Research Article
BibTex RIS Cite
Year 2020, Volume: 24 Issue: 5, 720 - 737, 27.06.2025
https://doi.org/10.35333/jrp.2020.226

Abstract

References

  • [1] Gozali D, Megantara S, Levita J, Bahti HH, Soewandhi SN, Abdassah M. Virtual Screening of coformers for atorvastatin cocrystallization and characterization of the cocrystals. IJPSR. 2016; 7(4): 1450-1455. [CrossRef]
  • [2] Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RH, Hwang SJ. Preparation, Characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent process. Eur J Pharm Biopharm. 2008; 69(2): 454-465. [CrossRef]
  • [3] Nagalingam A, Deecaraman M, Rani C, Mohanraj KP, Kumar VK. Preparation and solid state characterization of atorvastatin nanosuspensions for enhanced solubility and dissolution. Int J Pharmtech Res. 2009; 1(4): 1725-1730.
  • [4] Gubbi SR, Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian J Pharm Sci. 2010; 5(2): 50-60.
  • [5] Kadu PJ, Kushare SS, Thacker DD, Gattani SG. Enhancement of oral bioavailability of atorvastatin calcium by selfemulsifying drug delivery system. Pharm Dev Technol. 2010; 16(1): 65-74. [CrossRef]
  • [6] Anwar M, Warsi MH, Mallick N, Akhter S, Gahoi S, Jain GK, Talegaonkar S, Ahmad FJ, Khar RK. Enhanced bioavailability of nano-sized chitosan–atorvastatin conjugate after oral administration to rats. Eur J Pharm Sci. 2011; 44: 241–249. [CrossRef]
  • [7] Kulthe VV, Chaudhary PD. Drug resonates an attractive approach of solubility enhancement of atorvastatin calcium. Indian J Pharm Sci. 2013; 75(5): 523-532. [CrossRef]
  • [8] Shayanfar A, Ghavimi H, Hamishehkar H, Jouyban A. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties. J Pharm Sci. 2013; 16: 577-587. [CrossRef]
  • [9] Palem CR, Patel MS, Pokharkar VB. Solubility and stability enhancement of atorvastatin by cyclodextrin complex. PDA J Pharm Sci Technol. 2009; 63(3): 217-225.
  • [10] Maurya D, Belgamwar V, Tekade A. Microwave induced solubility enhancement of poorly water soluble atorvastatin calcium. J Pharm Pharmacol. 2010; 62(11): 1599-1606. [CrossRef]
  • [11] Choudhary A, Rana AC, Aggarwal G, Kumar V, Zakir F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm Sin B. 2012; 2(4): 421–428. [CrossRef]
  • [12] Taral MN. Solubility enhancement of atorvastatin calcium by using microwave assisted solid dispersion preparation method. IJPRAS. 2015; 4(1): 51-56.
  • [13] Ha E, Baek I, Cho W, Hwang S, Kim M. Preparation and evaluation of solid dispersion of atorvastatin calcium with soluplus by spray drying technique. Chem Pharm Bull. 2014; 62(6): 545-551. [CrossRef]
  • [14] Alatas F, Rathi H, Soewandhi SN. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid co-crystal formation. Int J Pharm Sci. 2015; 7(3): 423-426.
  • [15] Chadha R, Bhandari S, Haneef J, Khullar S, Mandal S. Cocrystals of telmisartan: characterization, structure elucidation, in vivo and toxicity studies. Cryst Eng Comm. 2014; 16: 8375-8389. [CrossRef]
  • [16] Fukte SR, Wagh MP, Rawat S. Coformer selection: an important tool in cocrystal formation. Int J Pharm Sci. 2014; 6(7): 9-14.
  • [17] Wicaksono Y, Wisudyaningsih B, Siswoyo TA. Cocrystal of atorvastatin calcium –malonic acid. Proceeding of 1st International Conference on Medicine and Health Sciences (ICMHS); 2016 31 August - 01 September; University of Jember, Indonesia; 2016. p.75-78.
  • [18] Wicaksono Y, Wisudyaningsih B, Siswoyo TA. Enhancement of solubility and dissolution rate of atorvastatin calcium by cocrystallization. Trop J Pharm Res. 2017; 16(7) :1497-1502. [CrossRef]
  • [19] Wicaksono Y, Wisudyaningsih B, Siswoyo TA. Preparation and characterization of novel cocrystal of atorvastatin calcium with succinic acid conformer. Indones J Chem. 2019; 19(3): 660-667. [CrossRef]
  • [20] Childs S, Rodriguez-Hornedo N, Reddy L, Jayashankar A, Maheshwari C, McCausland L, Shipplett R, Stahly B. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngCommun. 2008; 10: 856–864. [CrossRef]
  • [21] Mohammad A, Alhalaweh A, Velaga S. Hansen solubility parameters a tool to predict cocrystal formation. Int J Pharm. 2011; 407: 63-71. [CrossRef]
  • [22] Alhalaweh A, Velaga S. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des. 2010; 10: 3302–3305. [CrossRef]
  • [23] Rodriguez-Hornedo N, Nehm S, Seefeldt K, Pagan-Torres Y, Falkiewicz C. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm. 2006; 3: 362–367. [CrossRef]
  • [24] Zhang G, Henry R, Borchardt T, Lou X. Efficient co-crystal screening using solution-mediated phase transformation. J Pharm Sci. 2007; 96: 990–995. [CrossRef]
  • [25] Fabian L. Cambridge structural database analysis of molecular complementarity.in cocrystals. Cryst Growth Des. 2009; 9: 1436–1443. [CrossRef]
  • [26] Issa N, Karamertzanis PG, Welch GWA, Price SL. Can the formation of pharmaceutical cocrystals be computationally predicted? I. Comparison of lattice energies. Cryst Growth Des. 2009; 9: 442–453. [CrossRef]
  • [27] Karamertzanis PG, Kazantsev AV, Issa N, Welch GWA, Adjiman CS, Pantelides CC, Price SL. Can the formation of pharmaceutical cocrystals be computationally predicted? Crystal structure prediction. J Chem Theory Comput. 2009; 5: 1432–1448. [CrossRef]
  • [28] Hansen CM. The three-dimensional solubility parameter-key to paint component affinities solvents, plasticizers, polymers, and resins. II. Dyes, emulsifiers, mutual solubility and compatibility, and pigments. III. Independent calculation of the parameter components. J Paint Technol. 1967a; 39: 505–510.
  • [29] Hansen C. Hansen Solubility Parameters: A User’s Handbook. CRC Press, Boca Raton, FL, USA. 2007
  • [30] Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999; 88: 1182–1190. [CrossRef]
  • [31] Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR. Vogel textbook of practical organic chemistry. 5th ed., Pearson education, New york 2008.
  • [32] Rath SK, Samantaray SV, Dinda SC. Development and validation of new analytical method for the estimation of atorvastatin calcium hydrate residue by using UV spectrophotometer. Int J Pharm Sci Res. 2013; 4(9): 3416-3425. [CrossRef]
  • [33] Aher NS, Manohar SD, Saudagar RB. Pharmaceutical Cocrystallization: A review. JAPER. 2014; 4(4): 388-396.
  • [34] Bhandaru JS, Malothu N, Akkinepally RR. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate. Cryst. Growth Des. 2015; 15: 1173-1179. [CrossRef]
  • [35] Chadha R, Saini A, Arora P, Chanda S, Jain DV. Cocrystals of Efavirenz with selected coformers: preparation and characterization. Int J Pharm Pharm Sci. 2012; 4(2): 244-250.
  • [36] Pathak CD, Savjani KT, Gajjar AK, Savjani JK. Cocrystal formation of paracetamol with indomethacin and mefenamic acid: an efficient approach to enhance solubility. Int J Pharm Pharm Sci. 2013; 5(4): 414-419.
  • [37] Sarkar A, Rohani S. Molecular salts and cocrystals of mirtazapine with promising physicochemical properties. J Pharm Biomed Anal. 2015; 110: 93-99. [CrossRef]
  • [38] Gadade DD, Kulkarni DA, Rathi PB, Pekamwar SS, Joshi SS. Solubility enhancement of lornoxicam by crystal engineering. Indian J Pharm Sci. 2017; 79(2): 277-286. [CrossRef]
  • [39] Ahjel SW, Lupuleasa D. Enhancement of solubility and dissolution rate of different forms of atorvastatin calcium in direct compression tablet formulas. Farmacia. 2009; 57(3): 291-300.
  • [40] Maeno Y, Fukami T, Kawahata M, Yamaguchi K, Tagami T, Ozeki T, Suzuki T, Tomono K. Novel pharmaceutical cocrystal consisting of paracetamol and trimethylglycine, a new promising cocrystal former. Int J Pharm. 2014; 473: 179-186. [CrossRef]
  • [41] Panzade P, Shendarkar G, Shaikh S, Rathi PB. Pharmaceutical cocrystal of piroxicam: design, formulation and evaluation. Adv Pharm Bull. 2017; 7(3): 399-408. [CrossRef]
  • [42] Chowdary VH, Yalavarthi PR, Venkata BRM, Thanniru J, Vandana KR, Sundaresan CR. Potential of microemulsified entacapone drug delivery systems in the management of acute Parkinson’s disease. J Acute Dis. 2016; 5(4): 315-325. [CrossRef]
  • [43] Shete G, Puri V, Kumar L, Bansal AK. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS Pharm SciTech. 2010; 11(2): 598-609. [CrossRef]
  • [44] Trask AV, Motherwell WDS, Jones W. Solvent-drop grinding: green polymorph control of crystallisation. Chem Commun. 2004; 7: 890–1. [CrossRef]
  • [45] Narsaiah LV, Reddy KB, Kishore K, Kumar RM, Srinivasa RP. Enhanced dissolution rate of atorvastatin calcium using solid dispersion with PEG 6000 by dropping method. Int J Pharm Sci Res. 2010; 2(8): 484-491.
  • [46] Alhalaweh A, George S, Basavoju S, Childs SL, Syed AAR, Velega SP. Pharmaceutical cocrystals of nitrofurantoin: screening characterization and crystal structure analysis. CrystEngComm. 2012; 14: 5078-5088. [CrossRef]

Experimental design approach for development of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution

Year 2020, Volume: 24 Issue: 5, 720 - 737, 27.06.2025
https://doi.org/10.35333/jrp.2020.226

Abstract

The objective of the present work was to prepare cocrystals of poorly soluble drug Atorvastatin Calcium (AVA) with the aim of increasing its solubility and dissolution properties. Screening of 8 cocrystal formers (CCFs) was performed by Hansen solubility parameter (HSPs) using 4 methods- neat grinding, solvent drop grinding, solvent evaporation and sonocrystallization in equimolar ratio. Solubility of AVA cocrystal (1.9 fold increase) in comparison to plain AVA drug has been demonstrated with solubility experiments. FTIR spectra of AVA cocrystal showed disappearance of O-H group indicating the formation of hydrogen bond synthon between the drug and CCFs. DSC thermogram showed drastic reduction in melting point from 164.6°C to 71.9 °C indicating the reduction in cohesive energy and increase in solubility. XRD pattern showed new crystalline peaks at 2θ values of 9.858°, 15.201°, 22.907°, 25.407°, 29.496°. SEM analysis showed changes in the morphological characteristics as compared to drug and CCFs, indicating different crystalline nature. Experimental design was applied to optimize AVA cocrystal IR tablet for concentration of aerosil (X1) and MMC 102 (X2) and were evaluated for drug release (Y1) and friability (Y2). It was found that as the concentration of aerosil and MMC 102 increased friability decreased and %drug release increased. A drug release of 98.54±1.163% and friability of 0.515±0.090 % was obtained for optimized batch. Ex vivo diffusion study was carried out by isolating rat stomach tissue, exhibiting higher drug release (95.71±0.98 %) than plain AVA and marketed tablet. Thus formulating AVA cocrystal and its subsequent formulation in optimized IR tablet gives a promising opportunity for manufacturing a drug with increased bioavailability.

References

  • [1] Gozali D, Megantara S, Levita J, Bahti HH, Soewandhi SN, Abdassah M. Virtual Screening of coformers for atorvastatin cocrystallization and characterization of the cocrystals. IJPSR. 2016; 7(4): 1450-1455. [CrossRef]
  • [2] Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RH, Hwang SJ. Preparation, Characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent process. Eur J Pharm Biopharm. 2008; 69(2): 454-465. [CrossRef]
  • [3] Nagalingam A, Deecaraman M, Rani C, Mohanraj KP, Kumar VK. Preparation and solid state characterization of atorvastatin nanosuspensions for enhanced solubility and dissolution. Int J Pharmtech Res. 2009; 1(4): 1725-1730.
  • [4] Gubbi SR, Jarag R. Formulation and characterization of atorvastatin calcium liquisolid compacts. Asian J Pharm Sci. 2010; 5(2): 50-60.
  • [5] Kadu PJ, Kushare SS, Thacker DD, Gattani SG. Enhancement of oral bioavailability of atorvastatin calcium by selfemulsifying drug delivery system. Pharm Dev Technol. 2010; 16(1): 65-74. [CrossRef]
  • [6] Anwar M, Warsi MH, Mallick N, Akhter S, Gahoi S, Jain GK, Talegaonkar S, Ahmad FJ, Khar RK. Enhanced bioavailability of nano-sized chitosan–atorvastatin conjugate after oral administration to rats. Eur J Pharm Sci. 2011; 44: 241–249. [CrossRef]
  • [7] Kulthe VV, Chaudhary PD. Drug resonates an attractive approach of solubility enhancement of atorvastatin calcium. Indian J Pharm Sci. 2013; 75(5): 523-532. [CrossRef]
  • [8] Shayanfar A, Ghavimi H, Hamishehkar H, Jouyban A. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties. J Pharm Sci. 2013; 16: 577-587. [CrossRef]
  • [9] Palem CR, Patel MS, Pokharkar VB. Solubility and stability enhancement of atorvastatin by cyclodextrin complex. PDA J Pharm Sci Technol. 2009; 63(3): 217-225.
  • [10] Maurya D, Belgamwar V, Tekade A. Microwave induced solubility enhancement of poorly water soluble atorvastatin calcium. J Pharm Pharmacol. 2010; 62(11): 1599-1606. [CrossRef]
  • [11] Choudhary A, Rana AC, Aggarwal G, Kumar V, Zakir F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm Sin B. 2012; 2(4): 421–428. [CrossRef]
  • [12] Taral MN. Solubility enhancement of atorvastatin calcium by using microwave assisted solid dispersion preparation method. IJPRAS. 2015; 4(1): 51-56.
  • [13] Ha E, Baek I, Cho W, Hwang S, Kim M. Preparation and evaluation of solid dispersion of atorvastatin calcium with soluplus by spray drying technique. Chem Pharm Bull. 2014; 62(6): 545-551. [CrossRef]
  • [14] Alatas F, Rathi H, Soewandhi SN. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid co-crystal formation. Int J Pharm Sci. 2015; 7(3): 423-426.
  • [15] Chadha R, Bhandari S, Haneef J, Khullar S, Mandal S. Cocrystals of telmisartan: characterization, structure elucidation, in vivo and toxicity studies. Cryst Eng Comm. 2014; 16: 8375-8389. [CrossRef]
  • [16] Fukte SR, Wagh MP, Rawat S. Coformer selection: an important tool in cocrystal formation. Int J Pharm Sci. 2014; 6(7): 9-14.
  • [17] Wicaksono Y, Wisudyaningsih B, Siswoyo TA. Cocrystal of atorvastatin calcium –malonic acid. Proceeding of 1st International Conference on Medicine and Health Sciences (ICMHS); 2016 31 August - 01 September; University of Jember, Indonesia; 2016. p.75-78.
  • [18] Wicaksono Y, Wisudyaningsih B, Siswoyo TA. Enhancement of solubility and dissolution rate of atorvastatin calcium by cocrystallization. Trop J Pharm Res. 2017; 16(7) :1497-1502. [CrossRef]
  • [19] Wicaksono Y, Wisudyaningsih B, Siswoyo TA. Preparation and characterization of novel cocrystal of atorvastatin calcium with succinic acid conformer. Indones J Chem. 2019; 19(3): 660-667. [CrossRef]
  • [20] Childs S, Rodriguez-Hornedo N, Reddy L, Jayashankar A, Maheshwari C, McCausland L, Shipplett R, Stahly B. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngCommun. 2008; 10: 856–864. [CrossRef]
  • [21] Mohammad A, Alhalaweh A, Velaga S. Hansen solubility parameters a tool to predict cocrystal formation. Int J Pharm. 2011; 407: 63-71. [CrossRef]
  • [22] Alhalaweh A, Velaga S. Formation of cocrystals from stoichiometric solutions of incongruently saturating systems by spray drying. Cryst Growth Des. 2010; 10: 3302–3305. [CrossRef]
  • [23] Rodriguez-Hornedo N, Nehm S, Seefeldt K, Pagan-Torres Y, Falkiewicz C. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm. 2006; 3: 362–367. [CrossRef]
  • [24] Zhang G, Henry R, Borchardt T, Lou X. Efficient co-crystal screening using solution-mediated phase transformation. J Pharm Sci. 2007; 96: 990–995. [CrossRef]
  • [25] Fabian L. Cambridge structural database analysis of molecular complementarity.in cocrystals. Cryst Growth Des. 2009; 9: 1436–1443. [CrossRef]
  • [26] Issa N, Karamertzanis PG, Welch GWA, Price SL. Can the formation of pharmaceutical cocrystals be computationally predicted? I. Comparison of lattice energies. Cryst Growth Des. 2009; 9: 442–453. [CrossRef]
  • [27] Karamertzanis PG, Kazantsev AV, Issa N, Welch GWA, Adjiman CS, Pantelides CC, Price SL. Can the formation of pharmaceutical cocrystals be computationally predicted? Crystal structure prediction. J Chem Theory Comput. 2009; 5: 1432–1448. [CrossRef]
  • [28] Hansen CM. The three-dimensional solubility parameter-key to paint component affinities solvents, plasticizers, polymers, and resins. II. Dyes, emulsifiers, mutual solubility and compatibility, and pigments. III. Independent calculation of the parameter components. J Paint Technol. 1967a; 39: 505–510.
  • [29] Hansen C. Hansen Solubility Parameters: A User’s Handbook. CRC Press, Boca Raton, FL, USA. 2007
  • [30] Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999; 88: 1182–1190. [CrossRef]
  • [31] Furniss BS, Hannaford AJ, Smith PWG, Tatchell AR. Vogel textbook of practical organic chemistry. 5th ed., Pearson education, New york 2008.
  • [32] Rath SK, Samantaray SV, Dinda SC. Development and validation of new analytical method for the estimation of atorvastatin calcium hydrate residue by using UV spectrophotometer. Int J Pharm Sci Res. 2013; 4(9): 3416-3425. [CrossRef]
  • [33] Aher NS, Manohar SD, Saudagar RB. Pharmaceutical Cocrystallization: A review. JAPER. 2014; 4(4): 388-396.
  • [34] Bhandaru JS, Malothu N, Akkinepally RR. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate. Cryst. Growth Des. 2015; 15: 1173-1179. [CrossRef]
  • [35] Chadha R, Saini A, Arora P, Chanda S, Jain DV. Cocrystals of Efavirenz with selected coformers: preparation and characterization. Int J Pharm Pharm Sci. 2012; 4(2): 244-250.
  • [36] Pathak CD, Savjani KT, Gajjar AK, Savjani JK. Cocrystal formation of paracetamol with indomethacin and mefenamic acid: an efficient approach to enhance solubility. Int J Pharm Pharm Sci. 2013; 5(4): 414-419.
  • [37] Sarkar A, Rohani S. Molecular salts and cocrystals of mirtazapine with promising physicochemical properties. J Pharm Biomed Anal. 2015; 110: 93-99. [CrossRef]
  • [38] Gadade DD, Kulkarni DA, Rathi PB, Pekamwar SS, Joshi SS. Solubility enhancement of lornoxicam by crystal engineering. Indian J Pharm Sci. 2017; 79(2): 277-286. [CrossRef]
  • [39] Ahjel SW, Lupuleasa D. Enhancement of solubility and dissolution rate of different forms of atorvastatin calcium in direct compression tablet formulas. Farmacia. 2009; 57(3): 291-300.
  • [40] Maeno Y, Fukami T, Kawahata M, Yamaguchi K, Tagami T, Ozeki T, Suzuki T, Tomono K. Novel pharmaceutical cocrystal consisting of paracetamol and trimethylglycine, a new promising cocrystal former. Int J Pharm. 2014; 473: 179-186. [CrossRef]
  • [41] Panzade P, Shendarkar G, Shaikh S, Rathi PB. Pharmaceutical cocrystal of piroxicam: design, formulation and evaluation. Adv Pharm Bull. 2017; 7(3): 399-408. [CrossRef]
  • [42] Chowdary VH, Yalavarthi PR, Venkata BRM, Thanniru J, Vandana KR, Sundaresan CR. Potential of microemulsified entacapone drug delivery systems in the management of acute Parkinson’s disease. J Acute Dis. 2016; 5(4): 315-325. [CrossRef]
  • [43] Shete G, Puri V, Kumar L, Bansal AK. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS Pharm SciTech. 2010; 11(2): 598-609. [CrossRef]
  • [44] Trask AV, Motherwell WDS, Jones W. Solvent-drop grinding: green polymorph control of crystallisation. Chem Commun. 2004; 7: 890–1. [CrossRef]
  • [45] Narsaiah LV, Reddy KB, Kishore K, Kumar RM, Srinivasa RP. Enhanced dissolution rate of atorvastatin calcium using solid dispersion with PEG 6000 by dropping method. Int J Pharm Sci Res. 2010; 2(8): 484-491.
  • [46] Alhalaweh A, George S, Basavoju S, Childs SL, Syed AAR, Velega SP. Pharmaceutical cocrystals of nitrofurantoin: screening characterization and crystal structure analysis. CrystEngComm. 2012; 14: 5078-5088. [CrossRef]
There are 46 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences (Other)
Journal Section Articles
Authors

Hemangi R. Trivedi

Dhananajay S. Borkar

Prashant K. Puranik

Publication Date June 27, 2025
Published in Issue Year 2020 Volume: 24 Issue: 5

Cite

APA Trivedi, H. R., Borkar, D. S., & Puranik, P. K. (2025). Experimental design approach for development of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution. Journal of Research in Pharmacy, 24(5), 720-737. https://doi.org/10.35333/jrp.2020.226
AMA Trivedi HR, Borkar DS, Puranik PK. Experimental design approach for development of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution. J. Res. Pharm. June 2025;24(5):720-737. doi:10.35333/jrp.2020.226
Chicago Trivedi, Hemangi R., Dhananajay S. Borkar, and Prashant K. Puranik. “Experimental Design Approach for Development of Cocrystals and Immediate Release Cocrystal Tablet of Atorvastatin Calcium for Enhancement of Solubility and Dissolution”. Journal of Research in Pharmacy 24, no. 5 (June 2025): 720-37. https://doi.org/10.35333/jrp.2020.226.
EndNote Trivedi HR, Borkar DS, Puranik PK (June 1, 2025) Experimental design approach for development of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution. Journal of Research in Pharmacy 24 5 720–737.
IEEE H. R. Trivedi, D. S. Borkar, and P. K. Puranik, “Experimental design approach for development of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution”, J. Res. Pharm., vol. 24, no. 5, pp. 720–737, 2025, doi: 10.35333/jrp.2020.226.
ISNAD Trivedi, Hemangi R. et al. “Experimental Design Approach for Development of Cocrystals and Immediate Release Cocrystal Tablet of Atorvastatin Calcium for Enhancement of Solubility and Dissolution”. Journal of Research in Pharmacy 24/5 (June 2025), 720-737. https://doi.org/10.35333/jrp.2020.226.
JAMA Trivedi HR, Borkar DS, Puranik PK. Experimental design approach for development of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution. J. Res. Pharm. 2025;24:720–737.
MLA Trivedi, Hemangi R. et al. “Experimental Design Approach for Development of Cocrystals and Immediate Release Cocrystal Tablet of Atorvastatin Calcium for Enhancement of Solubility and Dissolution”. Journal of Research in Pharmacy, vol. 24, no. 5, 2025, pp. 720-37, doi:10.35333/jrp.2020.226.
Vancouver Trivedi HR, Borkar DS, Puranik PK. Experimental design approach for development of cocrystals and immediate release cocrystal tablet of atorvastatin calcium for enhancement of solubility and dissolution. J. Res. Pharm. 2025;24(5):720-37.