Research Article
BibTex RIS Cite

The anti-inflammatory activity of hydrolyzed virgin coconut oil towards RAW 264.7 cell

Year 2023, Volume: 27 Issue: 2, 705 - 711, 27.06.2025

Abstract

Inflammation can result from the introduction of foreign things into the body, such as bacteria or viruses.
Inflammation activates macrophages and mast cells, which serve as immunological agents. The resultant hydrolysis of
virgin coconut oil (HVCO) has an anti-inflammatory effect. This research aimed to determine how HVCO affects anti-
inflammatory effects in vitro RAW 264.7 cells were activated against lipopolysaccharide. HVCO has anti-inflammatory
effects determined by performing a live-cell viability assay using the MTT method [3-(4,5-dimethylthiazole-2-yl)-2,5-
diphenyl tetrazolium bromide], IL- 6, TNF- α, IL-1β, iNOS, COX-2, and β-actin gene expression have been studied
utilizing reverse transcription-polymerase chain reaction (RT-PCR). The HVCO test results on RAW 264.7 cells with the
cell viability test at concentrations (62.5 g/mL; 31.5 g/mL) showed the percentage of live cells (> 90%), namely (97.74 ±
0.31; 102.31 ± 1.21) and assays using the expression of iNOS, TNF-α, IL-6, IL-1β, COX-2, and β-actin genes from HVCO
in cells induced with LPS decreased the density value of HVCO, the expression of iNOS and IL-1β resulted in density
values the best (0.72±0.010) and (2.40±0.015), TNF-α (0.76±0.7633), IL-6 (1.16±0.010), COX-2 (0.98 ± 0.010), and β-actin
(1,02± 0,010). This study showed that HVCO has anti-inflammatory actions on RAW 264.7 cells caused by
lipopolysaccharide.

References

  • Sami DG, Heiba HH, Abdellatif A. Wound Healing Models; A Systematic Review of Animal and Non-Animal Models. Wound Med. 2018;24:8–17. [CrossRef]
  • Rodrigues HG, Vinolo MAR, Sato FT, Magdalon J, Kuhl CMC, et al. Oral Administration of Linoleic Acid Induces New Vessel Formation and Improves Skin Wound Healing in Diabetic Rats. Plos One. 2016; 2016;11(10):1-19. [CrossRef]
  • Reina-Couto M., Pereira-Terra, P.; Quelhas-Santos J, Silva-Pereira C, Albino-Teixeira A, Sousa T. Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Front. Physiol. 2021;12:746494. [CrossRef]
  • Zhang X, Wu X, Hu Q, Wu J, Wang G, Hong Z, Ren J. Lab for Trauma and Surgical Infections. Mitochondrial DNA in Liver Inflammation and Oxidative Stress. Life Sci. 2019;223:116464. [CrossRef]
  • Da Hye Kwon JM, Choi EO, Jeong JW, Lee KW, Kim KY, Kim SG, Kim S, Hong SH, Park C, Hwang HJ, Choi YH. The immunomodulatory activity of Mori folium, the leaf of Morus alba L. in RAW 264.7 macrophages in vitro. Journal of cancer prevention. 2016;21(3):144. [CrossRef]
  • Tian Y, Zhou S, Takeda R, Okazaki K, Sekita M, Sakamoto K. Anti-inflammatory activities of amber extract in lipopolysaccharide-induced RAW 264.7 macrophages. Biomedicine & Pharmacotherapy. 2021;141(2021):111854. [CrossRef]
  • Raghubeer EV, Phan, BN, Onuoha E, Diggins S, Aguilar V, Swanson S, Lee A. The Use of High-Pressure Processing (HPP) to Improve the Safety and Quality of Raw Coconut (Cocos Nucifera L.) Water. Int. J. Food Microbiol. 2020;331:108697. [CrossRef]
  • Intahphuak S, Khonsung P, Panthong, A. Anti-inflammatory, analgesic, and antipyretic activities of Virgin Coconut Oil. Pharmaceutical Biology. 2010;48(2):151–157.
  • Silalahi J, Situmorang P, Patilaya P, Silalahi YC. Antibacterial Activity of Chitosan and Hydrolyzed Coconut Oil and Their Combination Against Bacillus Cereus and Eschericia Coli. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(10):69-73. [CrossRef]
  • Varma SR, Sivaprakasam TO, Arumugam I, Dilip, N, Raghuraman M, Pavan K, Rafiq M, Paramesh R. In vitro anti-inflammatory and skin protective properties of Virgin coconut oil. J. Tradit. Complement. Med. 2019;9:5– 14. [CrossRef]
  • Margata L, Silalahi J, Harahap U, Suryanto D. The Antibacterial Effect Of Enzymatic Hydrolyzed Virgin coconut Oil on Propionibacterium acne, Bacillus subtilis, Staphylococcus epidermidis and Methicillin-Resistent Staphylococcus aureus. Rasayan J. Chem. 2019;12(2):987-993. [CrossRef]
  • Silalahi J, Rosidah, Yuandani, Satria D. Virgin Coconut Oil Modulates TCD4+ and TCD8+ Cell Profile of Doxorubicin-Induced Immune-Suppressed Rats. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(1):37-8. [CrossRef]
  • Elysa, Harahap U, Silalahi J. Antibacterial activity of Enzymatic Hydrolysis of Virgin Coconut oil against Salmonella. International Journal of PharmTech Research. 2014; 6(2):589-99.
  • Santos HO, Howell S, Earnest CP, Teixeira FJ. Coconut oil intake and its effects on the cardiometabolic profile— A structured literature review. Prog. Cardiovasc. Dis. 2019;62:436–443. [CrossRef]
  • Narayanankutty A, Illam SP, Raghavamenon AC. Health impacts of different edible oils prepared from coconut (Cocos nucifera): A comprehensive review. Trends Food Sci. Technol. 2018; 80:1–7. [CrossRef]
  • Nasution MA, Silalahi J, Urip H, Satria D. Anti-Inflammation Activity of Virgin Coconut Oil In-Vitro Against Raw Cells 264.7. Asian Journal of Pharmaceutical Research and Development. 2020;8(1):55-58. [CrossRef]
  • Kumar A, Sawhney G, Nagar RK, Chauhan N, Gupta N, Kaul A, Ahmed Z, Sangwan PL, Kumar P S, Yadav G. Evaluation of the immunomodulatory and anti-inflammatory activity of Bakuchiol using RAW 264.7 macrophage cell lines and in animal models stimulated by lipopolysaccharide (LPS). International Immunopharmacology. 2020;91(2021):107264. [CrossRef]
  • Li Y, Yu P, Fu W, Cai L, Yu Y, Feng Z, Wang Y, Zhang F, Yu X, Xu H. Ginseng-Astragalus-oxymatrine injection ameliorates cyclophosphamide-induced immunosuppression in mice and enhances the immune activity of RAW264.7 cells. J. Ethnopharmacol. 2021;279:114387. [CrossRef]
  • Sipayung HM, Silalahi J, Yuandani. The Activity of Combination of Hydrolyzed Virgin Coconut Oil and Chitosan Toward Wound Healing Parameters on NIH 3T3 Cells Using in Vitro Methods. Asian Journal of Pharmaceutical Research and Development. 2019;7(3):14-19 [CrossRef]
  • Sagala EM, Silalahi J. Wound Healing Activities of Hydrolyzed Virgin Coconut Oil (HVCO) and Fucoidan Combination: An In Vitro Assay. Asian Journal of Pharmaceutical Research and Development. 2019; 7(3): 40- 45. [CrossRef]
  • Verma P, Naik S, Nanda P, Banerjee S, Naik S, Ghosh A. In vitro anticancer activity of virgin coconut oil and its fractions in liver and oral cancer cells. Anti-Cancer Agents Med. Chem. 2019; 19:2223–2230. [CrossRef]
  • Zicker MC, Silveira, ALM., Lacerda DR, Rodrigues D, Oliveira CT, de Souza Cordeiro LM., Lima LCF, Santos SHS, Teixeira MM, Ferreira AVM. Virgin coconut oil is effective to treat metabolic and inflammatory dysfunction induced by high refined carbohydrate-containing diet in mice. J. Nutr. Biochem. 2019;63:117–128. [CrossRef]
  • Joo T, Sowndhararajan K, Hong S, Lee J, Park SY, Kim S, Jhoo JW. Inhibition of nitric oxide production in LPS- stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi journal of biological sciences. 2014;21(5):427- 35. [CrossRef]
  • Chang LP, Lai YS, Wu CJ, Chou TC. Liquid perfluorochemical inhibits inducible nitric oxide synthase expression and nitric oxide formation in lipopolysaccharide-treated RAW 264.7 macrophages. Journal of pharmacological sciences. 2009;111(2):147-54. [CrossRef]
  • Gadina M, Gazaniga N, Vian L, Furumoto Y. Small molecules to the rescue: Inhibition of cytokine signaling in immune-mediated diseases. J. Autoimmun. 2017;85:20–31. [CrossRef]
  • Liu X, Jia L, Gao Y, Li B, Tu Y. Anti-inflammatory activity of total flavonoids from seeds of Camellia oleifera Abel. Acta Biochim Biophys Sin. 2014;46(10):920-2.
  • Wang LQ, Lu SQ, Wang LY, Xin M, Xu YY, Wang G, Chen DQ, Chen LX, Liu S, Zhao F. Anti-inflammatory effects of three withanolides isolated from Physalis angulata L. in LPS-activated RAW 264.7 cells through blocking NF-kappa B signaling pathway. J. Ethnopharmacol. 2021; 276:114186. [CrossRef]
  • Chen L, Teng H, Fang T, Xiao J. Agrimonolide from Agrimonia pilosa suppresses inflammatory responses through down-regulation of COX-2/iNOS and inactivation of NF-κB in lipopolysaccharide-stimulated macrophages. Phytomedicine. 2016;23:846–855. [CrossRef]
  • Zhao F, Wang L, Liu K. In vitro anti-inflammatory effects of arctigenin, a lignan from Arctium lappa L., through inhibition on iNOS pathway. J. Ethnopharmacol. 2009;122:457–462. [CrossRef]
  • Margata L, Silalahi J, Harahap U, Satria D. The Effect of Hydrolyzed Coconut Oil on Lipid Profile and Liver enzymes in Dyslipidemic Rats. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(1):406-9. [CrossRef]
  • Silalahi J, Karo LK, Sinaga S M, Cinthya Y, Silalahi E. Composition of fatty acid and ıdentification of lauric acid position in coconut and palm kernel oils. Indones J Pharm Clin Res. 2018;1:8.
  • Margata L, Silalahi J, Harahap U, Satria D. The Effect of Dietary Oils and Hydrolyzed Coconut Oil on Minerals Absorption in Rats. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(1):185-90. [CrossRef]
  • Kim DH, Kim DW, Jung BH, Lee JH, Lee HS, Hwang GS, Kang KS, Lee JW. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J. Ginseng Res. 2019;43:326–334. [CrossRef]
  • Laksmitawati DR, Widyastuti A, Karami N, Afifah E, Rihibiha DD, Nufus H, Widowati W. Anti-inflammatory effects of Anredera cordifolia and Piper crocatum extracts on lipopolysaccharide-stimulated macrophage cell line Bangladesh J. Pharmacol. 2017;12:35-40. [CrossRef]
  • Kim EA, Kim SY, Ye BR, Kim J, Ko SC, Lee WW, Kim KN, Choi IW, Jung WK, Heo SJ. Anti-inflammatory effect of Apo-90 -fucoxanthinone via inhibition of MAPKs and NF-kB signaling pathway in LPS-stimulated RAW 264.7 macrophages and zebrafish model. Int. Immun. Pharmacol. 2018;59:339–346. [CrossRef]
  • Tian Y, Zhou SQ, Takeda R, Okazaki K, Sekita M, Sakamoto K. Anti-inflammatory activities of amber extract in lipopolysaccharide-induced RAW 264.7 macrophages. Biomed. Pharmacother. 2021;141:111854. [CrossRef]
There are 36 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Muhammad Amin Nasution

Jansen Silalahi 0000-0003-0455-0555

Urip Harahap 0000-0002-2736-7932

Poppy Anjelisa Zaitun Hasibuan 0000-0001-9122-711X

Denny Satria 0000-0003-4724-3256

Publication Date June 27, 2025
Published in Issue Year 2023 Volume: 27 Issue: 2

Cite

APA Nasution, M. A., Silalahi, J., Harahap, U., Hasibuan, P. A. Z., et al. (2025). The anti-inflammatory activity of hydrolyzed virgin coconut oil towards RAW 264.7 cell. Journal of Research in Pharmacy, 27(2), 705-711.
AMA Nasution MA, Silalahi J, Harahap U, Hasibuan PAZ, Satria D. The anti-inflammatory activity of hydrolyzed virgin coconut oil towards RAW 264.7 cell. J. Res. Pharm. June 2025;27(2):705-711.
Chicago Nasution, Muhammad Amin, Jansen Silalahi, Urip Harahap, Poppy Anjelisa Zaitun Hasibuan, and Denny Satria. “The Anti-Inflammatory Activity of Hydrolyzed Virgin Coconut Oil towards RAW 264.7 Cell”. Journal of Research in Pharmacy 27, no. 2 (June 2025): 705-11.
EndNote Nasution MA, Silalahi J, Harahap U, Hasibuan PAZ, Satria D (June 1, 2025) The anti-inflammatory activity of hydrolyzed virgin coconut oil towards RAW 264.7 cell. Journal of Research in Pharmacy 27 2 705–711.
IEEE M. A. Nasution, J. Silalahi, U. Harahap, P. A. Z. Hasibuan, and D. Satria, “The anti-inflammatory activity of hydrolyzed virgin coconut oil towards RAW 264.7 cell”, J. Res. Pharm., vol. 27, no. 2, pp. 705–711, 2025.
ISNAD Nasution, Muhammad Amin et al. “The Anti-Inflammatory Activity of Hydrolyzed Virgin Coconut Oil towards RAW 264.7 Cell”. Journal of Research in Pharmacy 27/2 (June 2025), 705-711.
JAMA Nasution MA, Silalahi J, Harahap U, Hasibuan PAZ, Satria D. The anti-inflammatory activity of hydrolyzed virgin coconut oil towards RAW 264.7 cell. J. Res. Pharm. 2025;27:705–711.
MLA Nasution, Muhammad Amin et al. “The Anti-Inflammatory Activity of Hydrolyzed Virgin Coconut Oil towards RAW 264.7 Cell”. Journal of Research in Pharmacy, vol. 27, no. 2, 2025, pp. 705-11.
Vancouver Nasution MA, Silalahi J, Harahap U, Hasibuan PAZ, Satria D. The anti-inflammatory activity of hydrolyzed virgin coconut oil towards RAW 264.7 cell. J. Res. Pharm. 2025;27(2):705-11.