Research Article
BibTex RIS Cite
Year 2022, Volume: 26 Issue: 6, 1758 - 1770, 28.06.2025
https://doi.org/10.29228/jrp.266

Abstract

References

  • [1] Laporan Hasil Riset Kesehatan Dasar (RISKESDAS), Badan LITBANGKES Kementerian Kesehatan RI. https://www.litbang.kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas/ (accessed on 21 October 2021).
  • [2] Pham-Huy LA, He H, Pham-Huy C. Free Radicals, antioxidants in disease health. Int J Biomed Sci. 2008;4(2):89–96.
  • [3] Shahat AA, Pieters L, Apers S, Nazeif NM, Abdel-Azim NS, Berghe DV, Vlietinck AJ. Chemical and biological investigations on Zizyphus spina-christi L. Phytother Res. 2001;15(7):593–597. [CrossRef]
  • [4] Bakr RO, Amer RI, Fayed MAA, Ragab TIM. A completely polyherbal conditioning and antioxidant shampoo: A phytochemical study and pharmaceutical evaluation. J Pharm Bioall Sci. 2019;11(2):105–115. [CrossRef]
  • [5] Muddathir AM, Yamauchi K, Batubara I, Mohieldin EAM, Mitsunaga T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S Afr J Bot. 2017;109:9–15. [CrossRef]
  • [6] Elaloui M, Hamdi SH, Ghazghazi H, Nasr R Ben, Bouslih E, Ammari Y, Mediouni J. Characterization of epicatechin contents in the Ziziphus spina-christi L. root extracts using LC-MS analyses and their insecticidal potential. Plant Biosyst. 2021;155(4):685–690. [CrossRef]
  • [7] Khaleel SMJ. Anti-α-glucosidase, anti-α-amylase and anti-inflammatory effects of leaf extracts of Ziziphus spina-christi (Sedr) Grown in Jordan. Res J Biol Sci. 2018;13(1):1–7.
  • [8] Makhawi AM, Mustafa MI, Uagoub HA. Phytochemical screening and antimicrobial activity of Ziziphus spina-christi stem barks. bioRxiv. 2020. [CrossRef]
  • [9] Nair DN, Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. Sci World J. 2014;2014:1–11. [CrossRef]
  • [10] Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrob Agents Chemother. 2009;53(10):4514–4517. [CrossRef]
  • [11] Yenn TW, Ibrahim D, Chang LK, Rashid SA, Ring LC, Nee TW, Izham M. Antimicrobial efficacy of endophytic Penicillium purpurogenum ED76 against clinical pathogens and its possible mode of action. Korean J Microbiol. 2017;53(3):193–199. [CrossRef]
  • [12] Bladt TT, Frisvad JC, Knudsen PB, Larsen TO. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules. 2013;18:11338–11376. [CrossRef]
  • [13] Dewi RT, Tachibana S, Itoh K, Ilyas M. Isolation of antioxidant compounds from Aspergillus terreus LS01. J Microb Biochem Technol. 2012;4(1):10–14. [CrossRef]
  • [14] Kandasamy S, Kandasamy K. Antioxidant activity of the mangrove endophytic fungus (Trichoderma sp.). J Coast Life Med. 2014;2(7):566–570. [CrossRef]
  • [15] Blumenstein K, Macaya-Sanz D, Martín JA, Albrectsen BR, Witzell J. Phenotype microarrays as a complementary tool to next generation sequencing for characterization of tree endophytes. Front Microbiol. 2015;6:1–14. [CrossRef]
  • [16] Palupi KD, Praptiwi P, Wulansari D, Agusta A. Antibacterial and antioxidant activities of Ixora cumingiana plant extracts. Ber Biol. 2020;19(1):37–45. [CrossRef]
  • [17] Molyneux P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26(2):211–219.
  • [18] Ilyas M, Kanti A, Jamal Y, Hertina H, Agusta A. Biodiversity of endophytic fungi associated with Uncaria gambier Roxb. (Rubiaceae) from West Sumatra. Biodiversitas. 2008;10(1):23–28. [CrossRef]
  • [19] Zheng H, Qiao M, Lv Y, Du X, Zhang KQ, Yu Z. New species of Trichoderma isolated as endophytes and saprobes from Southwest China. J Fungi. 2021;7(467):1–50. [CrossRef]
  • [20] Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 2008;7(1):89–123. [CrossRef]
  • [21] Afzal H, Shazad S, Nisa SQU. Morphological identification of Aspergillus species from the soil of Larkana district (Sindh, Pakistan). Asian J Agri Biol. 2013;1(3):105–117.
  • [22] Ashtiani NM, Kachuei R, Yalfani R, Harchegani AB, Nosratabadi M. Identification of Aspergillus sections Flavi, Nigri, and Fumigati and their differentiation using specific primers. Infez Med. 2017;25(2):127–132.
  • [23] Klich MA. Health effects of Aspergillus in food and air. Toxicol Ind Health. 2009;25(9–10):657–667. [CrossRef]
  • [24] González-Salgado A, Patiño B, Vázquez C, González-Jaén MT. Discrimination of Aspergillus niger and other Aspergillus species belonging to section Nigri by PCR assays. FEMS Microbiol Lett. 2005;245(2):353–361. [CrossRef]
  • [25] Varga J, Frisvad JC, Kocsubé S, Brankovics B, Tóth B, Szigeti G, Samson RA. New and revisited species in Aspergillus section Nigri. Stud Mycol. 2011;69:1–17. [CrossRef]
  • [26] Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC, Varga J. Diagnostic tools to identify black aspergilli. Stud Mycol. 2007;59:129–145.
  • [27] Palumbo JD, O’Keeffe TL. Detection and discrimination of four Aspergillus section Nigri species by PCR. Lett Appl Microbiol. 2015;60(2):188–195.
  • [28] Frisvad JC, Hubka V, Ezekiel CN, et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol. 2019;93:1–63.
  • [29] Makhlouf J, Carvajal-Campos A, Querin A, et al. Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices marketed in Lebanon. Sci Rep. 2019;9(1):1–11.
  • [30] Varga J, Frisvad JC, Samson RA. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol. 2011;69:57–80.
  • [31] Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016;77(1):1–316.
  • [32] Wulansari D, Jamal Y, Praptiwi P, Agusta A. Pachybasin, a major metabolite from culture broth of endophytic Coelomyceteous AFKR-18 fungus isolated from Arcangelisia flava. Hayati. 2014;21(2):95–100. [CrossRef]
  • [33] Udayanga D, Liu X, McKenzie EHC, et al. The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers. 2011;50:189–225.
  • [34] Tan RX, Zou WX. Endophytes: A rich source of functional metabolites. Nat Prod Rep. 2001;18(4):448–459.
  • [35] Kumaran RS, Hur B. Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Biochem. 2009;54(1):21–30.
  • [36] Isaka M, Jaturapat A, Rukseree K, et al. Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod. 2001;64(8):1015–1018.
  • [37] Praptiwi, Raunsai M, Wulansari D, Fathoni A, Agusta A. Antibacterial and antioxidant activities of endophytic fungi extracts of medicinal plants from Central Sulawesi. J Appl Pharm Sci. 2018;8(08):69–74.
  • [38] Agusta A. Biologi & Kimia Jamur Endofit. ITB Press, Bandung, 2009.
  • [39] Septiana E, Rachman F, Lekatompessy SJR, et al. Isolation and identification of endophytic fungi from turmeric plant (Curcuma longa) root as antimalarial. Ber Biol. 2018;17(3):273–282.
  • [40] Ilyas M, Praptiwi, Wulansari D, Fathoni A, Agusta A. An assemblage of fungal endophytes isolated from medicinal plants collected from Toba and Samosir, North Sumatra. IOP Conf Ser Earth Environ Sci. 2019;308(1):0–10.
  • [41] Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. [CrossRef]
  • [42] Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425.
  • [43] White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal RNA genes for phylogenetics. In: PCR Protocols. San Diego: Academic Press; 1990:315–322.
  • [44] Agusta A. Bioproduction of (+)-epiepoxydon by the endophytic fungus Diaporthe sp. E isolated from a tea plant. Ber Biol. 2006;8(3):209–214.
  • [45] Wulansari D, Putra AP, Ilyas M, et al. Screening of plant endophytic fungi from Enggano Island, Bengkulu for antibacterial and antioxidant activities. Ber Biol. 2016;15(3):227–235.
  • [46] Fathoni A, Hudiyono S, Budianto E, et al. Metabolite detection and antibacterial activity of fungal endophytic extracts isolated from brotowali (Tinospora crispa) plants using TLC-bioautography assay. In: IOP Conf Ser Mater Sci Eng. 2021;1011:012041. [CrossRef]
  • [47] Tiwari P, Kumar B, Kaur M, et al. Phytochemical screening and extraction: a review. Int Pharm Sci. 2011;1(1):98–106.
  • [48] Isromarina R, Rusli D, Sari DU. Antioxidant activity, total flavonoid, and total tannin content of ethanol extract of avocado peel (Persea americana Mill.). J Ilm Farm. 2022;169–174.
  • [49] Scherer R, Godoy HT. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009;112:654–658. [CrossRef]

Antioxidant activity of endophytic fungi culture extracts of Christ’s thorn jujube (Ziziphus spina-christi)

Year 2022, Volume: 26 Issue: 6, 1758 - 1770, 28.06.2025
https://doi.org/10.29228/jrp.266

Abstract

This study aims to explore 50 extracts from fungal endophytes from roots, stems, and leaves of Z. spinachristi based on the chemical content and their antioxidant activity. Isolation of fungal endophytes was carried out in CMMA and PDA media. Cultivation was in PDB and GYP media. Determination of antioxidant activity qualitatively by TLC-bioautography and quantitatively by DPPH method. Phytochemical screening of these extracts revealed the presence of alkaloids, phenolics, flavonoids, and tannins. The results showed that seven types of fungal endophytes had antioxidant activity, namely Trichoderma sp., Aspergillus sect. Flavi, Aspergillus sect. Nigri, Aspergillus sect. Terrei, Phomopsis sp., Sordariomycetes, and Hyphomycetes. One root isolate from PDB (Aspergillus sect. Terrei Bi. Ak. 3.3) possesses very strong antioxidant activity (IC50 of 9.17 µg/mL and AAI = 3.35) and one stem isolate (Aspergillus nigri Bi. Bt. 1.2.2) has strong antioxidant activity (IC50 22.13 µg/mL and AAI = 1.38). The fungal endophyte culture extract from GYP media produced one root isolate (Aspergillus terrei Bi. Ak. 3.3) with strong antioxidant activity (IC50 19.54 µg/mL and AAI = 1.57). It can be concluded that the fungal endophytes of Z. spina-christi have the potential to be developed as an antioxidant.

References

  • [1] Laporan Hasil Riset Kesehatan Dasar (RISKESDAS), Badan LITBANGKES Kementerian Kesehatan RI. https://www.litbang.kemkes.go.id/laporan-riset-kesehatan-dasar-riskesdas/ (accessed on 21 October 2021).
  • [2] Pham-Huy LA, He H, Pham-Huy C. Free Radicals, antioxidants in disease health. Int J Biomed Sci. 2008;4(2):89–96.
  • [3] Shahat AA, Pieters L, Apers S, Nazeif NM, Abdel-Azim NS, Berghe DV, Vlietinck AJ. Chemical and biological investigations on Zizyphus spina-christi L. Phytother Res. 2001;15(7):593–597. [CrossRef]
  • [4] Bakr RO, Amer RI, Fayed MAA, Ragab TIM. A completely polyherbal conditioning and antioxidant shampoo: A phytochemical study and pharmaceutical evaluation. J Pharm Bioall Sci. 2019;11(2):105–115. [CrossRef]
  • [5] Muddathir AM, Yamauchi K, Batubara I, Mohieldin EAM, Mitsunaga T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S Afr J Bot. 2017;109:9–15. [CrossRef]
  • [6] Elaloui M, Hamdi SH, Ghazghazi H, Nasr R Ben, Bouslih E, Ammari Y, Mediouni J. Characterization of epicatechin contents in the Ziziphus spina-christi L. root extracts using LC-MS analyses and their insecticidal potential. Plant Biosyst. 2021;155(4):685–690. [CrossRef]
  • [7] Khaleel SMJ. Anti-α-glucosidase, anti-α-amylase and anti-inflammatory effects of leaf extracts of Ziziphus spina-christi (Sedr) Grown in Jordan. Res J Biol Sci. 2018;13(1):1–7.
  • [8] Makhawi AM, Mustafa MI, Uagoub HA. Phytochemical screening and antimicrobial activity of Ziziphus spina-christi stem barks. bioRxiv. 2020. [CrossRef]
  • [9] Nair DN, Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. Sci World J. 2014;2014:1–11. [CrossRef]
  • [10] Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Species identification and antifungal susceptibility patterns of species belonging to Aspergillus section Nigri. Antimicrob Agents Chemother. 2009;53(10):4514–4517. [CrossRef]
  • [11] Yenn TW, Ibrahim D, Chang LK, Rashid SA, Ring LC, Nee TW, Izham M. Antimicrobial efficacy of endophytic Penicillium purpurogenum ED76 against clinical pathogens and its possible mode of action. Korean J Microbiol. 2017;53(3):193–199. [CrossRef]
  • [12] Bladt TT, Frisvad JC, Knudsen PB, Larsen TO. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules. 2013;18:11338–11376. [CrossRef]
  • [13] Dewi RT, Tachibana S, Itoh K, Ilyas M. Isolation of antioxidant compounds from Aspergillus terreus LS01. J Microb Biochem Technol. 2012;4(1):10–14. [CrossRef]
  • [14] Kandasamy S, Kandasamy K. Antioxidant activity of the mangrove endophytic fungus (Trichoderma sp.). J Coast Life Med. 2014;2(7):566–570. [CrossRef]
  • [15] Blumenstein K, Macaya-Sanz D, Martín JA, Albrectsen BR, Witzell J. Phenotype microarrays as a complementary tool to next generation sequencing for characterization of tree endophytes. Front Microbiol. 2015;6:1–14. [CrossRef]
  • [16] Palupi KD, Praptiwi P, Wulansari D, Agusta A. Antibacterial and antioxidant activities of Ixora cumingiana plant extracts. Ber Biol. 2020;19(1):37–45. [CrossRef]
  • [17] Molyneux P. The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26(2):211–219.
  • [18] Ilyas M, Kanti A, Jamal Y, Hertina H, Agusta A. Biodiversity of endophytic fungi associated with Uncaria gambier Roxb. (Rubiaceae) from West Sumatra. Biodiversitas. 2008;10(1):23–28. [CrossRef]
  • [19] Zheng H, Qiao M, Lv Y, Du X, Zhang KQ, Yu Z. New species of Trichoderma isolated as endophytes and saprobes from Southwest China. J Fungi. 2021;7(467):1–50. [CrossRef]
  • [20] Reino JL, Guerrero RF, Hernández-Galán R, Collado IG. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev. 2008;7(1):89–123. [CrossRef]
  • [21] Afzal H, Shazad S, Nisa SQU. Morphological identification of Aspergillus species from the soil of Larkana district (Sindh, Pakistan). Asian J Agri Biol. 2013;1(3):105–117.
  • [22] Ashtiani NM, Kachuei R, Yalfani R, Harchegani AB, Nosratabadi M. Identification of Aspergillus sections Flavi, Nigri, and Fumigati and their differentiation using specific primers. Infez Med. 2017;25(2):127–132.
  • [23] Klich MA. Health effects of Aspergillus in food and air. Toxicol Ind Health. 2009;25(9–10):657–667. [CrossRef]
  • [24] González-Salgado A, Patiño B, Vázquez C, González-Jaén MT. Discrimination of Aspergillus niger and other Aspergillus species belonging to section Nigri by PCR assays. FEMS Microbiol Lett. 2005;245(2):353–361. [CrossRef]
  • [25] Varga J, Frisvad JC, Kocsubé S, Brankovics B, Tóth B, Szigeti G, Samson RA. New and revisited species in Aspergillus section Nigri. Stud Mycol. 2011;69:1–17. [CrossRef]
  • [26] Samson RA, Noonim P, Meijer M, Houbraken J, Frisvad JC, Varga J. Diagnostic tools to identify black aspergilli. Stud Mycol. 2007;59:129–145.
  • [27] Palumbo JD, O’Keeffe TL. Detection and discrimination of four Aspergillus section Nigri species by PCR. Lett Appl Microbiol. 2015;60(2):188–195.
  • [28] Frisvad JC, Hubka V, Ezekiel CN, et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol. 2019;93:1–63.
  • [29] Makhlouf J, Carvajal-Campos A, Querin A, et al. Morphologic, molecular and metabolic characterization of Aspergillus section Flavi in spices marketed in Lebanon. Sci Rep. 2019;9(1):1–11.
  • [30] Varga J, Frisvad JC, Samson RA. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol. 2011;69:57–80.
  • [31] Wijayawardene NN, Hyde KD, Wanasinghe DN, et al. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Divers. 2016;77(1):1–316.
  • [32] Wulansari D, Jamal Y, Praptiwi P, Agusta A. Pachybasin, a major metabolite from culture broth of endophytic Coelomyceteous AFKR-18 fungus isolated from Arcangelisia flava. Hayati. 2014;21(2):95–100. [CrossRef]
  • [33] Udayanga D, Liu X, McKenzie EHC, et al. The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers. 2011;50:189–225.
  • [34] Tan RX, Zou WX. Endophytes: A rich source of functional metabolites. Nat Prod Rep. 2001;18(4):448–459.
  • [35] Kumaran RS, Hur B. Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Biochem. 2009;54(1):21–30.
  • [36] Isaka M, Jaturapat A, Rukseree K, et al. Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod. 2001;64(8):1015–1018.
  • [37] Praptiwi, Raunsai M, Wulansari D, Fathoni A, Agusta A. Antibacterial and antioxidant activities of endophytic fungi extracts of medicinal plants from Central Sulawesi. J Appl Pharm Sci. 2018;8(08):69–74.
  • [38] Agusta A. Biologi & Kimia Jamur Endofit. ITB Press, Bandung, 2009.
  • [39] Septiana E, Rachman F, Lekatompessy SJR, et al. Isolation and identification of endophytic fungi from turmeric plant (Curcuma longa) root as antimalarial. Ber Biol. 2018;17(3):273–282.
  • [40] Ilyas M, Praptiwi, Wulansari D, Fathoni A, Agusta A. An assemblage of fungal endophytes isolated from medicinal plants collected from Toba and Samosir, North Sumatra. IOP Conf Ser Earth Environ Sci. 2019;308(1):0–10.
  • [41] Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. [CrossRef]
  • [42] Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425.
  • [43] White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal RNA genes for phylogenetics. In: PCR Protocols. San Diego: Academic Press; 1990:315–322.
  • [44] Agusta A. Bioproduction of (+)-epiepoxydon by the endophytic fungus Diaporthe sp. E isolated from a tea plant. Ber Biol. 2006;8(3):209–214.
  • [45] Wulansari D, Putra AP, Ilyas M, et al. Screening of plant endophytic fungi from Enggano Island, Bengkulu for antibacterial and antioxidant activities. Ber Biol. 2016;15(3):227–235.
  • [46] Fathoni A, Hudiyono S, Budianto E, et al. Metabolite detection and antibacterial activity of fungal endophytic extracts isolated from brotowali (Tinospora crispa) plants using TLC-bioautography assay. In: IOP Conf Ser Mater Sci Eng. 2021;1011:012041. [CrossRef]
  • [47] Tiwari P, Kumar B, Kaur M, et al. Phytochemical screening and extraction: a review. Int Pharm Sci. 2011;1(1):98–106.
  • [48] Isromarina R, Rusli D, Sari DU. Antioxidant activity, total flavonoid, and total tannin content of ethanol extract of avocado peel (Persea americana Mill.). J Ilm Farm. 2022;169–174.
  • [49] Scherer R, Godoy HT. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009;112:654–658. [CrossRef]
There are 49 citations in total.

Details

Primary Language English
Subjects Pharmacognosy
Journal Section Articles
Authors

Prof. Dr. Andria Agusta Prof. Dr. Andria Agusta

Hanna Puji Lestari

Rahmawati Ridwan

Muhammad İlyas

Evana Evana

Praptiwi Praptiwi

Publication Date June 28, 2025
Published in Issue Year 2022 Volume: 26 Issue: 6

Cite

APA Prof. Dr. Andria Agusta, P. D. A. A., Lestari, H. P., Ridwan, R., İlyas, M., et al. (2025). Antioxidant activity of endophytic fungi culture extracts of Christ’s thorn jujube (Ziziphus spina-christi). Journal of Research in Pharmacy, 26(6), 1758-1770. https://doi.org/10.29228/jrp.266
AMA Prof. Dr. Andria Agusta PDAA, Lestari HP, Ridwan R, İlyas M, Evana E, Praptiwi P. Antioxidant activity of endophytic fungi culture extracts of Christ’s thorn jujube (Ziziphus spina-christi). J. Res. Pharm. June 2025;26(6):1758-1770. doi:10.29228/jrp.266
Chicago Prof. Dr. Andria Agusta, Prof. Dr. Andria Agusta, Hanna Puji Lestari, Rahmawati Ridwan, Muhammad İlyas, Evana Evana, and Praptiwi Praptiwi. “Antioxidant Activity of Endophytic Fungi Culture Extracts of Christ’s Thorn Jujube (Ziziphus Spina-Christi)”. Journal of Research in Pharmacy 26, no. 6 (June 2025): 1758-70. https://doi.org/10.29228/jrp.266.
EndNote Prof. Dr. Andria Agusta PDAA, Lestari HP, Ridwan R, İlyas M, Evana E, Praptiwi P (June 1, 2025) Antioxidant activity of endophytic fungi culture extracts of Christ’s thorn jujube (Ziziphus spina-christi). Journal of Research in Pharmacy 26 6 1758–1770.
IEEE P. D. A. A. Prof. Dr. Andria Agusta, H. P. Lestari, R. Ridwan, M. İlyas, E. Evana, and P. Praptiwi, “Antioxidant activity of endophytic fungi culture extracts of Christ’s thorn jujube (Ziziphus spina-christi)”, J. Res. Pharm., vol. 26, no. 6, pp. 1758–1770, 2025, doi: 10.29228/jrp.266.
ISNAD Prof. Dr. Andria Agusta, Prof. Dr. Andria Agusta et al. “Antioxidant Activity of Endophytic Fungi Culture Extracts of Christ’s Thorn Jujube (Ziziphus Spina-Christi)”. Journal of Research in Pharmacy 26/6 (June 2025), 1758-1770. https://doi.org/10.29228/jrp.266.
JAMA Prof. Dr. Andria Agusta PDAA, Lestari HP, Ridwan R, İlyas M, Evana E, Praptiwi P. Antioxidant activity of endophytic fungi culture extracts of Christ’s thorn jujube (Ziziphus spina-christi). J. Res. Pharm. 2025;26:1758–1770.
MLA Prof. Dr. Andria Agusta, Prof. Dr. Andria Agusta et al. “Antioxidant Activity of Endophytic Fungi Culture Extracts of Christ’s Thorn Jujube (Ziziphus Spina-Christi)”. Journal of Research in Pharmacy, vol. 26, no. 6, 2025, pp. 1758-70, doi:10.29228/jrp.266.
Vancouver Prof. Dr. Andria Agusta PDAA, Lestari HP, Ridwan R, İlyas M, Evana E, Praptiwi P. Antioxidant activity of endophytic fungi culture extracts of Christ’s thorn jujube (Ziziphus spina-christi). J. Res. Pharm. 2025;26(6):1758-70.