Research Article
BibTex RIS Cite

Preparation and encapsulation efficiency of surface modified egg albumin nanoparticles

Year 2023, Volume: 27 Issue: 2, 883 - 892, 27.06.2025

Abstract

A biocompatible nano-drug delivery vehicle can efficiently deliver the toxic drug to the targeted site in
nano-quantity to treat cancer patients. Considering this, the current study aims to fabricate stable egg albumin
nanoparticles by using chloroacetic acid to modify their surfaces. The carboxyl functionalized egg albumin (FEA)
nanoparticles were prepared through the desolvation process using ethanol as the desolvating agent; the generated
nanoparticles were stabilized by glutaraldehyde. To obtain stable nanoparticles of suitable size, various reaction
parameters viz concentration of FEA, pH, agitation speed, glutaraldehyde concentration, and rate of ethanol addition
were examined. In neutral and alkaline mediums, we can get nanoparticles of 120-160 nm with -32 mV zeta potential.
The pH of the medium played a decisive role, which strongly influences the FEA particle diameter and surface charge,
while other parameters show little influence. SEM monochrome image of functionalized EA nanoparticles also
supported the particle size of around 130 nm. Gallic acid (GA) has been encapsulated under optimal desolvation
conditions using the FEA/GA acid ratios of 1:1, 2:1, 4:1, and 8:1. The obtained GA entrapped FEA spherical
nanoparticles (GA-FEA) had a -30.9mV zeta potential and were negatively charged. At a 2:1 polymer/drug ratio, an
entrapment efficiency (EE) of 90.4 % (w/w) and drug loading capacity of about 28.7 % (w/w) were achieved. This work
is beneficial to the scientists involved in the field of cancer research.

References

  • Enger ED, Ross EC, Bailey DB. Concepts in Biology. Mc. Graw Hill 2007, 173.
  • Deborah E, Citrin MD. Recent developments in radiotherapy. N Eng J Med. 2017; 377(11): 1065-1075. https://doi.org/10.1056/NEJMra1608986
  • Jabaji RB, Fischer H, Kern T, Chien GW. Trend of surgical treatment of localized renal cell carcinoma. Perm J. 2019; 23: 18-108. https://doi.org/10.7812/TPP/18-108
  • Mieog JSD, Hage JAV, Veld CJV. Neoadjuvant chemotherapy for operable breast cancer. Br J Surg. 2007;94(10): 1189- 1200. https://doi.org/10.1002/bjs.5894
  • Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomed. 2017; 12: 5421-5431. https://doi.org/10.2147/IJN.S138624
  • Ziarani GM, Malmir M, Lashgari N, Badiei A. The role of hollow magnetic nanoparticles in drug delivery. RSC Adv. 2019; 9: 25094-25106. https://doi.org/10.1039/C9RA01589B
  • Elzoghby AO, Samy WM, Elgindt NA. Albumin-based nanoparticles as potential controlled drug delivery systems. J Control Release 2012; 157(2): 168-182. https://doi.org/10.1016/j.jconrel.2011.07.031
  • Chaudhary H, Samita, Puri N, Kumar V. Solid lipid nanoparticles: An innovative nano-vehicle for drug delivery. Nanoscience & Nanotechnology-Asia 2014; 4(1): 38-44. https://doi.org/10.2174/22106812113036660003
  • Hosseini SM, Abbasalipourkabir R, Jalilian FA, Asl SS, Farmany A, Roshanaei G, Arabestani MR. Doxycycline- encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: a pharmacodynamics study on J774A.1 cell line. Antimicrob Resist Infect Control. 2019; 8: 62. https://doi.org/10.1186/s13756-019-0504-8
  • Ahmad A, Mondal SK, Mukhopadhyay D, Banerjee R, Alkharfy KM. Development of liposomal formulation for delivering anticancer drug to breast cancer stem cell-like cells and its pharmacokinetics in an animal model. Mol Pharm. 2016; 13(3): 1081-1088. https://doi.org/10.1021/acs.molpharmaceut.5b00900
  • Akhtari J, Rezayat SM, Teymouri M, Alavizadeh SH, Gheybi F, Badiee A, Jaafari MR. Targeting, bio distributive and tumor growth inhibiting characterization of anti-HER2 affibody coupling to liposomal doxorubicin using balb/c mice bearing tubo tumors. Int J Pharm. 2016; 505(1-2): 89-95. [https://doi.org/10.1016/j.ijpharm.2016.03.060]
  • Yuan JD, Zhuge DL, Tong MQ, Lin MT, Xu XF, Tang X, Zhao YZ, Xu HL. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Artif Cells Nanomed Biotechnol. 2018; 46: 302- 313.[https://doi.org/10.1080/21691401.2017.1423495]
  • Hu D, Chen L, Qu Y, Peng J, Chu B, Shi K, Hao Y, Zhong L, Wang M, Qian Z. Oxygen-generating hybrid polymeric nanoparticles with encapsulated doxorubicin and chlorin e6 for trimodal imaging-guided combined chemo- photodynamic therapy. Theranostics 2018; 8(6): 1558–1574. [https://doi.org/10.7150/thno.22989]
  • Bayda S, Hadla M, Palazzolo S, Corona G, Toffoli G, Rizzolio F. Inorganic Nanoparticles for Cancer Therapy: a Transition from Lab to Clinic. Cur Med Chem. 2017; 25(34): 4269.[https://doi.org/10.2174/0929867325666171229141156]
  • Esparza K, Jayawardena D, Onyuksel H. Phospholipid Micelles for Peptide Drug Delivery, Pharmaceutical Nanotechnology Methods. Mol Biol. 2019; 2000: 43. [https://doi.org/10.1007/978-1-4939-9516-5_4]
  • Makhmalzade BS, Fateme C. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res. 2018; 9(1): 2-8. [https://doi.org/10.4103/japtr.JAPTR_314_17]
  • Azarmi S, Tao X, Chen H, Wang Z, Finlay WH, Lobenberg R, Rao WH. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm. 2006; 319: 155- 161.[https://doi.org/10.1016/j.ijpharm.2006.03.052]
  • Kommareddy S, Amiji M. Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response of glutathione. Bioconjug Chem. 2005; 16(6): 1423-1432. [https://doi.org/10.1021/bc050146t]
  • Srivastava A, Prajapati A. Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications. Asian Biomed. 2020; 14 (6): 217-242. [https://doi.org/10.1515/abm-2020- 0032]
  • Lomis N, Westfall S, Farahdel L, Mathotra M, Tim DS, Prakash S. Human serum nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nanomaterials 2016; 6: 116. [https://doi.org/10.3390/nano6060116]
  • Papagiannopoulos A, and Vlassi E. Stimuli-responsive nanoparticles by thermal treatment of bovine serum albumin inside its complexes with chondroitin sulfate. Food Hyd 2019, 87, 602- 610.[https://doi.org/10.1016/j.foodhyd.2018.08.054]
  • Ding D, Tang X, Cao X, Wu J, Yuan A, Qiao Q, Pan J, Hu Y. Novel Self-assembly Endows Human Serum Albumin Nanoparticles with an Enhanced Antitumor Efficacy. AAPS Pharm Sci Tech. 2014; 15(1): 213- 222.[https://doi.org/10.1208/s12249-013-0041-3]
  • Wang S, Gong G, Su H, Liu W, Wang S, Li L. Self-assembly of plasma protein through disulfide bond breaking and its use as a nanocarrier for lipophilic drugs. Polym Chem. 2014; 5(17): 4871. [https://doi.org/10.1039/c4py00212a]
  • Thao LQ, Byeon HJ, Lee C, Lee S, Lee ES, Choi HG, Park ES, Youn YS. Pharmaceutical potential of tacrolimus- loaded albumin nanoparticles having targetability to rheumatoid arthritis tissues. Int J Pharm. 2016; 497: 268- 276.[https://doi.org/10.1016/j.ijpharm.2015.12.004]
  • Yu X, Di Y, Xie C, Song Y, He H, Li H, Pu X, Lu W, Fu D, Jin C. An in vitro and in vivo study of gemcitabine-loaded albumin nanoparticles in a pancreatic cancer cell line. Int J Nanomedicine 2015; 10: 6825- 6834.[https://doi.org/10.2147/IJN.S93835]
  • Lee LE, Kim MG, Jang YL, Lee MS, Kim NW, Yin Y, Lee JH, Lim SY, Park JW, Kim J, Lee DS, Kim SH, Jeong JH. Self- assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Deliv. 2018; 25(1): 1570-1578. [https://doi.org/10.1080/10717544.2018.1489430]
  • Martı´nez A, Benito-Miguel M, Iglesias I, Teijon JM, Blanco MD. Tamoxifen-loaded thiolated alginate-albumin nanoparticles as antitumoral drug delivery systems. J Biomed Mater Res Part A. 2012; 100(6): 1467-1476. [https://doi.org/10.1002/jbm.a.34051]
  • Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012; 3: 18496. [https://doi.org/10.3402/nano.v3i0.18496]
  • Qi L, Guo Y, Luan J, Zhang D, Zhao Z, Luan Y. Folate-modified bexarotene-loaded bovine serum albumin nanoparticles as a promising tumor targeting delivery system. J Mater Chem B. 2014; 2: 8361-8371. [https://doi.org/10.1039/c4tb01102c]
  • Qi J, Yao P, He F, Yu C, Huang C. Nanoparticles with dextran/chitosan shell and BSA/ chitosan core-Doxorubicin loading and delivery. Int J Pharm. 2010; 393: 176-184.[https://doi.org/10.1016/j.ijpharm.2010.03.063]
  • Rashidi L, Vasheghani-Farahani E, Soleimani M. A cellular uptake and the cytotoxicity properties studies of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells. J Nanopart Res. 2014; 16: 1- 14.[https://doi.org/10.1007/s11051-014-2285-6]
  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 2008; 3: 703-717. [https://doi.org/10.2217/17435889.3.5.703]
  • Harashima Sakata HK, Funato K, Kiwada H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm Res. 1994; 11: 402-406. [https://doi.org/10.1023/a:1018965121222]
  • Fernandez M, Javaid F, Chudasama V. Advances in targeting the folate receptor in the treatment / imaging of cancer. Chem Sci. 2018; 9: 790. [https://doi.org/10.1039/C7SC04004K]
  • Pooja, Singh D, Aggarwal S, Singh VK, Pratap R, Mishra AK, Tiwari AK. Lanthanide (Ln3+) complexes of bifunctional chelate: Synthesis, physicochemical study and interaction with human serum albumin (HSA). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021; 244: 118808. [https://doi.org/10.1016/j.saa.2020.118808]
  • Chadha N, Singh D, Milton MD, Mishra GS, Daniel J, Mishra A, Tiwari AK. Computational prediction of interaction and pharmacokinetics profile study for polyamino-polycarboxylic ligands on binding with human serum albumin. New J Chem. 2020; 44(7): 2907-2918. [https://doi.org/10.1039/c9nj05594k]
  • Sindhu R, Tiwari AK, Mishra LC, Husain MM. Spectroscopic interaction of a coumarin derivative with bovine serum albumin. Cancer Biother Radiopharm. 2012; 27(7): 452. [https://doi.org/10.1089/cbr.2012.1180]
  • Aggarwal S, Tiwari AK, Srivastava P, Chadha N, Kumar V, Singh G, Mishra AK. Investigation for the Interaction of Tyramine-Based Anthraquinone Analogue with Human Serum Albumin by Optical Spectroscopic Technique. Chem Biol Drug Des. 2013; 81(3): 343. [https://doi.org/10.1111/cbdd.12073]
  • Prajapati A, Srivastava A. Preparation, Characterization and Encapsulation Efficiency of Egg Albumin Nanoparticles Using EDC as Crosslinker. J Sci Ind Res. 2019; 78(10): 703-705. [http://nopr.niscair.res.in/handle/123456789/50649]
  • Prajapati A, Srivastava A, Pramanik P. A simple and reproducible method for production of protein nanoparticles at biological pH using egg white. Biointerface Res App Chem. 2019; 9(1): 3783- 3789.[https://doi.org/10.33263/BRIAC91.783789]
  • Paik SYR, Nguyen HH, Ryu J, Che JH, Kang TS, Lee JK, Song CW, Ko S. Robust size control of bovine serum albumin (BSA) nanoaprticles by intermittent addition of a desolvating agent and the particle formation mechanism. Food Chem. 2013; 141: 695-701. [https://doi.org/10.1016/j.foodchem.2013.04.059]
  • Storp BV, Engel A, Boeker A, Ploeger M, Langer K. Albumin nanoparticles with predictable size by desolvation process. J Microencapsul. 2012; 29(2): 138-146. [https://doi.org/10.3109/02652048.2011.635218]
  • Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterization of protein nanoparticles. Int J Pharm. 2002; 194: 91-102. [https://doi.org/10.1016/s0378-5173(99)00370-1]
  • Sailaja AK, Amareshwar P. Preparation of BSA nanoparticles by desolvation technique using acetone as desolvating agent. Int J Pharm Sci Nanotech. 2012; 5(1). [https://doi.org/10.37285/ijpsn.2012.5.1.8]
  • Esfahlan AJ, Dastmalchi S, Davaran S. A simple improved desolvation method for the rapid preparation of albumin nanoparticles. Int J Biol Macromol. 2016; 91: 703-709. [https://doi.org/10.1016/j.ijbiomac.2016.05.032]
  • Jun JY, Nguyen HH, Paik SYR, Chun HS, Kang BC, Ko S. Preparation of size controlled bovine serum albumin (BSA) nanoparticles by the modified desolvation process. Food Chem. 2011; 127: 1892- 1898.https://doi.org/10.1016/j.foodchem.2011.02.040
  • Taheri ES, Jahanshahi M, Mosavian MTH. Preparation characterization and optimization of egg albumin nanoparticles as low molecular-weight drug delivery vehicle. Part Part Syst Charac. 2012; 29: 1- 12.https://doi.org/10.1002/ppsc.201100037
  • Gonzalez FG, Bolivar JAM. Systematic study on the preparation of BSA nanoparticles. Colloids Surf B Biointerfaces 2014; 123: 286-92. [https://doi.org/10.1016/j.colsurfb.2014.09.028]
  • Srivastava A, Prajapati A, Pramanik P. A modified method for the production of stable surface-functionalized bovine serum albumin nanoparticles. Biomed Biotechnol Res J. 2021; 5: 335-341. https://doi.org/10.4103/bbrj.bbrj_125_21
There are 49 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Chemistry
Journal Section Articles
Authors

Abhishek Srivastava 0000-0003-2463-1213

Neetu Srivastava 0000-0002-0690-9990

Krishna Srivastava 0000-0002-8276-8886

Publication Date June 27, 2025
Published in Issue Year 2023 Volume: 27 Issue: 2

Cite

APA Srivastava, A., Srivastava, N., & Srivastava, K. (2025). Preparation and encapsulation efficiency of surface modified egg albumin nanoparticles. Journal of Research in Pharmacy, 27(2), 883-892.
AMA Srivastava A, Srivastava N, Srivastava K. Preparation and encapsulation efficiency of surface modified egg albumin nanoparticles. J. Res. Pharm. June 2025;27(2):883-892.
Chicago Srivastava, Abhishek, Neetu Srivastava, and Krishna Srivastava. “Preparation and Encapsulation Efficiency of Surface Modified Egg Albumin Nanoparticles”. Journal of Research in Pharmacy 27, no. 2 (June 2025): 883-92.
EndNote Srivastava A, Srivastava N, Srivastava K (June 1, 2025) Preparation and encapsulation efficiency of surface modified egg albumin nanoparticles. Journal of Research in Pharmacy 27 2 883–892.
IEEE A. Srivastava, N. Srivastava, and K. Srivastava, “Preparation and encapsulation efficiency of surface modified egg albumin nanoparticles”, J. Res. Pharm., vol. 27, no. 2, pp. 883–892, 2025.
ISNAD Srivastava, Abhishek et al. “Preparation and Encapsulation Efficiency of Surface Modified Egg Albumin Nanoparticles”. Journal of Research in Pharmacy 27/2 (June 2025), 883-892.
JAMA Srivastava A, Srivastava N, Srivastava K. Preparation and encapsulation efficiency of surface modified egg albumin nanoparticles. J. Res. Pharm. 2025;27:883–892.
MLA Srivastava, Abhishek et al. “Preparation and Encapsulation Efficiency of Surface Modified Egg Albumin Nanoparticles”. Journal of Research in Pharmacy, vol. 27, no. 2, 2025, pp. 883-92.
Vancouver Srivastava A, Srivastava N, Srivastava K. Preparation and encapsulation efficiency of surface modified egg albumin nanoparticles. J. Res. Pharm. 2025;27(2):883-92.