Research Article
BibTex RIS Cite

Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil against colistin resistant Salmonella enterica serotypes isolated from poultry environmental specimens

Year 2023, Volume: 27 Issue: 2, 1 - 11, 27.06.2025

Abstract

The development of increasing resistance to antibiotics such as colistin, problems arise in the treatment of
bacterial infections and make it necessary to search new alternative methods. For this purpose, plant-based approaches
are among the important research topics depending on their traditional uses. The aim of the present study was to
investigate the antibacterial and antibiofilm activity of tea tree oil purchased from a local market against a variety of 66
colistin resistant Salmonella enterica serotypes isolated from poultry farm environmental samples. Content analysis of
TTO was determined by gas chromatography/mass spectroscopy. The antibacterial activity was determined by broth
microdilution method, and antibiofilm activity was examined by crystal violet method. As a result, terpinen-4-ol was
found as major component of TTO with 35.9% ratio. The MIC values of TTO were differed between 6250-12500 µg/mL.
27 of 66 isolates formed biofilm and 25 of 27 isolates belonged to S. Infantis. The biofilm reduction of TTO at sub-
inhibitory concentration were found between 52-84.4%. Current study should be supported by future studies to
determine the effectiveness of TTO to be among the agents that can be used together with antimicrobials in the
attenuation of microorganisms.

References

  • Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [published correction appears in Lancet. 2022 Oct 1;400(10358):1102]. Lancet. 2022;399(10325):629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • WHO. Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic- resistance (accessed on 15 March 2022).
  • Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4): 718-733. https://doi.org/10.1128/CMR.00002-11
  • Wegener HC. A15. Antibiotic Resistance—Linking Human and Animal Health, in Improving Food Safety Through a One Health Approach: Workshop Summary. National Academies Press (US): Washington DC, 2012, pp. 331-349. https://doi.org/10.12991/jrp.2019.00 J Res Pharm 2023; 27(2): 1-11 8 Kıymacı et al. Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil Journal of Research in Pharmacy Research Article
  • Kiymaci ME, Kaskatepe B. Assessment of Cinnamon as an Antimicrobial Agent. In 'Promising Antimicrobials from Natural Products. In: Rai M, Kosalec I. (Eds.), Springer, Cham. 2022, pp.53–73. https://doi.org/10.1007/978- 3-030-83504-0_4#DOI
  • CDC. One Health. Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases. 2018. (accessed on 15 March 2022).
  • WHO. One Health. 2017; https://www.who.int/news-room/questions-and-answers/item/one-health. (accessed on 15 March 2022).
  • Akthar MS, Degaga B, Azam T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: a review. Issues in Biological Sciences and Pharmaceutical Research. 2014; 2(1): 1-7.
  • Yasin M, Younis A, Javed T, Akram A, Ahsan M, Shabbir R, Al MM, Tahir A, El-Ballat EM, Sheteiwy MS, Sammour RH, Hano C, Alhumaydhi FA, El-Esawi MA. River Tea Tree Oil: Composition, Antimicrobial and Antioxidant Activities, and Potential Applications in Agriculture. Plants (Basel). 2021;10(10). https://doi.org/10.3390/plants10102105
  • Families WCoSP 2011 Melaleuca alternifolia. Board of Trustees of the Royal Botanic Gardens, Kew. (accessed on 15 March 2022).
  • Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006; 19(1): 50-62. https://doi.org/10.1128/CMR.19.1.50-62.2006 Larson D, Jacob SE. Tea tree oil. Dermatitis 2012;23(1): 48-49.
  • Kavalalı G. Ethnopharmacological background of Melaleuca alternifolia (Tea Tree). Lokman Hekim Journal. 2017; 7(2): 211-214.
  • Andino A, Hanning I. Salmonella enterica: survival, colonization, and virulence differences among serovars. ScientificWorldJournal.2015; 2015: 520179. https://doi.org/10.1155/2015/520179
  • Michael GB, Schwarz S. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend? Clin Microbiol Infect .2016; 22(12): 968-974. https://doi.org/10.1016/j.cmi.2016.07.033
  • Yücel E. Salmonella enfeksiyonları, tanı ve tedavisi. Klin Tıp Pediatr Derg. 2020; 12(3):133-139.
  • Abulreesh HH. Salmonellae in the environment. In: Annous, B, Gurtler, JB. (Eds.). Salmonella—Distribution, Adaptation, Control Measures and Molecular Technologies, InTech. 2012; pp.19-50. https://doi.org/10.5772/2470
  • CDC. Foodborne Outbreak Online Database (FOOD). 2013; Available from: http://www.cdc.gov/foodborneoutbreaks/Default.aspx. (accessed on 15 March 2022).
  • Batz MB, Hoffmann S, Morris JG. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Prot. 2012; 75(7): 1278-1291. https://doi.org/10.4315/0362-028X.JFP-11-418
  • Mthembu TP, Zishiri OT, El Zowalaty ME. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals (Basel). 2021;11(3). https://doi.org/10.3390/ani11030872
  • Harrell JE, Hahn MM, D’Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Frontiers in Cellular and Infection Microbiology. 2021;10. https://doi.org/10.3389/fcimb.2020.624622
  • MacKenzie KD, Wang Y, Musicha P, Hansen EG, Palmer MB, Herman DJ, Feasey NA, White AP. Parallel evolution leading to impaired biofilm formation in invasive Salmonella strains. PLoS Genet. 2019;15(6): e1008233. https://doi.org/10.1371/journal.pgen.1008233
  • Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int. 2012; 45:502–531. https://doi.org/10.1016/j.foodres.2011.01.038
  • Willke Topçu A. Biyofilm Nedir? In 'Biyofilm Enfeksiyonları. In: S. Sakarya (Ed.), Biyofilm Enfeksiyonları Türkiye Klinikleri, Ankara, 2018.
  • Schurman DJ, Smith RL. Bacterial Adherence in Foreign Body Infection. In 'Trends in Research and Treatment of Joint Diseases. In: Hirohata K, Mizuno K, Matsubara T (Eds.), Trends in Research and Treatment of Joint Diseases Springer, Tokyo, 1992.
  • Ma X, He Y, Cai R, Zeng J, Lu Y, Chen C, Huang B. Polymyxins Resistance in Enterobacteriaceae. Reference Module in Biomedical Science.2018. https://doi.org/10.1016/B978-0-12-801238-3.64150-8
  • WHO, Critically important antimicrobials for human medicine: Ranking of antimicrobial agents for risk management of antimicrobial resistance due to non-human use. 2017, World Health Organization: Geneva, Switzerland. (accessed on 15 March 2022).
  • Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis.2016; 16(2):161-168. https://doi.org/10.1016/S1473-3099(15)00424-7
  • Richez P, Burch DG. Colistin in animals: a high risk for resistance selection in Europe? Vet Rec. 2016; 178(4):101-2. https://doi.org/10.1136/vr.i381
  • Üvey M. PhD Thesis. Türkiye Kanatli Üretim Çiftliklerinden Alinan Çevresel Ortam Örneklerinden İzole Edilmiş Salmonella Suşlarinda Kolistin Direncinin Saptanması. Department of Veterinary Microbiology, Institute of Health Sciences, Kırıkkale University, Kırıkkale, Turkey, 2021.
  • Pedonese F, Longo E, Torracca B, Najar B, Fratini F, Nuvoloni R. Antimicrobial, and anti-biofilm activity of manuka essential oil against Listeria monocytogenes and Staphylococcus aureus of food origin. Ital J Food Saf. 2022;11(1):10039. https://doi.org/10.4081/ijfs.2022.10039
  • Jadhav S, Shah R, Bhave M, Palombo EA. Inhibitory activity of yarrow essential oil on Listeria planktonic cells and biofilms. Food Control. 2013;29(1):125-130. https://doi.org/10.1016/j.foodcont.2012.05.071
  • Cepas V, Lopez Y, Munoz E, Rolo D, Ardanuy C, Marti S, Xercavins M, Horcajada JP, Bosch J, Soto SM. Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microb Drug Resist. 2019; 25(1):72-79. https://doi.org/10.1089/mdr.2018.0027
  • Tavares TD, Antunes JC, Ferreira F, Felgueiras HP. Biofunctionalization of Natural Fiber-Reinforced Biocomposites for Biomedical Applications. Biomolecules. 2020a; 10. https://doi.org/10.3390/biom10010148
  • Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 2000; 88(1): 170-175. https://doi.org/10.1046/j.1365-2672.2000.00943.x
  • Borotova P, Galovicova L, Vukovic NL, Vukic M, Tvrda E, Kacaniova M. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants (Basel). 2022; 11(4). https://doi.org/10.3390/plants11040558
  • Melo ADB, Amaral AF, Schaefer G, Luciano FB, de Andrade C, Costa LB, Rostagno MH. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives. Can J Vet Res.2015; 79: 285-289.
  • Noumi E, Snoussi M, Hajlaoui H, Trabelsi N, Ksouri R, Valentin E, Bakhrouf A. Chemical composition, antioxidant and antifungal potential of Melaleuca alternifolia (tea tree) and Eucalyptus globulus essential oils against oral Candida species. 2011. McMahon MAS, Blair IS, Moore JE, McDowell DA. Habituation to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia) is associated with reduced susceptibility to antibiotics in human pathogens. J Antimicrob Chemother 2007; 59(1), 125-127. https://doi.org/10.1093/jac/dkl443
  • Özel A, Çınar O. Essential Oil Composition of Dry and Fresh Aerial Parts of the Dill (Anethum graveolens L.). Journal of Agricultural Faculty of Bursa Uludag University. 2021; 35(2): 355-363.
  • Porter NG, Shaw ML, Shaw GJ, Ellingham PJ. Content and composition of dill herb oil in the whole plant and the different plant parts during crop development. New Zealand Journal of Agricultural Research .1983;26(1):119-127. https://doi.org/10.1080/00288233.1983.10420961
  • Wander JGN, Bouwmeester HJ. Effects of nitrogen fertilization on dill (Anethum graveolens L.) seed and carvone production. Industrial Crops and Products. 1998; 7(2-3): 211-216. https://doi.org/10.1016/S0926-6690(97)00050-2
  • Puvaca N, Milenkovic J, Galonja-Coghill T, Bursic V, Petrovic A, Tanaskovic S, Pelic M, Ljubojevic Pelic D, Miljkovic T. Antimicrobial Activity of Selected Essential Oils against Selected Pathogenic Bacteria: In Vitro Study. Antibiotics (Basel). 2021;10(5). https://doi.org/10.3390/antibiotics10050546
  • Filimon MN, Văideanu G, Tomescu O, Cojocaru A, Torok-Oance R, Sinitean A. The antibacterial effect of Melaleuca alternifolia (tea tree) extracts. Annales of West University of Timisoara Series of Biology. 2017; 20(2): 201-210.
  • Singh BR, Vadhana P, Bhardwaj M, Vinodh KOR., Sinha DK, Singh SV. Comparative Antimicrobial Activity of Tea Tree Oil (Melaleuca Oil) and Common Topical Antimicrobials against Bacteria Associated With Wound and Topical Infections. Pharm Anal Acta. 2016;7(11):513. https://doi.org/10.4172/2153-2435.1000513
  • Bridier A, Briandet R, Bouchez T, Jabot F. A model-based approach to detect interspecific interactions during biofilm development. Biofouling. 2014; 30(7):761-771. https://doi.org/10.1080/08927014.2014.923409
  • Camargo AC, Woodward JJ, Call DR, Nero LA. Listeria monocytogenes in Food-Processing Facilities, Food Contamination, and Human Listeriosis: The Brazilian Scenario. Foodborne Pathog Dis. 2017;14(11): 623-636. https://doi.org/10.1089/fpd.2016.2274
  • Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Herman L., Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Dewulf J, Hald T, Michel V, Niskanen T, Ricci A, Snary E, Boelaert F, Messens W, Davies R. Salmonella control in poultry flocks and its public health impact. EFSA Journal.2019;17, e05596. https://doi.org/10.2903/j.efsa.2019.5596
  • Floyd KA, Eberly AR, Hadjifrangiskou M. Adhesion of bacteria to surfaces and biofilm formation on medical devices. In: Deng Y , Lv W. (Eds.), Biofilms and implantable medical devices Woodhead Publishing, Duxford (UK). 2017, pp. 47–95. https://doi.org/10.1016/B978-0-08-100382-4.00003-4
  • Khan MSA, Altaf MM, Ahmad I. Chemical nature of biofilm matrix and its significance. In: I. Ahmad, F, Husain M. (Eds.), Biofilms in Plant and Soil Health John Wiley & Sons Ltd., Hoboken (USA).2017. https://doi.org/10.1002/9781119246329.ch9
  • Asai T, Itagaki M, Shiroki Y, Yamada M, Tokoro M, Kojima A, Ishihara K, Esaki H, Tamura Y, Takahashi T. Antimicrobial resistance types and genes in Salmonella enterica infantis isolates from retail raw chicken meat and broiler chickens on farms. J Food Prot. 2006; 69(1): 214-216. https://doi.org/10.4315/0362-028x-69.1.214
  • Duc VM, Nakamoto Y, Fujiwara A, Toyofuku H, Obi T, Chuma T. Prevalence of Salmonella in broiler chickens in Kagoshima, Japan in 2009 to 2012 and the relationship between serovars changing and antimicrobial resistance. BMC Vet Res. 2019;15(1):108. https://doi.org/10.1186/s12917-019-1836-6
  • Shah DH, Paul NC, Sischo WC, Crespo R, Guard J. Population dynamics and antimicrobial resistance of the most prevalent poultry-associated Salmonella serotypes. Poult Sci. 2017; 96(3):687-702. https://doi.org/10.3382/ps/pew342
  • Vinueza-Burgos C, Baquero M, Medina J, De Zutter L. Occurrence, genotypes and antimicrobial susceptibility of Salmonella collected from the broiler production chain within an integrated poultry company. Int J Food Microbiol 2019; 299: 1-7. https://doi.org/10.1016/j.ijfoodmicro.2019.03.014
  • Vallejos-Sanchez K, Tataje-Lavanda L, Villanueva-Perez D, Bendezu J, Montalvan A, Zimic-Peralta M, Fernandez- Sanchez M, Fernandez-Diaz M. Whole-Genome Sequencing of a Salmonella enterica subsp. enterica Serovar Infantis Strain Isolated from Broiler Chicken in Peru. Microbiol Resour Announc. 2019; 8(43). https://doi.org/10.1128/MRA.00826-19
  • Drauch V, Kornschober C, Palmieri N, Hess M, Hess C. Infection dynamics of Salmonella Infantis strains displaying different genetic backgrounds - with or without pESI-like plasmid - vary considerably. Emerg Microbes Infect. 2021;10(1):1471-1480. https://doi.org/10.1080/22221751.2021.1951124
  • EUCAST ECoAST (2022) Breakpoint tables for interpretation of MICs and zone diameters Version 12.0, valid from 2022-01-01.) (accessed on 15 March 2022).
  • Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun. 1982; 37(1): 318-26. https://doi.org/10.1128/iai.37.1.318-326.1982
There are 56 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Microbiology
Journal Section Articles
Authors

Merve Eylül Kıymacı

Merve Şavluk 0000-0003-0740-799X

Mehmet Gümüştaş 0000-0003-2793-7154

Mehmet Üvey 0000-0002-2615-2673

Nilgün Ünal 0000-0002-0490-976X

Publication Date June 27, 2025
Published in Issue Year 2023 Volume: 27 Issue: 2

Cite

APA Kıymacı, M. E., Şavluk, M., Gümüştaş, M., Üvey, M., et al. (2025). Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil against colistin resistant Salmonella enterica serotypes isolated from poultry environmental specimens. Journal of Research in Pharmacy, 27(2), 1-11.
AMA Kıymacı ME, Şavluk M, Gümüştaş M, Üvey M, Ünal N. Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil against colistin resistant Salmonella enterica serotypes isolated from poultry environmental specimens. J. Res. Pharm. June 2025;27(2):1-11.
Chicago Kıymacı, Merve Eylül, Merve Şavluk, Mehmet Gümüştaş, Mehmet Üvey, and Nilgün Ünal. “Antibacterial and Antibiofilm Activity of Melaleuca Alternifolia (tea Tree) Essential Oil Against Colistin Resistant Salmonella Enterica Serotypes Isolated from Poultry Environmental Specimens”. Journal of Research in Pharmacy 27, no. 2 (June 2025): 1-11.
EndNote Kıymacı ME, Şavluk M, Gümüştaş M, Üvey M, Ünal N (June 1, 2025) Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil against colistin resistant Salmonella enterica serotypes isolated from poultry environmental specimens. Journal of Research in Pharmacy 27 2 1–11.
IEEE M. E. Kıymacı, M. Şavluk, M. Gümüştaş, M. Üvey, and N. Ünal, “Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil against colistin resistant Salmonella enterica serotypes isolated from poultry environmental specimens”, J. Res. Pharm., vol. 27, no. 2, pp. 1–11, 2025.
ISNAD Kıymacı, Merve Eylül et al. “Antibacterial and Antibiofilm Activity of Melaleuca Alternifolia (tea Tree) Essential Oil Against Colistin Resistant Salmonella Enterica Serotypes Isolated from Poultry Environmental Specimens”. Journal of Research in Pharmacy 27/2 (June 2025), 1-11.
JAMA Kıymacı ME, Şavluk M, Gümüştaş M, Üvey M, Ünal N. Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil against colistin resistant Salmonella enterica serotypes isolated from poultry environmental specimens. J. Res. Pharm. 2025;27:1–11.
MLA Kıymacı, Merve Eylül et al. “Antibacterial and Antibiofilm Activity of Melaleuca Alternifolia (tea Tree) Essential Oil Against Colistin Resistant Salmonella Enterica Serotypes Isolated from Poultry Environmental Specimens”. Journal of Research in Pharmacy, vol. 27, no. 2, 2025, pp. 1-11.
Vancouver Kıymacı ME, Şavluk M, Gümüştaş M, Üvey M, Ünal N. Antibacterial and antibiofilm activity of Melaleuca alternifolia (tea tree) essential oil against colistin resistant Salmonella enterica serotypes isolated from poultry environmental specimens. J. Res. Pharm. 2025;27(2):1-11.