Research Article
BibTex RIS Cite
Year 2022, Volume: 26 Issue: 6, 1713 - 1722, 28.06.2025
https://doi.org/10.29228/jrp.262

Abstract

References

  • [1] Waring WS. Novel acetylcysteine regimens for treatment of paracetamol overdose. Ther Adv Drug Saf. 2012;3(6):305–315.
  • [2] Hoffman RS. Acetylcysteine for paracetamol: Will one size ever fit all? EClinicalMedicine. 2020;20:100314. [CrossRef]
  • [3] Bateman DN, Dear JW. Acetylcysteine in paracetamol poisoning: a perspective of 45 years of use. Toxicol Res. 2019;8(4):489–498. [CrossRef]
  • [4] Sadowska AM, Verbraecken J, Darquennes K, De Backer WA. Role of N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(4):425–434. [CrossRef]
  • [5] Šalamon S, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel). 2019;8(5):111. [CrossRef]
  • [6] Tardiolo G, Bramanti P, Mazzon E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules. 2018;23:3305. [CrossRef]
  • [7] Craver BM, Ramanathan G, Hoang S, Chang X, Laura F, Luque M, Brooks S, Yeng Lai HY, Fleischman AG. N-acetylcysteine inhibits thrombosis in a murine model of myeloproliferative neoplasm. Blood Adv. 2020;4(2):312–321. [CrossRef]
  • [8] Tang K. Chemical diversity and biochemical transformation of biogenic organic sulfur in the ocean. Front Mar Sci. 2020;7:68. [CrossRef]
  • [9] Abadie C, Tcherkez G. Plant sulphur metabolism is stimulated by photorespiration. Commun Biol. 2019;2:379. [CrossRef]
  • [10] Kolluru GK, Shen X, Kevil CG. Reactive sulfur species: a new redox player in cardiovascular pathophysiology. Arterioscler Thromb Vasc Biol. 2020;40:874–884. [CrossRef]
  • [11] Fukuto JM, Ignarro LJ, Nagy P, Wink DA, Kevil CG, Feelisch M, Cortese-Krott MM, Bianco CL, Kumagai Y, Hobbs AJ. Biological hydropersulfides and related polysulfides—a new concept and perspective in redox biology. FEBS Lett. 2018;592:2140–2152. [CrossRef]
  • [12] Omondi RO, Stephen O, Ojwach SO, Jaganyi D. Review of comparative studies of cytotoxic activities of Pt(II), Pd(II), Ru(II)/(III) and Au(III) complexes, their kinetics of ligand substitution reactions and DNA/BSA interactions. Inorg Chim Acta. 2020;512:119883. [CrossRef]
  • [13] Naik RM, Srivastava A, Asthana A. The kinetics and mechanism of oxidation of hexacyanoferrate(II) by periodate ion in highly alkaline aqueous medium. J Iran Chem Soc. 2008;5:29–36. [CrossRef]
  • [14] Iioka T, Takahashi S, Yoshida Y, Matsumura Y, Hiraoka S, Sato H. A kinetics study of ligand substitution reaction on dinuclear platinum complexes: Stochastic versus deterministic approach. J Comput Chem. 2019;40:279–285. [CrossRef]
  • [15] Naik RM, Srivastava A, Verma AK, Yadav SBS, Singh R, Prasad S. The kinetics and mechanism of oxidation of triethylenetetraaminehexaacetate. Bioinorg Reac Mech. 2007;6:185–192. [CrossRef]
  • [16] Srivastava A, Sharma V, Prajapati A, Srivastava N, Naik RM. Spectrophotometric determination of ruthenium utilizing its catalytic activity on oxidation of hexacyanoferrate(II) by periodate ion in water samples. ChemChem Technol. 2019;13(3):275–279. [CrossRef]
  • [17] Naik RM, Srivastava A, Verma AK. The kinetics and mechanism of ruthenium(III)-catalyzed oxidation of tris(2-amino ethyl)amine by hexacyanoferrate(III) in aqueous alkaline medium. Turk J Chem. 2008;32(4):495–503.
  • [18] Rastogi R, Srivastava A, Naik RM. Kinetic and mechanistic analysis of ligand substitution of aquapentacyanoruthenate(II) in micelle medium by nitrogen donor heterocyclic ligand. J Disp Sci Technol. 2020;41(7):1045–1050. [CrossRef]
  • [19] Srivastava A, Naik RM, Rastogi R. Spectrophotometric kinetic study of mercury(II) catalyzed formation of [4-CNPyRu(CN)5]3⁻ via ligand exchange reaction of hexacyanoruthenate(II) with 4-cyanopyridine – a mechanistic approach. J Iran Chem Soc. 2020;17(9):2327–2333. [CrossRef]
  • [20] Tanwar J, Datta A, Chauhan K, Kumaran SS, Tiwari AK, Kadiyala KG, Pal S, Thirumal M, Mishra AK. Design and synthesis of calcium responsive magnetic resonance imaging agent: Its relaxation and luminescence studies. Eur J Med Chem. 2014;82:225–232. [CrossRef]
  • [21] Saini N, Varshney R, Tiwari AK, Kaul A, Allard M, Ishar MP, Mishra AK. Synthesis, conjugation and relaxation studies of gadolinium(III)-4-benzothiazol-2-yl-phenylamine as a potential brain specific MR contrast agent. Dalton Trans. 2013;42(14):4994–5003. [CrossRef]
  • [22] Kostara A, Tsogas GZ, Vlessidis AG, Giokas DL. Generic assay of sulfur-containing compounds based on kinetics inhibition of gold nanoparticle photochemical growth. ACS Omega. 2018;3(12):16831–16838. [CrossRef]
  • [23] Raab A, Feldmann J. Biological sulphur-containing compounds – Analytical challenges. Anal Chim Acta. 2019;1079:20–29. [CrossRef]
  • [24] Shoba S, Bankole OM, Ogunlaja AS. Electrochemical determination of trace sulfur containing compounds in model fuel based on a silver/polyaniline-modified electrode. Anal Methods. 2020;12:1094–1106. [CrossRef]
  • [25] Perez-Ruiz T, Martinez-Lozano C, Tomas V, Sidrach-de-Cardona C. Flow-injection fluorimetric determination of penicillamine and tiopronin in pharmaceutical preparations. J Pharm Biomed Anal. 1996;15:33–38. [CrossRef]
  • [26] Nelson J. Nuclear magnetic resonance spectroscopic method for determination of penicillamine in capsules. J Assoc Off Anal Chem. 1981;64:1174–1178. [CrossRef]
  • [27] Nugrahani I, Abotbina IM, Apsari CN, Kartavinata TG, Sukranso Oktaviary R. Spectrofluorometric determination of L-tryptophan in canary (Canarium indicum L.) seed protein hydrolysate. Biointerface Res Appl Chem. 2019;10(1):4780–4785. [CrossRef]
  • [28] Feng G, Sun S, Wang M, Zhao Q, Liu L, Hashi Y, Jia R. Determination of four volatile organic sulfur compounds by automated headspace technique coupled with gas chromatography–mass spectrometry. J Water Supply Res T. 2018;67(5):498–505. [CrossRef]
  • [29] Dzieko U, Kubczak N, Przybylska KP, Patalski P, Balcerek M. Development of the method for determination of volatile sulfur compounds (VSCs) in fruit brandy with the use of HS–SPME/GC–MS. Molecules. 2020;25:1232. [CrossRef]
  • [30] Cao L, Wei T, Shi Y, Tan X, Meng J. Determination of D-penicillamine and tiopronin in human urine and serum by HPLC-FLD and CE-LIF with 1,3,5,7-tetramethyl-8-bromomethyl-difluoroboradiaza-s-indacene. J Liq Chrom Relat Tech. 2018;41(2):58–65. [CrossRef]
  • [31] Pooja, Singh D, Aggarwal S, Singh VK, Pratap R, Mishra AK, Tiwari AK. Lanthanide (Ln³⁺) complexes of bifunctional chelate: Synthesis, physicochemical study and interaction with human serum albumin (HSA). Spectrochim Acta A Mol Biomol Spectrosc. 2021;244:118808. [CrossRef]
  • [32] Ni L, Geng X, Li S, Ning H, Guan Y. A flame photometric detector with a silicon photodiode assembly for sulfur detection. Talanta. 2020;207:120283. [CrossRef]
  • [33] Chao Q, Sheng H, Cheng X, Ren T. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration. Anal Sci. 2005;21:721–724. [CrossRef]
  • [34] Srivastava A. Micro-level estimation of Mercaptoacetic acid using its inhibitory effect to mercury catalyzed ligand exchange reaction of hexacyanoruthenate(II). Biointerface Res Appl Chem. 2020;10(6):7152–7161. [CrossRef]
  • [35] Agarwal A, Prasad S, Naik RM. Inhibitory kinetic spectrophotometric method for the quantitative estimation of D-penicillamine at micro levels. Microchem J. 2016;128:181–186. [CrossRef]
  • [36] Srivastava A. Micro-level Estimation of Methionine Using Inhibitory Kinetic Spectrophotometric Method. Biointerface Res Appl Chem. 2021;11(3):10654–10663. [CrossRef]
  • [37] Athar F, Husain K, Abid M, Azam A. Synthesis and anti-amoebic activity of gold(I), ruthenium(II), and copper(II) complexes of metronidazole. Chem Biodiversity. 2005;2:1320–1330. [CrossRef]
  • [38] Bastos CM, Gordon KA, Ocain TD. Synthesis and immunosuppressive activity of ruthenium complexes. Bioorg Med Chem Lett. 1998;8:147–150. [CrossRef]
  • [39] Yu B, Rees TW, Liang J, Jin C, Chen Y, Ji L, Chao H. DNA interaction of ruthenium(II) complexes with imidazo[4,5-f][1,10]phenanthroline derivatives. Dalton Trans. 2019;48:3914–3921. [CrossRef]
  • [40] Gomes-Junior FA, Silva RS, Lima RG, Vannier-Santos MA. Antifungal mechanism of [RuIII(NH₃)₄(catechol)]⁺ complex on fluconazole-resistant Candida tropicalis. FEMS Microbiol Lett. 2017;364(9). [CrossRef]
  • [41] Kenny RG, Marmion CJ. Toward multi-targeted platinum and ruthenium drugs—A new paradigm in cancer drug treatment regimens? Chem Rev. 2019;119:1058–1137. [CrossRef]
  • [42] Gua L, Lia X, Ran Q, Kang C, Lee C, Shen J. Antimetastatic activity of novel ruthenium (III) pyridine complexes. Cancer Med. 2016;5:2850–2860. [CrossRef]
  • [43] Lin K, Zhao ZZ, Bo HB, Hao XJ, Wang JQ. Applications of ruthenium complex in tumor diagnosis and therapy. Pharmacol. 2018;9:1323. [CrossRef]
  • [44] Coverdale JPC, Carron TLM, Canelon IR. Designing ruthenium anticancer drugs: what have we learnt from the key drug candidates? Inorganics. 2019;7:31. [CrossRef]
  • [45] Naik RM, Verma AK, Agarwal A. Kinetic and mechanistic study of the mercury(II)-catalyzed substitution of cyanide in hexacyanoruthenate(II) by pyrazine. Transit Met Chem. 2009;34:209–215. [CrossRef]
  • [46] Srivastava A, Sharma V, Singh VK, Srivastava K. A Simple and Sensitive Inhibitory Kinetic Method for the Carbocisteine Determination. J Mex Chem Soc. 2022;66:57–69. [CrossRef]
  • [47] Srivastava A. Quantitative estimation of D-Penicillamine in pure and pharmaceutical samples using inhibitory kinetic spectrophotometric method. Biointerface Res Appl Chem. 2021;11(4):11404–11417. [CrossRef]
  • [48] Srivastava A, Naik RM, Rai J. Ag(I)-promoted substitution of cyanide from hexacyanoferrate(II) with pyrazine: a kinetic and mechanistic study. Russ J Phys Chem. 2021;95:2545–2552. [CrossRef]
  • [49] Srivastava A, Srivastava K. An Inhibitory Kinetic Method for the Methionine Determination. Phys Chem Res. 2022;10(2):283–292.
  • [50] Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;156:658–666. [CrossRef]
  • [51] Tinoco I, Sauer K, Wang JC. Physical Chemistry, Principles and Applications in Biological Sciences, fourth ed., Pearson, India, 2009.
  • [52] British Pharmacopoeia, Her Majesty’s Stationery Office, London, 1995.

Quantification of N-acetylcysteine in drug formulations using inhibitory kinetic spectrophotometric method

Year 2022, Volume: 26 Issue: 6, 1713 - 1722, 28.06.2025
https://doi.org/10.29228/jrp.262

Abstract

A simple, reproducible, and rapid kinetic method for the N-acetylcysteine (NAC) determination has been proposed and linked to NAC quantification in pharmaceutical preparations. The method is based on the inhibitory feature of N-acetylcysteine. NAC forms a stable complex with Hg2+ and reduces the actual Hg2+ concentration and ultimately the rate of reaction between pyrazine (Pz) and [Ru(CN)6] 4- catalyzed by Hg2+. Under the optimized reaction conditions with [Ru(CN)6 4-] = 7.25 × 10-5 mole dm-3, I = 0.1 mole dm-3 (KCl), Temp = 45.0 ± 0.1 o C, [Hg+2] = 1.5 × 10-4 mole dm-3, [Pyrazine] = 8.5 × 10-4 mole dm-3, and pH = 4.0 ± 0.02, fixed time of 12 and 17 min was selected to compute the absorbance at 370 nm corresponding to the ultimate reaction product [Ru(CN)5 Pz]3- . The inhibitory action of NAC towards cyanide imitation by pyrazine from [Ru(CN)6] 4- , catalyzed by Hg2+ has been demonstrated by a redesigned mechanistic scheme. With the proposed kinetic spectrophotometric method, the micro level quantification of NAC in distinct water samples can be done down to 1.5 × 10-6 mole dm-3. The developed procedure is highly reproducible and can be efficiently used to quantitatively estimate the NAC in the drug samples with high accuracy. The general additives present in drugs do not substantially interfere in the determination of NAC even up to 1000 times with [NAC].

References

  • [1] Waring WS. Novel acetylcysteine regimens for treatment of paracetamol overdose. Ther Adv Drug Saf. 2012;3(6):305–315.
  • [2] Hoffman RS. Acetylcysteine for paracetamol: Will one size ever fit all? EClinicalMedicine. 2020;20:100314. [CrossRef]
  • [3] Bateman DN, Dear JW. Acetylcysteine in paracetamol poisoning: a perspective of 45 years of use. Toxicol Res. 2019;8(4):489–498. [CrossRef]
  • [4] Sadowska AM, Verbraecken J, Darquennes K, De Backer WA. Role of N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(4):425–434. [CrossRef]
  • [5] Šalamon S, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel). 2019;8(5):111. [CrossRef]
  • [6] Tardiolo G, Bramanti P, Mazzon E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules. 2018;23:3305. [CrossRef]
  • [7] Craver BM, Ramanathan G, Hoang S, Chang X, Laura F, Luque M, Brooks S, Yeng Lai HY, Fleischman AG. N-acetylcysteine inhibits thrombosis in a murine model of myeloproliferative neoplasm. Blood Adv. 2020;4(2):312–321. [CrossRef]
  • [8] Tang K. Chemical diversity and biochemical transformation of biogenic organic sulfur in the ocean. Front Mar Sci. 2020;7:68. [CrossRef]
  • [9] Abadie C, Tcherkez G. Plant sulphur metabolism is stimulated by photorespiration. Commun Biol. 2019;2:379. [CrossRef]
  • [10] Kolluru GK, Shen X, Kevil CG. Reactive sulfur species: a new redox player in cardiovascular pathophysiology. Arterioscler Thromb Vasc Biol. 2020;40:874–884. [CrossRef]
  • [11] Fukuto JM, Ignarro LJ, Nagy P, Wink DA, Kevil CG, Feelisch M, Cortese-Krott MM, Bianco CL, Kumagai Y, Hobbs AJ. Biological hydropersulfides and related polysulfides—a new concept and perspective in redox biology. FEBS Lett. 2018;592:2140–2152. [CrossRef]
  • [12] Omondi RO, Stephen O, Ojwach SO, Jaganyi D. Review of comparative studies of cytotoxic activities of Pt(II), Pd(II), Ru(II)/(III) and Au(III) complexes, their kinetics of ligand substitution reactions and DNA/BSA interactions. Inorg Chim Acta. 2020;512:119883. [CrossRef]
  • [13] Naik RM, Srivastava A, Asthana A. The kinetics and mechanism of oxidation of hexacyanoferrate(II) by periodate ion in highly alkaline aqueous medium. J Iran Chem Soc. 2008;5:29–36. [CrossRef]
  • [14] Iioka T, Takahashi S, Yoshida Y, Matsumura Y, Hiraoka S, Sato H. A kinetics study of ligand substitution reaction on dinuclear platinum complexes: Stochastic versus deterministic approach. J Comput Chem. 2019;40:279–285. [CrossRef]
  • [15] Naik RM, Srivastava A, Verma AK, Yadav SBS, Singh R, Prasad S. The kinetics and mechanism of oxidation of triethylenetetraaminehexaacetate. Bioinorg Reac Mech. 2007;6:185–192. [CrossRef]
  • [16] Srivastava A, Sharma V, Prajapati A, Srivastava N, Naik RM. Spectrophotometric determination of ruthenium utilizing its catalytic activity on oxidation of hexacyanoferrate(II) by periodate ion in water samples. ChemChem Technol. 2019;13(3):275–279. [CrossRef]
  • [17] Naik RM, Srivastava A, Verma AK. The kinetics and mechanism of ruthenium(III)-catalyzed oxidation of tris(2-amino ethyl)amine by hexacyanoferrate(III) in aqueous alkaline medium. Turk J Chem. 2008;32(4):495–503.
  • [18] Rastogi R, Srivastava A, Naik RM. Kinetic and mechanistic analysis of ligand substitution of aquapentacyanoruthenate(II) in micelle medium by nitrogen donor heterocyclic ligand. J Disp Sci Technol. 2020;41(7):1045–1050. [CrossRef]
  • [19] Srivastava A, Naik RM, Rastogi R. Spectrophotometric kinetic study of mercury(II) catalyzed formation of [4-CNPyRu(CN)5]3⁻ via ligand exchange reaction of hexacyanoruthenate(II) with 4-cyanopyridine – a mechanistic approach. J Iran Chem Soc. 2020;17(9):2327–2333. [CrossRef]
  • [20] Tanwar J, Datta A, Chauhan K, Kumaran SS, Tiwari AK, Kadiyala KG, Pal S, Thirumal M, Mishra AK. Design and synthesis of calcium responsive magnetic resonance imaging agent: Its relaxation and luminescence studies. Eur J Med Chem. 2014;82:225–232. [CrossRef]
  • [21] Saini N, Varshney R, Tiwari AK, Kaul A, Allard M, Ishar MP, Mishra AK. Synthesis, conjugation and relaxation studies of gadolinium(III)-4-benzothiazol-2-yl-phenylamine as a potential brain specific MR contrast agent. Dalton Trans. 2013;42(14):4994–5003. [CrossRef]
  • [22] Kostara A, Tsogas GZ, Vlessidis AG, Giokas DL. Generic assay of sulfur-containing compounds based on kinetics inhibition of gold nanoparticle photochemical growth. ACS Omega. 2018;3(12):16831–16838. [CrossRef]
  • [23] Raab A, Feldmann J. Biological sulphur-containing compounds – Analytical challenges. Anal Chim Acta. 2019;1079:20–29. [CrossRef]
  • [24] Shoba S, Bankole OM, Ogunlaja AS. Electrochemical determination of trace sulfur containing compounds in model fuel based on a silver/polyaniline-modified electrode. Anal Methods. 2020;12:1094–1106. [CrossRef]
  • [25] Perez-Ruiz T, Martinez-Lozano C, Tomas V, Sidrach-de-Cardona C. Flow-injection fluorimetric determination of penicillamine and tiopronin in pharmaceutical preparations. J Pharm Biomed Anal. 1996;15:33–38. [CrossRef]
  • [26] Nelson J. Nuclear magnetic resonance spectroscopic method for determination of penicillamine in capsules. J Assoc Off Anal Chem. 1981;64:1174–1178. [CrossRef]
  • [27] Nugrahani I, Abotbina IM, Apsari CN, Kartavinata TG, Sukranso Oktaviary R. Spectrofluorometric determination of L-tryptophan in canary (Canarium indicum L.) seed protein hydrolysate. Biointerface Res Appl Chem. 2019;10(1):4780–4785. [CrossRef]
  • [28] Feng G, Sun S, Wang M, Zhao Q, Liu L, Hashi Y, Jia R. Determination of four volatile organic sulfur compounds by automated headspace technique coupled with gas chromatography–mass spectrometry. J Water Supply Res T. 2018;67(5):498–505. [CrossRef]
  • [29] Dzieko U, Kubczak N, Przybylska KP, Patalski P, Balcerek M. Development of the method for determination of volatile sulfur compounds (VSCs) in fruit brandy with the use of HS–SPME/GC–MS. Molecules. 2020;25:1232. [CrossRef]
  • [30] Cao L, Wei T, Shi Y, Tan X, Meng J. Determination of D-penicillamine and tiopronin in human urine and serum by HPLC-FLD and CE-LIF with 1,3,5,7-tetramethyl-8-bromomethyl-difluoroboradiaza-s-indacene. J Liq Chrom Relat Tech. 2018;41(2):58–65. [CrossRef]
  • [31] Pooja, Singh D, Aggarwal S, Singh VK, Pratap R, Mishra AK, Tiwari AK. Lanthanide (Ln³⁺) complexes of bifunctional chelate: Synthesis, physicochemical study and interaction with human serum albumin (HSA). Spectrochim Acta A Mol Biomol Spectrosc. 2021;244:118808. [CrossRef]
  • [32] Ni L, Geng X, Li S, Ning H, Guan Y. A flame photometric detector with a silicon photodiode assembly for sulfur detection. Talanta. 2020;207:120283. [CrossRef]
  • [33] Chao Q, Sheng H, Cheng X, Ren T. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration. Anal Sci. 2005;21:721–724. [CrossRef]
  • [34] Srivastava A. Micro-level estimation of Mercaptoacetic acid using its inhibitory effect to mercury catalyzed ligand exchange reaction of hexacyanoruthenate(II). Biointerface Res Appl Chem. 2020;10(6):7152–7161. [CrossRef]
  • [35] Agarwal A, Prasad S, Naik RM. Inhibitory kinetic spectrophotometric method for the quantitative estimation of D-penicillamine at micro levels. Microchem J. 2016;128:181–186. [CrossRef]
  • [36] Srivastava A. Micro-level Estimation of Methionine Using Inhibitory Kinetic Spectrophotometric Method. Biointerface Res Appl Chem. 2021;11(3):10654–10663. [CrossRef]
  • [37] Athar F, Husain K, Abid M, Azam A. Synthesis and anti-amoebic activity of gold(I), ruthenium(II), and copper(II) complexes of metronidazole. Chem Biodiversity. 2005;2:1320–1330. [CrossRef]
  • [38] Bastos CM, Gordon KA, Ocain TD. Synthesis and immunosuppressive activity of ruthenium complexes. Bioorg Med Chem Lett. 1998;8:147–150. [CrossRef]
  • [39] Yu B, Rees TW, Liang J, Jin C, Chen Y, Ji L, Chao H. DNA interaction of ruthenium(II) complexes with imidazo[4,5-f][1,10]phenanthroline derivatives. Dalton Trans. 2019;48:3914–3921. [CrossRef]
  • [40] Gomes-Junior FA, Silva RS, Lima RG, Vannier-Santos MA. Antifungal mechanism of [RuIII(NH₃)₄(catechol)]⁺ complex on fluconazole-resistant Candida tropicalis. FEMS Microbiol Lett. 2017;364(9). [CrossRef]
  • [41] Kenny RG, Marmion CJ. Toward multi-targeted platinum and ruthenium drugs—A new paradigm in cancer drug treatment regimens? Chem Rev. 2019;119:1058–1137. [CrossRef]
  • [42] Gua L, Lia X, Ran Q, Kang C, Lee C, Shen J. Antimetastatic activity of novel ruthenium (III) pyridine complexes. Cancer Med. 2016;5:2850–2860. [CrossRef]
  • [43] Lin K, Zhao ZZ, Bo HB, Hao XJ, Wang JQ. Applications of ruthenium complex in tumor diagnosis and therapy. Pharmacol. 2018;9:1323. [CrossRef]
  • [44] Coverdale JPC, Carron TLM, Canelon IR. Designing ruthenium anticancer drugs: what have we learnt from the key drug candidates? Inorganics. 2019;7:31. [CrossRef]
  • [45] Naik RM, Verma AK, Agarwal A. Kinetic and mechanistic study of the mercury(II)-catalyzed substitution of cyanide in hexacyanoruthenate(II) by pyrazine. Transit Met Chem. 2009;34:209–215. [CrossRef]
  • [46] Srivastava A, Sharma V, Singh VK, Srivastava K. A Simple and Sensitive Inhibitory Kinetic Method for the Carbocisteine Determination. J Mex Chem Soc. 2022;66:57–69. [CrossRef]
  • [47] Srivastava A. Quantitative estimation of D-Penicillamine in pure and pharmaceutical samples using inhibitory kinetic spectrophotometric method. Biointerface Res Appl Chem. 2021;11(4):11404–11417. [CrossRef]
  • [48] Srivastava A, Naik RM, Rai J. Ag(I)-promoted substitution of cyanide from hexacyanoferrate(II) with pyrazine: a kinetic and mechanistic study. Russ J Phys Chem. 2021;95:2545–2552. [CrossRef]
  • [49] Srivastava A, Srivastava K. An Inhibitory Kinetic Method for the Methionine Determination. Phys Chem Res. 2022;10(2):283–292.
  • [50] Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;156:658–666. [CrossRef]
  • [51] Tinoco I, Sauer K, Wang JC. Physical Chemistry, Principles and Applications in Biological Sciences, fourth ed., Pearson, India, 2009.
  • [52] British Pharmacopoeia, Her Majesty’s Stationery Office, London, 1995.
There are 52 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Analytical Chemistry
Journal Section Articles
Authors

Basant Lal

Abhas Asthana

Vinay Kumar Singh

Krishna Srivastava

Publication Date June 28, 2025
Published in Issue Year 2022 Volume: 26 Issue: 6

Cite

APA Lal, B., Asthana, A., Singh, V. K., Srivastava, K. (2025). Quantification of N-acetylcysteine in drug formulations using inhibitory kinetic spectrophotometric method. Journal of Research in Pharmacy, 26(6), 1713-1722. https://doi.org/10.29228/jrp.262
AMA Lal B, Asthana A, Singh VK, Srivastava K. Quantification of N-acetylcysteine in drug formulations using inhibitory kinetic spectrophotometric method. J. Res. Pharm. June 2025;26(6):1713-1722. doi:10.29228/jrp.262
Chicago Lal, Basant, Abhas Asthana, Vinay Kumar Singh, and Krishna Srivastava. “Quantification of N-Acetylcysteine in Drug Formulations Using Inhibitory Kinetic Spectrophotometric Method”. Journal of Research in Pharmacy 26, no. 6 (June 2025): 1713-22. https://doi.org/10.29228/jrp.262.
EndNote Lal B, Asthana A, Singh VK, Srivastava K (June 1, 2025) Quantification of N-acetylcysteine in drug formulations using inhibitory kinetic spectrophotometric method. Journal of Research in Pharmacy 26 6 1713–1722.
IEEE B. Lal, A. Asthana, V. K. Singh, and K. Srivastava, “Quantification of N-acetylcysteine in drug formulations using inhibitory kinetic spectrophotometric method”, J. Res. Pharm., vol. 26, no. 6, pp. 1713–1722, 2025, doi: 10.29228/jrp.262.
ISNAD Lal, Basant et al. “Quantification of N-Acetylcysteine in Drug Formulations Using Inhibitory Kinetic Spectrophotometric Method”. Journal of Research in Pharmacy 26/6 (June 2025), 1713-1722. https://doi.org/10.29228/jrp.262.
JAMA Lal B, Asthana A, Singh VK, Srivastava K. Quantification of N-acetylcysteine in drug formulations using inhibitory kinetic spectrophotometric method. J. Res. Pharm. 2025;26:1713–1722.
MLA Lal, Basant et al. “Quantification of N-Acetylcysteine in Drug Formulations Using Inhibitory Kinetic Spectrophotometric Method”. Journal of Research in Pharmacy, vol. 26, no. 6, 2025, pp. 1713-22, doi:10.29228/jrp.262.
Vancouver Lal B, Asthana A, Singh VK, Srivastava K. Quantification of N-acetylcysteine in drug formulations using inhibitory kinetic spectrophotometric method. J. Res. Pharm. 2025;26(6):1713-22.