicinal plants and its relationship with their antioxidant property. J Ethnopharmacol. 2002; 81(2): 155-160. https://doi.org/10.1016/S0378-8741(02)00034-X
  • [21] Rose K, Wan C, Thomas A, Seeram N, Ma H. Phenolic compounds isolated and identified from amla (Phyllanthus emblica) juice powder and their antioxidant and neuroprotective activities. Nat Prod Commun. 2018; 13(10): 1-8. https://doi.org/10.1177/1934578X1801301019
  • [22] Figueroa-Robles A, Antunes-Ricardo M, Guajardo-Flores D. Encapsulation of phenolic compounds with liposomal improvement in the cosmetic industry. Int J Pharm. 2021; 593: 120-125. https://doi.org/10.1016/j.ijpharm.2020.120125
  • [23] Barichello JM, Yamakawa N, Kisyuku M, Handa H, Shibata T, Ishida T, Kiwada H. Combined effect of liposomalization and addition of glycerol on the transdermal delivery of isosorbide 5-nitrate in rat skin. Int J Pharm. 2008; 357 (1-2): 199-205. https://doi.org/10.1016/j.ijpharm.2008.01.052
  • [24] Jaspart S, Piel G, Delattre L, Evrard B. Solid lipid microparticles: formulation, preparation, characterisation, drug release and applications. Expert Opin Drug Deliv. 2005; 2(1): 75-87. https://doi.org/10.1517/17425247.2.1.75
  • [25] Lacatusu I, Badea N, Popa DA, Bojin D, Meghea A. Effect of UV sunscreens loaded in solid lipid nanoparticles: A combinated SPF assay and photostability. Mol Cryst Liq. 2010; 523(1): 247-819. https://doi.org/10.1080/15421401003719928
  • [26] Yang D, Pornpattananangkul D, Nakatsuji T, Chan M, Carson D, Huang CM, Zhang L. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials. 2009; 30(30): 6035-6040. https://doi.org/10.1016/j.biomaterials.2009.07.033
  • [27] Golmohammadzadeh S, Jaafarix M, Khalili N. Evaluation of liposomal and conventional formulations of octyl methoxycinnamate on human percutaneous absorption using the stripping method. J Cosmet Sci. 2008; 59(5): 385.
  • [28] Foco A, Gasperlin M, Kristl J. Investigation of liposomes as carriers of sodium ascorbyl phosphate for cutaneous photoprotection. Int J Pharm. 2005; 291 (1-2): 21-29. https://doi.org/10.1016/j.ijpharm.2004.07.039
  • [29] Lee S, Lee J, Choi YW. Skin permeation enhancement of ascorbyl palmitate by liposomal hydrogel (lipogel) formulation and electrical assistance. Biol Pharm Bull. 2007; 30(2): 393-396. https://doi.org/10.1248/bpb.30.393
  • [30] Sharma D, Ali AAE, Trivedi LR. An updated review on: Liposomes as drug delivery system. Pharmatutor. 2018; 6(2): 50-62. https://doi.org/10.29161/PT.v6.i2.2018.50.
  • [31] Annaka M, Tanaka T. Multiple phases of polymer gels. Nature. 1992; 355(6359): 430-432. https://doi.org/10.1038/355430a0
  • [32] Allen LV, Popovich NG, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems, 9th edn. Lippincott Williams and Wilkins, Baltimore. 2014.
  • [33] Ofner CM. In: Swarbrick J (ed) Encyclopedia of Pharmaceutical Technology, 3rd edn Informa Healthcare, London. 2004.
  • [34] United States Pharmacopeial Convention. The United States Pharmacopeia: USP 32; The National Formulary: NF 27. United States Pharmacopeial Convention, Rockwille.2008.
  • [35] Cooper J, Gunn C.In: Carter SJ (ed) Tutorial Pharmacy. CBS, New Delhi. 2000.
  • [36] Bangham AD, Horne RW. Negative staining of phospholipids and their structured modification by surface active agents as observed in the electron microscope. J Mol Biol. 1964; 8(5): 660-670. https://doi.org/10.1016/S0022 2836(64)80115-7
  • [37] Sebaaly C, Jraij A, Fessi H, Charcosset C, Greige-Gerges H. Preparation and characterization of clove essential oil loaded liposomes. Food Chem. 2015; 178: 52-62. https://doi.org/10.1016/j.foodchem.2015.01.067
  • [38] Steiner D, Bunjes H . Influence of process and formulation parameters on the preparation of solid lipid nanoparticles by dual centrifugation. Int J Pharm. 2021; 3: 85-100. https://doi.org/10.1016/j.ijpx.2021.100085
  • [39] Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003; 258(1-2): 141-151. https://doi.org/10.1016/s0378-5173(03)00183-2
  • [40] Baspinar Y, Borchert HH. Penetration and release studies of positively and negatively charged nanoemulsions—Is there a benefit of the positive charge? Int J Pharm. 2012; 430(1-2): 247-252. https://doi.org/10.1016/j.ijpharm.2012.03.040
  • [41] Rajput AP, Butani SB. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol. 2019; 51: 214-223. https://doi.org/10.1016/j.jddst.2019.01.040
  • [42] Pham TT, Jaafar-Maalej C, Charcosset C, Fessi H. Liposome and niosome preparation using a membrane contactor for scale-up. Colloids Surf B Biointerfaces. 2012; 94: 15-21. https://doi.org/10.1016/j.colsurfb.2011.12.036
  • [43] Mohammadi ZA, Aghamiri SF, Zarrabi A, Talaie MR. Liposomal doxorubicin delivery systems: Effects of formulation and processing parameters on drug loading and release behavior. Curr Drug Deliv. 2016; 13(7): 1065 1070. https://doi.org/10.2174/1567201813666151228104643
  • [44] Ekelund K, Östh K, Påhlstorp C, Björk E, Ulvenlund S, Johansson, F. Correlation between epithelial toxicity and surfactant structure as derived from the effects of polyethyleneoxide surfactants on caco-2 cell monolayers and pig nasal mucosa. J Pharm Sci. 2005; 94(4): 730-744. https://doi.org/10.1002/jps.20283
  • [45] Ibrahim MM, Hafez SA, Maandy MM. Organogels, hydrogels and bigels as transdermal delivery systems for diltiazem HCL. Asian J Pharm Sci 2013; 8 (1): 48-57. https://doi.org/10.1016/j.ajps.2013.07.006
  • [46] Park NA, Irvine TF. Anomalous viscosity-temperature behavior of aqueous Carbopol solutions. J Rheol. 1997; 41(1): 167-173. https://doi.org/10.1122/1.550813
  • [47] Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF. Rheological evaluation of silicon/carbopol hydrophilic gel systems as a vehicle for delivery of water insoluble drugs. AAPS J. 2008; 10: 84-91. https://doi.org/10.1208/s12248-008-9008-9
  • [48] Coates J. In: Meyers RA (ed) Interpretation of infrared spectra, a practical approach. Wiley, Chichester. 2000.
  • [49] Mot A, Silaghi-Dumitrescu R, Sârbu C. Rapid and effective evaluation of the antioxidant capacity of propolis extracts using DPPH bleaching kinetic profiles, FT-IR and UV–vis spectroscopic data. J Food Compos Anal. 2011; 24(4-5): 516-522. https://doi.org/10.1016/j.jfca.2010.11.006
  • [50] Abdullah GZ, Abdulkarim MF, Salman IM, Ameer OZ, Yam MF, Mutee AF, Chitneni M, Mahdi ES, Basri M, Sattar MA, Noor AM. In vitro permeation and in vivo anti-inflammatory and analgesic properties of nanoscaled emulsions containing ibuprofen for topical delivery. Int J Nanomed. 2011; 387-396. https://doi.org/10.2147/IJN.S14667
  • [51] Bajpai V, Yoon J, Chul Kang S. Antioxidant and antidermatophytic activities of essential oil and extracts of Metasequoia glyptostroboides Miki ex Hu. Food Chem Toxicol. 2009; 47(6): 1355-1361. https://doi.org/10.1016/j.fct.2009.03.011
  • [52] Dudhipala N, Phasha Mohammed R, Adel Ali Youssef A, Banala N. Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: In vitro and ex vivo skin permeation. Drug Dev Ind Pharm. 2020; 46(8): 1334-1344. https://doi.org/10.1080/03639045.2020.1788069
  • [53] Sebaaly C, Jraij A, Fessi H, Charcosset C, Greige-Gerges H. Preparation and characterization of clove essential oil loaded liposomes. Food Chem. 2015; 178: 52-62. https://doi.org/10.1016/j.foodchem.2015.01.067
  • [54] Ockun MA, Baranauskaite J, Uner B, Kan Y, Kırmızıbekmez H. Preparation, characterization and evaluation of liposomal-freeze dried anthocyanin-enriched Vaccinium arctostaphylos L. fruit extract incorporated into fast dissolving oral films. J Drug Deliv Sci Technol. 2022; 72: 103428. https://doi.org/10.1016/j.jddst.2022.103428
  • [55] Degirmencioglu H, Güzelmeriç E, Yuksel P, Kırmızıbekmez H, Deniz I, Yesilada E. A new type of Anatolian propolis: evaluation of its chemical composition, activity profile and botanical origin. Chem Biodivers. 2019; 16(12): e1900492. https://doi.org/10.1002/cbdv.201900492
  • [56] Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem. 1996; 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292
  • [57] Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958; 181: 1199-1200. http://dx.doi.org/10.1038/1811199a0
  • [58] Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med. 1999; 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • [59] Apak R, Güçlü K, Ozyürek M, Çelik SK. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, J Agr Food Chem. 2004; 52(26): 7970-7981.https://doi.org/10.1021/jf048741x
  • [60] Pilch E, Musiał W (2018) Selected physicochemical properties of lyophilized hydrogel with liposomal fraction of calcium dobesilate. Materials. 2018; 11(11): 2143. https://doi.org/10.3390/ma11112143
  • [61] Mahdi ES, Noor AM, Sakeena MH, Abdullah GZ, Abdulkarim MF, Sattar MA. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging. Int J Nanomed. 2011; 2499-2512. https://doi.org/10.2147/IJN.S22337
  • [62] Oliveira AL, Valente D, Moreira HR, Pintado M, Costa P. Effect of squalane-based emulsion on polyphenols skin penetration: ex vivo skin study. https://doi.org/10.1016/j.colsurfb.2022.112779
There are 62 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Juste Baranauskaıte Ortasöz 0000-0002-0358-5759

Hussein Shakarchi 0009-0007-5476-4857

Aylin Ulkucu 0009-0000-9098-3044

Mehmet Ali Ockun

Publication Date June 28, 2025
Submission Date November 6, 2023
Acceptance Date January 3, 2024
Published in Issue Year 2024 Volume: 28 Issue: 5

Cite

APA Baranauskaıte Ortasöz, J., Shakarchi, H., Ulkucu, A., Ockun, M. A. (2025). Indian gooseberry (Phyllanthus emblica L.) based liposomes: Formulation, characterization, in vitro and ex vivo antioxidant activity evaluation. Journal of Research in Pharmacy, 28(5), 1742-1757.
AMA Baranauskaıte Ortasöz J, Shakarchi H, Ulkucu A, Ockun MA. Indian gooseberry (Phyllanthus emblica L.) based liposomes: Formulation, characterization, in vitro and ex vivo antioxidant activity evaluation. J. Res. Pharm. July 2025;28(5):1742-1757.
Chicago Baranauskaıte Ortasöz, Juste, Hussein Shakarchi, Aylin Ulkucu, and Mehmet Ali Ockun. “Indian Gooseberry (Phyllanthus Emblica L.) Based Liposomes: Formulation, Characterization, in Vitro and Ex Vivo Antioxidant Activity Evaluation”. Journal of Research in Pharmacy 28, no. 5 (July 2025): 1742-57.
EndNote Baranauskaıte Ortasöz J, Shakarchi H, Ulkucu A, Ockun MA (July 1, 2025) Indian gooseberry (Phyllanthus emblica L.) based liposomes: Formulation, characterization, in vitro and ex vivo antioxidant activity evaluation. Journal of Research in Pharmacy 28 5 1742–1757.
IEEE J. Baranauskaıte Ortasöz, H. Shakarchi, A. Ulkucu, and M. A. Ockun, “Indian gooseberry (Phyllanthus emblica L.) based liposomes: Formulation, characterization, in vitro and ex vivo antioxidant activity evaluation”, J. Res. Pharm., vol. 28, no. 5, pp. 1742–1757, 2025.
ISNAD Baranauskaıte Ortasöz, Juste et al. “Indian Gooseberry (Phyllanthus Emblica L.) Based Liposomes: Formulation, Characterization, in Vitro and Ex Vivo Antioxidant Activity Evaluation”. Journal of Research in Pharmacy 28/5 (July 2025), 1742-1757.
JAMA Baranauskaıte Ortasöz J, Shakarchi H, Ulkucu A, Ockun MA. Indian gooseberry (Phyllanthus emblica L.) based liposomes: Formulation, characterization, in vitro and ex vivo antioxidant activity evaluation. J. Res. Pharm. 2025;28:1742–1757.
MLA Baranauskaıte Ortasöz, Juste et al. “Indian Gooseberry (Phyllanthus Emblica L.) Based Liposomes: Formulation, Characterization, in Vitro and Ex Vivo Antioxidant Activity Evaluation”. Journal of Research in Pharmacy, vol. 28, no. 5, 2025, pp. 1742-57.
Vancouver Baranauskaıte Ortasöz J, Shakarchi H, Ulkucu A, Ockun MA. Indian gooseberry (Phyllanthus emblica L.) based liposomes: Formulation, characterization, in vitro and ex vivo antioxidant activity evaluation. J. Res. Pharm. 2025;28(5):1742-57.