Review Article
BibTex RIS Cite
Year 2025, Volume: 10 Issue: 1, 108 - 141, 29.03.2025
https://doi.org/10.47481/jscmt.1667793

Abstract

References

  • 1. Zeyad, A. M. (2023). Sustainable concrete production: Incorporating recycled wastewater as a green building material. Constr Build Mater, 407, 133522. [CrossRef]
  • 2. Nilimaa, J. (2023). Smart materials and technologies for sustainable concrete construction. Dev Built Environ, 15, 100177. [CrossRef]
  • 3. Javadabadi, M. T., Kristiansen, D. D. L., Redie, M. B., & Baghban, M. H. (2019). Sustainable concrete: A review. Int J Struct Civ Eng Res, 8(2), 126–132. [CrossRef]
  • 4. Wasim, M., Ngo, T. D., & Law, D. (2021). A state-of-the-art review on the durability of geopolymer concrete for sustainable structures and infrastructure. Constr Build Mater, 291, 123381. [CrossRef]
  • 5. Duchesne, J. (2021). Alternative supplementary cementitious materials for sustainable concrete structures: A review on characterization and properties. Waste Biomass Valorization, 12, 1219–1236. [CrossRef]
  • 6. Khalil, M. J., Aslam, M., & Ahmad, S. (2021). Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete: A review. Constr Build Mater, 270, 121371. [CrossRef]
  • 7. Farooq, F., Jin, X., Javed, M. F., Akbar, A., Shah, M. I., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Constr Build Mater, 306, 124762. [CrossRef]
  • 8. Hu, M., & Shealy, T. (2023). Priming the public to construct preferences for sustainable design: A discrete choice model for green infrastructure. J Environ Psychol, 88, 102005. [CrossRef]
  • 9. Evans, A., & Hardman, M. (2023). Enhancing green infrastructure in cities: Urban car parks as an opportunity space. Land Use Policy, 134, 106914. [CrossRef]
  • 10. Kamjou, E., Scott, M., & Lennon, M. (2024). A bottom-up perspective on green infrastructure in informal settlements: Understanding nature’s benefits through lived experiences. Urban Forestry & Urban Greening, 94, 128231. [CrossRef]
  • 11. Ghofrani, Z., Sposito, V., & Faggian, R. (2017). A comprehensive review of blue-green infrastructure concepts. Int J Environ Sustain, 6(1), 15–36. [CrossRef]
  • 12. Seiwert, A., & Rossler, S. (2020). Understanding the term green infrastructure: Origins, rationales, semantic content and purposes as well as its relevance for application in spatial planning. Land Use Policy, 97, 104785. [CrossRef]
  • 13. Ying, J., Zhang, X., Zhang, Y., & Bilan, S. (2022). Green infrastructure: Systematic literature review. Econ Res, 35(1), 343–366. [CrossRef]
  • 14. Shaanala, A., Yigitcanlar, T., Nili, A., & Nyandega, D. (2024). Algorithmic green infrastructure optimisation: Review of artificial intelligence driven approaches for tackling climate change. Sustain Cities Soc, 105, 182. [CrossRef]
  • 15. Bartesaghi Koc, C., Osmond, P., & Peters, A. (2017). Towards a comprehensive green infrastructure typology: A systematic review of approaches, methods and typologies. Urban Ecosystem, 20(1), 15–35. [CrossRef]
  • 16. Xia, B., Ding, T., & Xiao, J. (2020). Life cycle assessment of concrete structures with reuse and recycling strategies: A novel framework and case study. Waste Manag, 105, 268–278. [CrossRef]
  • 17. Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Constr Build Mater, 269, 121240. [CrossRef]
  • 18. Gambo, S., Sanda, U. M., Ibrahim, A. G., Usman, J., & Mohammad, U. H. (2023). Strength properties of ordinary Portland cement concrete containing high-volume recycled coarse aggregate and volcanic ash. Mater Today Proc, 86, 140–144. [CrossRef]
  • 19. Song, Y., Ma, S., Liu, J., & Yue, Z. Q. (2023). Laboratory investigation of CDG soil as source of fine aggregates for Portland cement concrete. Constr Build Mater, 367, 130226. [CrossRef]
  • 20. Saha, A., Tonmoy, T. M., Sobuz, M. H. R., Aditto, F. S., & Mansour, W. (2024). Assessment of mechanical, durability and microstructural performance of sulphate-resisting cement concrete over Portland cement in the presence of salinity. Constr Build Mater, 420, 135527. [CrossRef]
  • 21. Marey, H., Kozma, G., & Szabo, G. (2024). Green concrete materials selection for achieving circular economy in residential buildings using system dynamics. Clean Mater, 11, 100221. [CrossRef]
  • 22. Xie, N., Akin, M., & Shi, X. (2019). Permeable concrete pavements: A review of environmental benefits and durability. J Clean Prod, 210, 1605–1621. [CrossRef]
  • 23. Haselbach, L., Poor, C., & Tilson, J. (2014). Dissolved zinc and copper retention from stormwater runoff in ordinary Portland cement pervious concrete. Constr Build Mater, 53, 652–657. [CrossRef]
  • 24. Zhang, Y., Li, H., Abdelhady, A., & Yang, J. (2020). Effect of different factors on sound absorption property of porous concrete. Transp Res D Transp Environ, 87, 102532. [CrossRef]
  • 25. Chandrappa, A. K., & Biligiri, K. P. (2016). Pervious concrete as a sustainable pavement material-Research findings and future prospects: A state-of-the-art review. Constr Build Mater, 111, 262–274. [CrossRef]
  • 26. Gowda, S. B., Goudar, S. K., Thanu, H. P., & Monisha, B. (2023). Performance evaluation of alkali-activated slag-based recycled aggregate pervious concrete. Mater Today Proc.
  • 27. Zhu, X., & Jiang, Z. (2023). Reuse of waste rubber in pervious concrete: Experiment and DEM simulation. J Build Eng, 71, 106452. [CrossRef]
  • 28. Joshi, T., & Dave, U. (2022). Construction of pervious concrete pavement stretch, Ahmedabad, India–Case study. Case Stud Constr Mater, 16, e00622. [CrossRef]
  • 29. Elango, K. S., Gopi, R., Saravanakumar, R., Rajeshkumar, V., Vivek, D., & Raman, S. V. (2021). Properties of pervious concrete-A state of the art review. Mater Today Proc, 45, 2422–2425. [CrossRef]
  • 30. Zhu, Y., Fu, H., Wang, P., Xu, P., Ling, Z., & Wei, D. (2023). Pure structure characteristics, mechanical properties, and freeze-thaw resistance of vegetation-pervious concrete with unsintered sludge pellets. Constr Build Mater, 382, 131342. [CrossRef]
  • 31. Adresi, M., Yamani, A., Tabaretsani, M. K., & Rooholamini, H. (2023). A comprehensive review on pervious concrete. Constr Build Mater, 407, 133308. [CrossRef]
  • 32. Tahiri, I., Dangla, P., Vandamme, M., & Vu, Q. H. (2022). Numerical investigation of salt-frost damage of pervious concrete at the scale of a few aggregates. Cem Concr Res, 162, 106971. [CrossRef]
  • 33. Chockalingam, T., Vijayaprabha, C., & Raj, J. L. (2023). Experimental study on size of aggregates, size and shape of specimens on strength characteristics of pervious concrete. Constr Build Mater, 385, 131320. [CrossRef]
  • 34. Adosi, B., Mirjalili, S. A., Adresi, M., Tulliani, J. M., & Antonaci, P. (2021). Experimental evaluation of tensile performance of aluminate cement composite reinforced with wet knitted fabrics as a function of curing temperature. Polym, 13(24), 4385. [CrossRef]
  • 35. ACI Committee 522. (2010). 522R-10: Report on pervious concrete. American Concrete Institute.
  • 36. Debnath, B., & Sarkar, P. P. (2020). Pervious concrete as an alternative pavement strategy: A state-of-the-art review. Int J Pavement Eng, 21(12), 1516–1531. [CrossRef]
  • 37. Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Constr Build Mater, 50, 524–529. [CrossRef]
  • 38. Risson, K. D. B. D. S., Sandoval, G. F., Pinto, F. S. C., Camargo, M., De Moura, A. C., & Toralles, B. M. (2021). Molding procedure for pervious concrete specimens by density control. Case Stud Constr Mater, 15, e00619. [CrossRef]
  • 39. Lopez-Carrasquillo, V., & Hwang, S. (2017). Comparative assessment of pervious concrete mixtures containing fly ash and nanomaterials for compressive strength, physical durability, permeability, water quality performance, and production cost. Constr Build Mater, 139, 148–158. [CrossRef]
  • 40. Nassiri, S., & AlShareedah, O. (2017). Preliminary procedure for structural design of pervious concrete pavements (No. WA-RD 868.2). Washington (State) Department of Transportation, Research Office.
  • 41. Tobolsky, A., & Eyring, H. (1943). Mechanical properties of polymeric materials. J Chem Phys, 11(3), 125–134. [CrossRef]
  • 42. Leguillon, D., Martin, E., & Lafarie-Frenot, M. C. (2015). Flexural vs. tensile strength in brittle materials. C R Mée, 343(4), 275–281. [CrossRef]
  • 43. Chen, Y., Wang, K., Wang, X., & Zhou, W. (2013). Strength, fracture and fatigue of pervious concrete. Constr Build Mater, 42, 97–104. [CrossRef]
  • 44. Ahmad, S. H., & Shah, S. P. (1985). Structural properties of high-strength concrete and its implications for precast prestressed concrete. PCI J, 30(6), 92–119. [CrossRef]
  • 45. AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. J Clean Prod, 288, 125095. [CrossRef]
  • 46. Patil, C. B., Shinde, P. S., Mohite, B. M., & Ingale, S. S. (2017). Experimental evaluation of compressive and flexural strength of pervious concrete by using polypropylene fiber. Int J Eng Res Technol, 6(4), 756–762. [CrossRef]
  • 47. Gaedicke, C., Torres, A., Huynh, K. C., & Marines, A. (2016). A method to correlate splitting tensile strength and compressive strength of pervious concrete cylinders and cores. Constr Build Mater, 125, 271–278. [CrossRef]
  • 48. Rajasekhar, K., & Spandana, K. (2016). Strength properties of pervious concrete compared with conventional concrete. IOSR J Mech Civ Eng, 13(4), 97–103.
  • 49. ASTM International. (1986). Standard test method for splitting tensile strength of cylindrical concrete specimens. Annu B ASTM Stand, 4, 337–342.
  • 50. Chavan, P., Patare, D., & Wagh, M. (2019). Enhancement of pervious concrete properties by using polypropylene fiber. Int J Eng Res Gen Sci, 7(6), 17–25.
  • 51. Sohel, K. M. A., Al-Hinai, M. H. S., Alnuaimi, A., Al-Shahri, M., & El-Gamal, S. (2022). Prediction of flexural fatigue life and failure probability of normal weight concrete. Mater Constr, 72(347), e291. [CrossRef]
  • 52. Jiao, K., Chen, C., Li, L., Shi, X., & Wang, Y. (2020). Compression fatigue properties of pervious concrete. ACI Mater J, 117(2), 241–249. [CrossRef]
  • 53. AlShareedah, O., Nassiri, S., & Dolan, J. D. (2019). Pervious concrete under flexural fatigue loading: Performance evaluation and model development. Constr Build Mater, 207, 17–27. [CrossRef]
  • 54. Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities, and challenges-A review. Renew Sustain Energy Rev, 90, 757–773. [CrossRef]
  • 55. Mihalakakou, G., Souliotis, M., Papadaki, M., Menounou, P., Dimopoulos, P., Kolokotsa, D., Paravantis, J. A., Tsangrassoulis, A., Panaras, G., Giannakopoulos, E., & Papaefthimiou, S. (2023). Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew Sustain Energy Rev, 180, 113306. [CrossRef]
  • 56. Yang, J., Yu, Q., & Gong, P. (2008). Quantifying air pollution removal by green roofs in Chicago. Atmos Environ, 42(31), 7266–7273. [CrossRef]
  • 57. Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy, 70(3), 295–310. [CrossRef]
  • 58. Su, R., Qiao, H., Li, Q., & Su, L. (2023). Study on the performance of vegetation concrete prepared based on different cements. Constr Build Mater, 409, 133793. [CrossRef]
  • 59. Li, S., Yin, J., & Zhang, G. (2020). Experimental investigation on optimization of vegetation performance of porous sea sand concrete mixtures by pH adjustment. Constr Build Mater, 249, 118775. [CrossRef]
  • 60. Cao, Q., Zhou, J., Xu, W., & Yuan, X. (2024). Study on the preparation and properties of vegetation lightweight porous concrete. Mater, 17(1), 251. [CrossRef]
  • 61. Peng, H., Yin, J., & Song, W. (2018). Mechanical and hydraulic behaviors of eco-friendly pervious concrete incorporating fly ash and blast furnace slag. Appl Sci, 8(6), 859. [CrossRef]
  • 62. Kim, H. H., & Park, C. G. (2016). Plant growth and water purification of porous vegetation concrete formed of blast furnace slag, natural jute fiber, and styrene butadiene latex. Sustainability, 8(4), 386. [CrossRef]
  • 63. Wang, F., Sun, C., Ding, X., Kang, T., & Nie, X. (2019). Experimental study on the vegetation growing recycled concrete and synergistic effect with plant roots. Mater, 12(11), 1855. [CrossRef]
  • 64. Lee, J. (2019). Green infrastructure as a solution to hydrological problems: Bioswales and created wetlands. UF J Undergrad Res, 21(1), 116325. [CrossRef]
  • 65. Xiao, Q., McPherson, E. G., Zhang, Q., Ge, X., & Dahlgren, R. (2017). Performance of two bioswales on urban runoff management. Infrastructures, 2(4), 12. [CrossRef]
  • 66. Lovell, S. T., & Johnston, D. M. (2009). Designing landscapes for performance based on emerging principles in landscape ecology. Ecol Soc, 14(1), 44. [CrossRef]
  • 67. Groves, W. W., Hammer, P. E., Knutsen, K. L., Ryan, S. M., & Schlipf, R. A. (1999). Analysis of bioswale efficiency for treating surface runoff [Master’s thesis], University of California.
  • 68. Zheng, C., Zhang, Z., Huang, Z., Wang, D., Zhang, W., Zhou, Z., Zhu, Y., Wang, D., Wan, H., & Jiang, Z. (2024). Review of porous vegetation eco-concrete (PVEC) technology: From engineering requirements to material design. Compos B Eng, 279, 111442. [CrossRef]
  • 69. Amin, A. M., Mahfouz, S. Y., Tawfic, A. F., & Ali, M. A. (2023). Experimental investigation on static/dynamic response and y/n shielding of different sustainable concrete mixtures. Alex Eng J, 75, 465–477. [CrossRef]
  • 70. Choi, S. W., Kim, V., Chang, W. S., & Kim, E. Y. (2007). The present situation of production and utilization of steel slag in Korea and other countries. Mag Korea Concr Inst, 19(6), 28–33.
  • 71. Mironovs, V., Bronka, J., Korjakins, A., & Kazjonovs, J. (2011). Possibilities of application of iron-containing waste materials in manufacturing of heavy concrete. Proc Civil Eng, 11, 14–19.
  • 72. Ravikumar, H., Datatareya, J. K., & Shivananda, K. P. (2015). Experimental investigation on replacement of steel slag as coarse aggregate in concrete. J Civ Eng Environ Technol, 2(11), 58–63.
  • 73. Qurishee, M. A., Iqbal, I. T., Islam, M. S., & Islam, M. M. (2016, December). Use of slag as coarse aggregate and its effect on mechanical properties of concrete. In Proceedings of the 3rd International Conference on Advances in Civil Engineering, CUET, Chittagong, Bangladesh (pp. 475–479).
  • 74. Savini, A., & Savini, G. G. (2015). A short history of 3D printing, a technological revolution just started. In 2015 ICOHTEC/IEEE International History of High-Technologies and Their Socio-Cultural Contexts Conference (HISTELCON) (pp. 1–8). IEEE. [CrossRef]
  • 75. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications, and challenges. Compos B Eng, 143, 172–196. [CrossRef]
  • 76. Mahmood, M. A., Popescu, A. C., & Mihailescu, I. N. (2020). Metal matrix composites synthesized by laser-melting deposition: A review. Mater, 13(11), 2593. [CrossRef]
  • 77. Mangano, E., Chambrone, L., Van Noort, R., Miller, C., Hatton, P., & Mangano, C. (2014). Direct metal laser sintering titanium dental implants: A review of the current literature. Int J Biomater, 2014(1), 461534. [CrossRef]
  • 78. Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Appl Phys Rev, 2(4), 041101. [CrossRef]
  • 79. Sing, S. L., An, J., Yeong, W. Y., & Wiria, F. E. (2016). Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials, and designs. J Orthop Res, 34(3), 369–385. [CrossRef]
  • 80. Gurusamy, P., Sathish, T., Mohanavel, V., Karthick, A., Ravichandran, M., Nasif, O., Alfarraj, S., Manikandan, V., & Prasath, S. (2021). Finite element analysis of temperature distribution and stress behavior of squeeze pressure composites. Adv Mater Sci Eng, 2021(1), 8665674. [CrossRef]
  • 81. Taminger, K., & Halley, R. A. (2003). Electron beam freeform fabrication: A rapid metal deposition process. In 3rd Annual Automotive Composites Conference. Troy, Michigan.
  • 82. Teja, K., Tokala, S. C., Reddy, Y. P., & Narayana, K. L. (2020). Optimization of mechanical properties of wire arc additive manufactured specimens using grey-based Taguchi method. J Crit Rev, 7, 808–817. [CrossRef]
  • 83. Sathish, T., Tharmalingam, S., Mohanavel, V., Ashrafi Ali, K. S., Karthick, A., Ravichandran, M., & Rajkumar, S. (2021). Weldability investigation and optimization of process variables for TIG-welded aluminium alloy (AA 8006). Adv Mater Sci Eng, 2021(1), 2816338. [CrossRef]
  • 84. Melchels, F. P., Feijen, J., & Grijpina, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomater, 31(24), 6121–6130. [CrossRef]
  • 85. Zhang, J., Hu, Q., Wang, S., Tao, J., & Gou, M. (2019). Digital light processing-based three-dimensional printing for medical applications. Int J Bioptrit, 6(1), 242. [CrossRef]
  • 86. Li, W., Lin, X., Bao, D. W., & Xie, Y. M. (2022). A review of formwork systems for modern concrete construction. Struct, 38, 52–63. [CrossRef]
  • 87. Zhang, H., Rasmussen, K. J., & Ellingwood, B. R. (2012). Reliability assessment of steel scaffold shoring structures for concrete formwork. Eng Struct, 36, 81–89. [CrossRef]
  • 88. Van Niekerk, A. J. (2010). Concrete elements: Timber faced formwork systems versus steel faced formwork systems and which is truly better for the contractor? [Bachelor’s thesis], University of Pretoria.
  • 89. Shah, K. (2005). Modular aluminium formwork for faster, economical, and quality construction. Indian Concr J, 79(7), 22–26.
  • 90. Du Plessis, C. (2007). A strategic framework for sustainable construction in developing countries. Constr Manag Econ, 25(1), 67–76. [CrossRef]
  • 91. Ding, G. K. C. (2014). Life cycle assessment (LCA) of sustainable building materials: An overview. In F. Pacheco-Torgal, L. F. Cabeza, J. Labrincha, & A. de Magalhães (Eds.), Eco-efficient construction and building materials (pp. 38–62). Woodhead Publishing. [CrossRef]
  • 92. Osmani, M. (2012). Construction waste minimization in the UK: Current pressures for change and approaches. Procedia Soc Behav Sci, 40, 37–40. [CrossRef]
  • 93. Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy Build, 39(3), 249–257. [CrossRef]
  • 94. Singh, A., Berghorn, G., Joshi, S., & Syal, M. (2011). Review of life-cycle assessment applications in building construction. J Archit Eng, 17(1), 15–23. [CrossRef]
  • 95. Fay, R., Treloar, G., & Iyer-Raniga, U. (2000). Life-cycle energy analysis of buildings: A case study. Build Res Inf, 28(1), 31–41. [CrossRef]
  • 96. Han, G., & Srebric, J. (2011). Life-cycle assessment tools for building analysis. Engr Psu Edu, 7.
  • 97. International Organization for Standardization. (2006). Environmental management: Life cycle assessment—Principles and framework. ISO 14040.
  • 98. Scheuer, C., Keoleian, G. A., & Reppe, P. (2003). Life cycle energy and environmental performance of a new university building: Modeling challenges and design implications. Energy Build, 35(10), 1049–1064. [CrossRef]
  • 99. Khasreen, M. M., Banfili, P. F., & Menzies, G. F. (2009). Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, 1(3), 674–701. [CrossRef]
  • 100. Rossi, B., Marique, A.F., & Reiter, S. (2012). Life-cycle assessment of residential buildings in three different European locations: Case study. Build Environ, 51, 402–407. [CrossRef]
  • 101. Arena, A. P., & De Rosa, C. (2003). Life cycle assessment of energy and environmental implications of the implementation of conservation technologies in school buildings in Mendoza—Argentina. Build Environ, 38(2), 359–368. [CrossRef]
  • 102. Blengini, G. A., & Di Carlo, T. (2010). The changing role of life cycle phases, subsystems, and materials in the LCA of low energy buildings. Energy Build, 42(6), 869–880. [CrossRef]
  • 103. Buchan, R. D., Fleming, E., & Grant, F. (2012). Estimating for builders and surveyors. Routledge. [CrossRef]
  • 104. Ochsendorf, J., Norford, L. K., Brown, D., Durschlag, H., Hsu, S. L., Love, A., Santero, N., Swei, O., Webb, A., & Wildnauer, M. (2011). Methods, impacts, and opportunities in the concrete building life cycle. MIT Concrete Sustainability Hub.
  • 105. Tingley, D. D., & Davison, B. (2012). Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Build Environ, 57, 387–395. [CrossRef]
  • 106. Bare, J. C., Hofstetter, P., Pennington, D. W., & De Haes, H. A. U. (2000). Midpoints versus endpoints: The sacrifices and benefits. Int J Life Cycle Assess, 5, 319–326. [CrossRef]
  • 107. Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for the building industry. Renew Sustain Energy Rev, 45, 244–248. [CrossRef]
  • 108. Khoshnava, S. M., Rostami, R., Ismail, M., & Rahmat, A. R. (2018). A cradle-to-gate based life cycle impact assessment comparing the KBFw EFB hybrid reinforced poly hydroxybutyrate biocomposite and common petroleum-based composites as building materials. Environ Impact Assess Rev, 70, 11–21. [CrossRef]
  • 109. Santamouris, M. (2013). Energy and climate in the urban built environment. Routledge. [CrossRef]
  • 110. Gaitani, N., Mihalakakou, G., & Santamouris, M. (2007). On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Build Environ, 42(1), 317–324. [CrossRef]
  • 111. Fintikkalis, N., Gaitani, N., Santamouris, M., Assimakopoulos, M., Assimakopoulos, D. N., Fintikaki, M., Albanis, G., Papadimitriou, K., Chryssochoides, E., Katopodi, K., & Doumas, P. (2011). Bioclimatic design of open public spaces in the historic centre of Tirana, Albania. Sustain Cities Soc, 1(1), 54–62. [CrossRef]
  • 112. Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew Sustain Energy Rev, 26, 224–240. [CrossRef]
  • 113. Nwakaire, C. M., Onn, C. C., Yap, S. P., Yuen, C. W., & Onodagu, P. D. (2020). Urban heat island studies with emphasis on urban pavements: A review. Sustain Cities Soc, 63, 102476. [CrossRef]
  • 114. Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew Sustain Energy Rev, 54, 1002–1017. [CrossRef]
  • 115. Kalinkat, G., Rall, B. C., Bjorkman, C., & Niemela, P. (2015). Effects of climate change on the interactions between insect pests and their natural enemies. Clim Change Insect Pests, 5, 74–91. [CrossRef]
  • 116. Scherba, A., Sailor, D. J., Rosensteil, T. N., & Wanner, C. C. (2011). Modeling impacts of roof reflectivity, integrated photovoltaic panels, and green roof systems on sensible heat flux into the urban environment. Build Environ, 46(12), 2542–2551. [CrossRef]
  • 117. Zhang, N., Chen, Y., Luo, L., & Wang, Y. (2017). Effectiveness of different urban heat island mitigation methods and their regional impacts. J Hydrometeorol, 18(11), 2991–3012. [CrossRef]
  • 118. Qin, Y., & Hiller, J. E. (2014). Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build, 85, 389–399. [CrossRef]
  • 119. Guo, F., Zhang, H., Fan, Y., Zhu, P., Wang, S., Lu, X., & Jin, Y. (2018). Detection and evaluation of a ventilation path in a mountainous city for a sea breeze: The case of Dalian. Build Environ, 145, 177–195. [CrossRef]
  • 120. Oke, T. R. (1989). The micrometeorology of the urban forest. Philos Trans R Soc Lond B Biol Sci, 324(1223), 335–349. [CrossRef]
  • 121. Chau, C. K., Tse, M. S., & Chung, K. Y. (2010). A choice experiment to estimate the effect of green experience on preferences and willingness-to-pay for green building attributes. Build Environ, 45(11), 2553–2561. [CrossRef]
  • 122. Chung, W., & Hui, Y. V. (2009). A study of energy efficiency of private office buildings in Hong Kong. Energy Build, 41(6), 696–701. [CrossRef]
  • 123. Ali-Toudert, F. (2007). Towards urban sustainability: Trends and challenges of building environmental assessment methods. In Central Europa towards Sustainable Building (CESB 07). Prague, Czechia.
  • 124. Anderson, J., & Shiers, D. (2009). The green guide to specification. John Wiley & Sons.
  • 125. International Organization for Standardization. (2000). Environmental management—Life cycle assessment—Life cycle impact assessment (1st ed.). ISO 14042:2000.
  • 126. Gu, C. (2019). Urbanization: Processes and driving forces. Sci China Earth Sci, 62, 1351–1360. [CrossRef]
  • 127. European Green Infrastructure & Territorial Cohesion. (2011). The concept of green infrastructure and its integration into policies using monitoring systems. European Environmental Agency, Copenhagen, Denmark.
  • 128. Sturiale, L., & Scuderi, A. (2019). The role of green infrastructures in urban planning for climate change adaptation. Climate, 7(10), 119. [CrossRef]
  • 129. Wang, J., Pauleit, S., & Banzhaf, E. (2019). An integrated indicator framework for the assessment of multifunctional green infrastructure —Exemplified in a European city. Remote Sens, 11(16), 1869. [CrossRef]
  • 130. Kamal-Chaoui, L. (2008). Competitive cities and climate change: An introductory paper. Competitive Cities and Climate Change, 29.
  • 131. Sturiale, L., & Scuderi, A. (2018). The evaluation of green investments in urban areas: A proposal of an eco-social-green model of the city. Sustainability, 10(12), 4541. [CrossRef]
  • 132. Sturiale, L., Scuderi, A., Timpanaro, G., Foti, V. T., & Stella, G. (2020). Social and inclusive “value” generation in metropolitan areas with the “urban gardens” planning. In G. Mondini, A. Oppio, S. Stanghellini, M. Bottero, & F. Abastante (Eds.), Values and functions for future cities (pp. 285–302). Springer. [CrossRef]
  • 133. Caspersen, O. H., & Olafsson, A. S. (2010). Recreational mapping and planning for enlargement of the green structure in greater Copenhagen. Urban For Urban Greening, 9(2), 101–112. [CrossRef]
  • 134. Isaksson, R., & Rosvall, M. (2020). Understanding building sustainability – The case of Sweden. Total Qual Manag Bus Excell, 36(3–4), 222–236. [CrossRef]
  • 135. Lin, M., Afshari, A., & Azar, E. (2018). A data-driven analysis of building energy use with emphasis on operation and maintenance: A case study from the UAE. J Clean Prod, 192, 169–178. [CrossRef]
  • 136. Fox, M., Coley, D., Goodhew, S., & De Wilde, P. (2015). Time-lapse thermography for building defect detection. Energy Build, 92, 95–106. [CrossRef]
  • 137. Friday-Stroud, S. S., & Sutterfield, J. S. (2007). A conceptual framework for integrating six-sigma and strategic management methodologies to quantify decision making. The TQM Mag, 19(6), 561–571. [CrossRef]
  • 138. Boyne, G. A., & Walker, R. M. (2010). Strategic management and public service performance: The way ahead. Public Adm Rev, 70, 185–192. [CrossRef]
  • 139. Vargo, J., & Seville, E. (2011). Crisis strategic planning for SMEs: Finding the silver lining. Int J Prod Res, 49(18), 5619–5635. [CrossRef]
  • 140. Cao, Y., Wang, T., & Song, X. (2015). An energy-aware, agent-based maintenance-scheduling framework to improve occupant satisfaction. Autom Constr, 60, 49–57. [CrossRef]
  • 141. Hausahdh, A., Jailani, J., & Rahman, I. A. (2021). Structural equation model for assessing factors affecting building maintenance success. J Build Eng, 44, 102680. [CrossRef]
  • 142. Hausahdh, A., Jailani, J., Abdul Rahman, I., & AL-fadhali, N. (2020). Building maintenance practices in Malaysia: A systematic review of issues, effects, and the way forward. Int J Build Pathol Adapt, 38(5), 653–672. [CrossRef]
  • 143. Chiang, Y. H., Li, J., Zhou, L., Wong, F. K., & Lam, P. T. (2015). The nexus among employment opportunities, life-cycle costs, and carbon emissions: A case study of sustainable building maintenance in Hong Kong. J Clean Prod, 109, 326–335. [CrossRef]
  • 144. Chiang, Y. H., Li, V. J., Zhou, L., Wong, F., & Lam, P. (2016). Evaluating sustainable building-maintenance projects: Balancing economic, social, and environmental impacts in the case of Hong Kong. J Constr Eng Manag, 142(2), 06015003. [CrossRef]
  • 145. Au-Yong, C. P., Ali, A. S., Ahmad, F., & Chua, S. J. L. (2017). Influences of key stakeholders’ involvement in maintenance management. Prop Manag, 35(2), 217–231. [CrossRef]
  • 146. Au-Yong, C. P., Ali, A. S., & Ahmad, F. (2014). Improving occupants’ satisfaction with effective maintenance management of HVAC system in office buildings. Autom Constr, 43, 31–37. [CrossRef]
  • 147. Chan, D. W. (2019). Sustainable building maintenance for safer and healthier cities: Effective strategies for implementing the Mandatory Building Inspection Scheme (MBIS) in Hong Kong. J Build Eng, 24, 100737. [CrossRef]
  • 148. Shahi, S., Esfahani, M. E., Bachmann, C., & Haas, C. (2020). A definition framework for building adaptation projects. Sustain Cities Soc, 63, 102345. [CrossRef]
  • 149. Au-Yong, C. P., Ali, A. S., & Chua, S. J. L. (2019). A literature review of routine maintenance in high-rise residential buildings: A theoretical framework and directions for future research. J Facilities Manag, 17(1), 2–17. [CrossRef]
  • 150. Almeida, L. M., Tam, V. W., & Le, K. N. (2021). Users’ building optimal performance manual. Clean Response Consum, 2, 100009. [CrossRef]
  • 151. Hausahdh, A., Jailani, J., & Rahman, I. A. (2022). Strategic approaches towards achieving sustainable and effective building maintenance practices in maintenance-managed buildings: A combination of expert interviews and a literature review. J Build Eng, 45, 103490. [CrossRef]
  • 152. Gorgolewski, M. (2000). The recycled building project. In Sustainable building (pp. 125–127).
  • 153. Fennis, S. A. A. M., & Walraven, J. C. (2012). Using particle packing technology for sustainable concrete mixture design. Heron, 57(2), 73–101.
  • 154. Xiang, P., Deng, Z. H., Su, Y. S., Wang, H. P., & Wan, Y. F. (2017). Experimental investigation on joints between steel-reinforced concrete T-shaped column and reinforced concrete beam under bidirectional low-cyclic reversed loading. Adv Struct Eng, 20(3), 446–460. [CrossRef]
  • 155. Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from CRD waste & its use in concrete-A breakthrough towards sustainability in construction sector: A review. Constr Build Mater, 68, 501–516. [CrossRef]
  • 156. Fathifazi, G., Abbas, A., Razagnur, A. G., Isgor, O. B., Fournier, B., & Foo, S. (2009). New mixture proportioning method for concrete made with coarse recycled concrete aggregate. J Mater Civ Eng, 21(10), 601–611. [CrossRef]
  • 157. Garip, E. (2011). Shear strength of reinforced concrete beams without stirrups [Master’s thesis], Yildiz Technical University.
  • 158. Fathifazi, G., Razagnur, A. G., Isgor, O. B., Abbas, A., Fournier, B., & Foo, S. (2012). Bond performance of deformed steel bars in concrete produced with coarse recycled concrete aggregate. Can J Civ Eng, 39(2), 128–139. [CrossRef]
  • 159. Chan, D., & Sun, P. C. (2006). Effects of fine recycled aggregate as sand replacement in concrete. HKIE Trans, 13(4), 2-7. [CrossRef]
  • 160. Noel, M., Sanchez, L., & Fathifazi, G. (2016). Recent advances in sustainable concrete for structural applications. Sustain Constr Mater Technol, 4(10).
  • 161. Ali, R. A., & Kharofa, O. H. (2021). The impact of nanomaterials on sustainable architectural applications smart concrete as a model. Mater Today Proc, 42, 3010–3017. [CrossRef]
  • 162. Han, B., Yu, X., & Ou, J. (2014). Self-sensing concrete in smart structures. Butterworth-Heinemann.
  • 163. Singh, N. B., Kalra, M., & Saxena, S. K. (2017). Nanoscience of cement and concrete. Mater Today Proc, 4(4), 5478–5487. [CrossRef]
  • 164. Du, S., Wu, J., AlShareedah, O., & Shi, X. (2019). Nanotechnology in cement-based materials: A review of durability, modeling, and advanced characterization. Nanomaterials, 9(9), 1213. [CrossRef]
  • 165. Dong, J., Cai, B., Zhang, S., Wang, J., Yue, H., Wang, C., Mao, X., Cong, J., & Guo, F. (2023). Closing the gap between carbon neutrality targets and action: Technology solutions for Chinas key energy-intensive sectors. Environ Sci Technol, 57(11), 4396–4405. [CrossRef]
  • 166. Xie, W. H., Li, H., Yang, M., He, L. N., & Li, H. R. (2022). CO2 capture and utilization with solid waste. Green Chem Eng, 3(3), 199–209. [CrossRef]
  • 167. Nejat, P., Jomehzadeh, E., Taheri, M. M., Gohari, M., & Majid, M. Z. A. (2015). A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev, 43, 843–862. [CrossRef]
  • 168. Miller, S. A., Van Roijen, E., Cunningham, P., & Kim, A. (2021). Opportunities and challenges for engineering construction materials as carbon sinks. RILEM Tech Lett, 6, 105–118. [CrossRef]
  • 169. Badjatya, P., Akca, A. H., Fraga Alvarez, D. V., Chang, B., Ma, S., Pang, X., Wang, E., van Hinsberg, Q., Esposito, D. V., & Kawashima, S. (2022). Carbon-negative cement manufacturing from seawater-derived magnesium feedstocks. Proc Natl Acad Sci, 119(34), e2114680119. [CrossRef]
  • 170. Yang, W., Min, Z., Yang, M., & Yan, J. (2022). Exploration of the implementation of carbon neutralization in the field of natural resources under the background of sustainable development—An overview. Int J Environ Res Public Health, 19(21), 14109. [CrossRef]
  • 171. Zhang, Y., He, M., Wang, L., Yan, J., Ma, B., Zhu, X., Ok, Y. S., Mechtcherine, V., & Tsang, D. C. W. (2022). Biochar as construction materials for achieving carbon neutrality. Biochar, 4(1), 59. [CrossRef]
  • 172. Chausali, N., Saxena, J., & Prasad, R. (2021). Nanobiochar and biochar-based nanocomposites: Advances and applications. J Agric Food Res, 5, 100191. [CrossRef]
  • 173. Sisman, M., Toomete, E., Yanik, J., Malayoglu, U., & Tac, G. D. (2023). The effects of apricot kernel shell nanobiochar on mechanical properties of cement composites. Cement Wapno Beton, 28(1), 2–15. [CrossRef]
  • 174. Full, J., Merseburg, S., Miehe, R., & Sauer, A. (2021). A new perspective for climate change mitigation—introducing carbon-negative hydrogen production from biomass with carbon capture and storage (Hybeccs). Sustainability, 13(7), 4026. [CrossRef]
  • 175. Saharudin, M. S., Ilyas, R. A., Awang, N., Hasbi, S., Shyha, I., & Inam, F. (2023). Advances in sustainable nanocomposites. Sustainability, 15(6), 5125. [CrossRef]
  • 176. Chausali, N., Saxena, J., & Prasad, R. (2023). Nanotechnology as a sustainable approach for combating the environmental effects of climate change. J Agric Food Res, 12, 100541. [CrossRef]
  • 177. Niero, M., & Rivera, X. C. S. (2018). The role of life cycle sustainability assessment in the implementation of circular economy principles in organizations. Procedia CIRP, 69, 793–798. [CrossRef]
  • 178. Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The circular economy-A new sustainability paradigm? J Clean Prod, 143, 757–768. [CrossRef]

Sustainable concrete solutions for green infrastructure development: A review

Year 2025, Volume: 10 Issue: 1, 108 - 141, 29.03.2025
https://doi.org/10.47481/jscmt.1667793

Abstract

This review paper explores the utilization of sustainable concrete materials in the development
of green infrastructure. The primary objective is to investigate various concrete solutions that
enhance environmental performance while maintaining structural integrity. The study inte-
grates concrete with green infrastructure elements such as permeable concrete, green roofs,
vegetated systems, bioswales, and vegetated channels. These elements are essential for man-
aging stormwater, reducing urban heat islands, and promoting biodiversity in urban areas.
The paper also examines optimized concrete mixtures designed to improve durability and
reduce carbon emissions by incorporating alternative materials like recycled aggregates and
supplementary cementitious materials. Additionally, innovative formwork and construction
practices are analyzed to assess their contribution to minimizing resource consumption and
waste. By aligning concrete design with green infrastructure objectives, the study highlights
the potential of these solutions to mitigate environmental impacts, including reduced energy
consumption and lower greenhouse gas emissions. The findings offer valuable insights into
the role of sustainable concrete in future urban planning, emphasizing its capacity to support
resilient, eco-friendly infrastructure while meeting the growing demands of urbanization. The
research ultimately contributes to the broader discourse on green construction practices, of-
fering practical guidelines for engineers and urban planners.

References

  • 1. Zeyad, A. M. (2023). Sustainable concrete production: Incorporating recycled wastewater as a green building material. Constr Build Mater, 407, 133522. [CrossRef]
  • 2. Nilimaa, J. (2023). Smart materials and technologies for sustainable concrete construction. Dev Built Environ, 15, 100177. [CrossRef]
  • 3. Javadabadi, M. T., Kristiansen, D. D. L., Redie, M. B., & Baghban, M. H. (2019). Sustainable concrete: A review. Int J Struct Civ Eng Res, 8(2), 126–132. [CrossRef]
  • 4. Wasim, M., Ngo, T. D., & Law, D. (2021). A state-of-the-art review on the durability of geopolymer concrete for sustainable structures and infrastructure. Constr Build Mater, 291, 123381. [CrossRef]
  • 5. Duchesne, J. (2021). Alternative supplementary cementitious materials for sustainable concrete structures: A review on characterization and properties. Waste Biomass Valorization, 12, 1219–1236. [CrossRef]
  • 6. Khalil, M. J., Aslam, M., & Ahmad, S. (2021). Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete: A review. Constr Build Mater, 270, 121371. [CrossRef]
  • 7. Farooq, F., Jin, X., Javed, M. F., Akbar, A., Shah, M. I., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Constr Build Mater, 306, 124762. [CrossRef]
  • 8. Hu, M., & Shealy, T. (2023). Priming the public to construct preferences for sustainable design: A discrete choice model for green infrastructure. J Environ Psychol, 88, 102005. [CrossRef]
  • 9. Evans, A., & Hardman, M. (2023). Enhancing green infrastructure in cities: Urban car parks as an opportunity space. Land Use Policy, 134, 106914. [CrossRef]
  • 10. Kamjou, E., Scott, M., & Lennon, M. (2024). A bottom-up perspective on green infrastructure in informal settlements: Understanding nature’s benefits through lived experiences. Urban Forestry & Urban Greening, 94, 128231. [CrossRef]
  • 11. Ghofrani, Z., Sposito, V., & Faggian, R. (2017). A comprehensive review of blue-green infrastructure concepts. Int J Environ Sustain, 6(1), 15–36. [CrossRef]
  • 12. Seiwert, A., & Rossler, S. (2020). Understanding the term green infrastructure: Origins, rationales, semantic content and purposes as well as its relevance for application in spatial planning. Land Use Policy, 97, 104785. [CrossRef]
  • 13. Ying, J., Zhang, X., Zhang, Y., & Bilan, S. (2022). Green infrastructure: Systematic literature review. Econ Res, 35(1), 343–366. [CrossRef]
  • 14. Shaanala, A., Yigitcanlar, T., Nili, A., & Nyandega, D. (2024). Algorithmic green infrastructure optimisation: Review of artificial intelligence driven approaches for tackling climate change. Sustain Cities Soc, 105, 182. [CrossRef]
  • 15. Bartesaghi Koc, C., Osmond, P., & Peters, A. (2017). Towards a comprehensive green infrastructure typology: A systematic review of approaches, methods and typologies. Urban Ecosystem, 20(1), 15–35. [CrossRef]
  • 16. Xia, B., Ding, T., & Xiao, J. (2020). Life cycle assessment of concrete structures with reuse and recycling strategies: A novel framework and case study. Waste Manag, 105, 268–278. [CrossRef]
  • 17. Rodrigues, R., Gaboreau, S., Gance, J., Ignatiadis, I., & Betelu, S. (2021). Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring. Constr Build Mater, 269, 121240. [CrossRef]
  • 18. Gambo, S., Sanda, U. M., Ibrahim, A. G., Usman, J., & Mohammad, U. H. (2023). Strength properties of ordinary Portland cement concrete containing high-volume recycled coarse aggregate and volcanic ash. Mater Today Proc, 86, 140–144. [CrossRef]
  • 19. Song, Y., Ma, S., Liu, J., & Yue, Z. Q. (2023). Laboratory investigation of CDG soil as source of fine aggregates for Portland cement concrete. Constr Build Mater, 367, 130226. [CrossRef]
  • 20. Saha, A., Tonmoy, T. M., Sobuz, M. H. R., Aditto, F. S., & Mansour, W. (2024). Assessment of mechanical, durability and microstructural performance of sulphate-resisting cement concrete over Portland cement in the presence of salinity. Constr Build Mater, 420, 135527. [CrossRef]
  • 21. Marey, H., Kozma, G., & Szabo, G. (2024). Green concrete materials selection for achieving circular economy in residential buildings using system dynamics. Clean Mater, 11, 100221. [CrossRef]
  • 22. Xie, N., Akin, M., & Shi, X. (2019). Permeable concrete pavements: A review of environmental benefits and durability. J Clean Prod, 210, 1605–1621. [CrossRef]
  • 23. Haselbach, L., Poor, C., & Tilson, J. (2014). Dissolved zinc and copper retention from stormwater runoff in ordinary Portland cement pervious concrete. Constr Build Mater, 53, 652–657. [CrossRef]
  • 24. Zhang, Y., Li, H., Abdelhady, A., & Yang, J. (2020). Effect of different factors on sound absorption property of porous concrete. Transp Res D Transp Environ, 87, 102532. [CrossRef]
  • 25. Chandrappa, A. K., & Biligiri, K. P. (2016). Pervious concrete as a sustainable pavement material-Research findings and future prospects: A state-of-the-art review. Constr Build Mater, 111, 262–274. [CrossRef]
  • 26. Gowda, S. B., Goudar, S. K., Thanu, H. P., & Monisha, B. (2023). Performance evaluation of alkali-activated slag-based recycled aggregate pervious concrete. Mater Today Proc.
  • 27. Zhu, X., & Jiang, Z. (2023). Reuse of waste rubber in pervious concrete: Experiment and DEM simulation. J Build Eng, 71, 106452. [CrossRef]
  • 28. Joshi, T., & Dave, U. (2022). Construction of pervious concrete pavement stretch, Ahmedabad, India–Case study. Case Stud Constr Mater, 16, e00622. [CrossRef]
  • 29. Elango, K. S., Gopi, R., Saravanakumar, R., Rajeshkumar, V., Vivek, D., & Raman, S. V. (2021). Properties of pervious concrete-A state of the art review. Mater Today Proc, 45, 2422–2425. [CrossRef]
  • 30. Zhu, Y., Fu, H., Wang, P., Xu, P., Ling, Z., & Wei, D. (2023). Pure structure characteristics, mechanical properties, and freeze-thaw resistance of vegetation-pervious concrete with unsintered sludge pellets. Constr Build Mater, 382, 131342. [CrossRef]
  • 31. Adresi, M., Yamani, A., Tabaretsani, M. K., & Rooholamini, H. (2023). A comprehensive review on pervious concrete. Constr Build Mater, 407, 133308. [CrossRef]
  • 32. Tahiri, I., Dangla, P., Vandamme, M., & Vu, Q. H. (2022). Numerical investigation of salt-frost damage of pervious concrete at the scale of a few aggregates. Cem Concr Res, 162, 106971. [CrossRef]
  • 33. Chockalingam, T., Vijayaprabha, C., & Raj, J. L. (2023). Experimental study on size of aggregates, size and shape of specimens on strength characteristics of pervious concrete. Constr Build Mater, 385, 131320. [CrossRef]
  • 34. Adosi, B., Mirjalili, S. A., Adresi, M., Tulliani, J. M., & Antonaci, P. (2021). Experimental evaluation of tensile performance of aluminate cement composite reinforced with wet knitted fabrics as a function of curing temperature. Polym, 13(24), 4385. [CrossRef]
  • 35. ACI Committee 522. (2010). 522R-10: Report on pervious concrete. American Concrete Institute.
  • 36. Debnath, B., & Sarkar, P. P. (2020). Pervious concrete as an alternative pavement strategy: A state-of-the-art review. Int J Pavement Eng, 21(12), 1516–1531. [CrossRef]
  • 37. Ibrahim, A., Mahmoud, E., Yamin, M., & Patibandla, V. C. (2014). Experimental study on Portland cement pervious concrete mechanical and hydrological properties. Constr Build Mater, 50, 524–529. [CrossRef]
  • 38. Risson, K. D. B. D. S., Sandoval, G. F., Pinto, F. S. C., Camargo, M., De Moura, A. C., & Toralles, B. M. (2021). Molding procedure for pervious concrete specimens by density control. Case Stud Constr Mater, 15, e00619. [CrossRef]
  • 39. Lopez-Carrasquillo, V., & Hwang, S. (2017). Comparative assessment of pervious concrete mixtures containing fly ash and nanomaterials for compressive strength, physical durability, permeability, water quality performance, and production cost. Constr Build Mater, 139, 148–158. [CrossRef]
  • 40. Nassiri, S., & AlShareedah, O. (2017). Preliminary procedure for structural design of pervious concrete pavements (No. WA-RD 868.2). Washington (State) Department of Transportation, Research Office.
  • 41. Tobolsky, A., & Eyring, H. (1943). Mechanical properties of polymeric materials. J Chem Phys, 11(3), 125–134. [CrossRef]
  • 42. Leguillon, D., Martin, E., & Lafarie-Frenot, M. C. (2015). Flexural vs. tensile strength in brittle materials. C R Mée, 343(4), 275–281. [CrossRef]
  • 43. Chen, Y., Wang, K., Wang, X., & Zhou, W. (2013). Strength, fracture and fatigue of pervious concrete. Constr Build Mater, 42, 97–104. [CrossRef]
  • 44. Ahmad, S. H., & Shah, S. P. (1985). Structural properties of high-strength concrete and its implications for precast prestressed concrete. PCI J, 30(6), 92–119. [CrossRef]
  • 45. AlShareedah, O., & Nassiri, S. (2021). Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. J Clean Prod, 288, 125095. [CrossRef]
  • 46. Patil, C. B., Shinde, P. S., Mohite, B. M., & Ingale, S. S. (2017). Experimental evaluation of compressive and flexural strength of pervious concrete by using polypropylene fiber. Int J Eng Res Technol, 6(4), 756–762. [CrossRef]
  • 47. Gaedicke, C., Torres, A., Huynh, K. C., & Marines, A. (2016). A method to correlate splitting tensile strength and compressive strength of pervious concrete cylinders and cores. Constr Build Mater, 125, 271–278. [CrossRef]
  • 48. Rajasekhar, K., & Spandana, K. (2016). Strength properties of pervious concrete compared with conventional concrete. IOSR J Mech Civ Eng, 13(4), 97–103.
  • 49. ASTM International. (1986). Standard test method for splitting tensile strength of cylindrical concrete specimens. Annu B ASTM Stand, 4, 337–342.
  • 50. Chavan, P., Patare, D., & Wagh, M. (2019). Enhancement of pervious concrete properties by using polypropylene fiber. Int J Eng Res Gen Sci, 7(6), 17–25.
  • 51. Sohel, K. M. A., Al-Hinai, M. H. S., Alnuaimi, A., Al-Shahri, M., & El-Gamal, S. (2022). Prediction of flexural fatigue life and failure probability of normal weight concrete. Mater Constr, 72(347), e291. [CrossRef]
  • 52. Jiao, K., Chen, C., Li, L., Shi, X., & Wang, Y. (2020). Compression fatigue properties of pervious concrete. ACI Mater J, 117(2), 241–249. [CrossRef]
  • 53. AlShareedah, O., Nassiri, S., & Dolan, J. D. (2019). Pervious concrete under flexural fatigue loading: Performance evaluation and model development. Constr Build Mater, 207, 17–27. [CrossRef]
  • 54. Shafique, M., Kim, R., & Rafiq, M. (2018). Green roof benefits, opportunities, and challenges-A review. Renew Sustain Energy Rev, 90, 757–773. [CrossRef]
  • 55. Mihalakakou, G., Souliotis, M., Papadaki, M., Menounou, P., Dimopoulos, P., Kolokotsa, D., Paravantis, J. A., Tsangrassoulis, A., Panaras, G., Giannakopoulos, E., & Papaefthimiou, S. (2023). Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives. Renew Sustain Energy Rev, 180, 113306. [CrossRef]
  • 56. Yang, J., Yu, Q., & Gong, P. (2008). Quantifying air pollution removal by green roofs in Chicago. Atmos Environ, 42(31), 7266–7273. [CrossRef]
  • 57. Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy, 70(3), 295–310. [CrossRef]
  • 58. Su, R., Qiao, H., Li, Q., & Su, L. (2023). Study on the performance of vegetation concrete prepared based on different cements. Constr Build Mater, 409, 133793. [CrossRef]
  • 59. Li, S., Yin, J., & Zhang, G. (2020). Experimental investigation on optimization of vegetation performance of porous sea sand concrete mixtures by pH adjustment. Constr Build Mater, 249, 118775. [CrossRef]
  • 60. Cao, Q., Zhou, J., Xu, W., & Yuan, X. (2024). Study on the preparation and properties of vegetation lightweight porous concrete. Mater, 17(1), 251. [CrossRef]
  • 61. Peng, H., Yin, J., & Song, W. (2018). Mechanical and hydraulic behaviors of eco-friendly pervious concrete incorporating fly ash and blast furnace slag. Appl Sci, 8(6), 859. [CrossRef]
  • 62. Kim, H. H., & Park, C. G. (2016). Plant growth and water purification of porous vegetation concrete formed of blast furnace slag, natural jute fiber, and styrene butadiene latex. Sustainability, 8(4), 386. [CrossRef]
  • 63. Wang, F., Sun, C., Ding, X., Kang, T., & Nie, X. (2019). Experimental study on the vegetation growing recycled concrete and synergistic effect with plant roots. Mater, 12(11), 1855. [CrossRef]
  • 64. Lee, J. (2019). Green infrastructure as a solution to hydrological problems: Bioswales and created wetlands. UF J Undergrad Res, 21(1), 116325. [CrossRef]
  • 65. Xiao, Q., McPherson, E. G., Zhang, Q., Ge, X., & Dahlgren, R. (2017). Performance of two bioswales on urban runoff management. Infrastructures, 2(4), 12. [CrossRef]
  • 66. Lovell, S. T., & Johnston, D. M. (2009). Designing landscapes for performance based on emerging principles in landscape ecology. Ecol Soc, 14(1), 44. [CrossRef]
  • 67. Groves, W. W., Hammer, P. E., Knutsen, K. L., Ryan, S. M., & Schlipf, R. A. (1999). Analysis of bioswale efficiency for treating surface runoff [Master’s thesis], University of California.
  • 68. Zheng, C., Zhang, Z., Huang, Z., Wang, D., Zhang, W., Zhou, Z., Zhu, Y., Wang, D., Wan, H., & Jiang, Z. (2024). Review of porous vegetation eco-concrete (PVEC) technology: From engineering requirements to material design. Compos B Eng, 279, 111442. [CrossRef]
  • 69. Amin, A. M., Mahfouz, S. Y., Tawfic, A. F., & Ali, M. A. (2023). Experimental investigation on static/dynamic response and y/n shielding of different sustainable concrete mixtures. Alex Eng J, 75, 465–477. [CrossRef]
  • 70. Choi, S. W., Kim, V., Chang, W. S., & Kim, E. Y. (2007). The present situation of production and utilization of steel slag in Korea and other countries. Mag Korea Concr Inst, 19(6), 28–33.
  • 71. Mironovs, V., Bronka, J., Korjakins, A., & Kazjonovs, J. (2011). Possibilities of application of iron-containing waste materials in manufacturing of heavy concrete. Proc Civil Eng, 11, 14–19.
  • 72. Ravikumar, H., Datatareya, J. K., & Shivananda, K. P. (2015). Experimental investigation on replacement of steel slag as coarse aggregate in concrete. J Civ Eng Environ Technol, 2(11), 58–63.
  • 73. Qurishee, M. A., Iqbal, I. T., Islam, M. S., & Islam, M. M. (2016, December). Use of slag as coarse aggregate and its effect on mechanical properties of concrete. In Proceedings of the 3rd International Conference on Advances in Civil Engineering, CUET, Chittagong, Bangladesh (pp. 475–479).
  • 74. Savini, A., & Savini, G. G. (2015). A short history of 3D printing, a technological revolution just started. In 2015 ICOHTEC/IEEE International History of High-Technologies and Their Socio-Cultural Contexts Conference (HISTELCON) (pp. 1–8). IEEE. [CrossRef]
  • 75. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications, and challenges. Compos B Eng, 143, 172–196. [CrossRef]
  • 76. Mahmood, M. A., Popescu, A. C., & Mihailescu, I. N. (2020). Metal matrix composites synthesized by laser-melting deposition: A review. Mater, 13(11), 2593. [CrossRef]
  • 77. Mangano, E., Chambrone, L., Van Noort, R., Miller, C., Hatton, P., & Mangano, C. (2014). Direct metal laser sintering titanium dental implants: A review of the current literature. Int J Biomater, 2014(1), 461534. [CrossRef]
  • 78. Yap, C. Y., Chua, C. K., Dong, Z. L., Liu, Z. H., Zhang, D. Q., Loh, L. E., & Sing, S. L. (2015). Review of selective laser melting: Materials and applications. Appl Phys Rev, 2(4), 041101. [CrossRef]
  • 79. Sing, S. L., An, J., Yeong, W. Y., & Wiria, F. E. (2016). Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials, and designs. J Orthop Res, 34(3), 369–385. [CrossRef]
  • 80. Gurusamy, P., Sathish, T., Mohanavel, V., Karthick, A., Ravichandran, M., Nasif, O., Alfarraj, S., Manikandan, V., & Prasath, S. (2021). Finite element analysis of temperature distribution and stress behavior of squeeze pressure composites. Adv Mater Sci Eng, 2021(1), 8665674. [CrossRef]
  • 81. Taminger, K., & Halley, R. A. (2003). Electron beam freeform fabrication: A rapid metal deposition process. In 3rd Annual Automotive Composites Conference. Troy, Michigan.
  • 82. Teja, K., Tokala, S. C., Reddy, Y. P., & Narayana, K. L. (2020). Optimization of mechanical properties of wire arc additive manufactured specimens using grey-based Taguchi method. J Crit Rev, 7, 808–817. [CrossRef]
  • 83. Sathish, T., Tharmalingam, S., Mohanavel, V., Ashrafi Ali, K. S., Karthick, A., Ravichandran, M., & Rajkumar, S. (2021). Weldability investigation and optimization of process variables for TIG-welded aluminium alloy (AA 8006). Adv Mater Sci Eng, 2021(1), 2816338. [CrossRef]
  • 84. Melchels, F. P., Feijen, J., & Grijpina, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomater, 31(24), 6121–6130. [CrossRef]
  • 85. Zhang, J., Hu, Q., Wang, S., Tao, J., & Gou, M. (2019). Digital light processing-based three-dimensional printing for medical applications. Int J Bioptrit, 6(1), 242. [CrossRef]
  • 86. Li, W., Lin, X., Bao, D. W., & Xie, Y. M. (2022). A review of formwork systems for modern concrete construction. Struct, 38, 52–63. [CrossRef]
  • 87. Zhang, H., Rasmussen, K. J., & Ellingwood, B. R. (2012). Reliability assessment of steel scaffold shoring structures for concrete formwork. Eng Struct, 36, 81–89. [CrossRef]
  • 88. Van Niekerk, A. J. (2010). Concrete elements: Timber faced formwork systems versus steel faced formwork systems and which is truly better for the contractor? [Bachelor’s thesis], University of Pretoria.
  • 89. Shah, K. (2005). Modular aluminium formwork for faster, economical, and quality construction. Indian Concr J, 79(7), 22–26.
  • 90. Du Plessis, C. (2007). A strategic framework for sustainable construction in developing countries. Constr Manag Econ, 25(1), 67–76. [CrossRef]
  • 91. Ding, G. K. C. (2014). Life cycle assessment (LCA) of sustainable building materials: An overview. In F. Pacheco-Torgal, L. F. Cabeza, J. Labrincha, & A. de Magalhães (Eds.), Eco-efficient construction and building materials (pp. 38–62). Woodhead Publishing. [CrossRef]
  • 92. Osmani, M. (2012). Construction waste minimization in the UK: Current pressures for change and approaches. Procedia Soc Behav Sci, 40, 37–40. [CrossRef]
  • 93. Sartori, I., & Hestnes, A. G. (2007). Energy use in the life cycle of conventional and low-energy buildings: A review article. Energy Build, 39(3), 249–257. [CrossRef]
  • 94. Singh, A., Berghorn, G., Joshi, S., & Syal, M. (2011). Review of life-cycle assessment applications in building construction. J Archit Eng, 17(1), 15–23. [CrossRef]
  • 95. Fay, R., Treloar, G., & Iyer-Raniga, U. (2000). Life-cycle energy analysis of buildings: A case study. Build Res Inf, 28(1), 31–41. [CrossRef]
  • 96. Han, G., & Srebric, J. (2011). Life-cycle assessment tools for building analysis. Engr Psu Edu, 7.
  • 97. International Organization for Standardization. (2006). Environmental management: Life cycle assessment—Principles and framework. ISO 14040.
  • 98. Scheuer, C., Keoleian, G. A., & Reppe, P. (2003). Life cycle energy and environmental performance of a new university building: Modeling challenges and design implications. Energy Build, 35(10), 1049–1064. [CrossRef]
  • 99. Khasreen, M. M., Banfili, P. F., & Menzies, G. F. (2009). Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, 1(3), 674–701. [CrossRef]
  • 100. Rossi, B., Marique, A.F., & Reiter, S. (2012). Life-cycle assessment of residential buildings in three different European locations: Case study. Build Environ, 51, 402–407. [CrossRef]
  • 101. Arena, A. P., & De Rosa, C. (2003). Life cycle assessment of energy and environmental implications of the implementation of conservation technologies in school buildings in Mendoza—Argentina. Build Environ, 38(2), 359–368. [CrossRef]
  • 102. Blengini, G. A., & Di Carlo, T. (2010). The changing role of life cycle phases, subsystems, and materials in the LCA of low energy buildings. Energy Build, 42(6), 869–880. [CrossRef]
  • 103. Buchan, R. D., Fleming, E., & Grant, F. (2012). Estimating for builders and surveyors. Routledge. [CrossRef]
  • 104. Ochsendorf, J., Norford, L. K., Brown, D., Durschlag, H., Hsu, S. L., Love, A., Santero, N., Swei, O., Webb, A., & Wildnauer, M. (2011). Methods, impacts, and opportunities in the concrete building life cycle. MIT Concrete Sustainability Hub.
  • 105. Tingley, D. D., & Davison, B. (2012). Developing an LCA methodology to account for the environmental benefits of design for deconstruction. Build Environ, 57, 387–395. [CrossRef]
  • 106. Bare, J. C., Hofstetter, P., Pennington, D. W., & De Haes, H. A. U. (2000). Midpoints versus endpoints: The sacrifices and benefits. Int J Life Cycle Assess, 5, 319–326. [CrossRef]
  • 107. Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for the building industry. Renew Sustain Energy Rev, 45, 244–248. [CrossRef]
  • 108. Khoshnava, S. M., Rostami, R., Ismail, M., & Rahmat, A. R. (2018). A cradle-to-gate based life cycle impact assessment comparing the KBFw EFB hybrid reinforced poly hydroxybutyrate biocomposite and common petroleum-based composites as building materials. Environ Impact Assess Rev, 70, 11–21. [CrossRef]
  • 109. Santamouris, M. (2013). Energy and climate in the urban built environment. Routledge. [CrossRef]
  • 110. Gaitani, N., Mihalakakou, G., & Santamouris, M. (2007). On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Build Environ, 42(1), 317–324. [CrossRef]
  • 111. Fintikkalis, N., Gaitani, N., Santamouris, M., Assimakopoulos, M., Assimakopoulos, D. N., Fintikaki, M., Albanis, G., Papadimitriou, K., Chryssochoides, E., Katopodi, K., & Doumas, P. (2011). Bioclimatic design of open public spaces in the historic centre of Tirana, Albania. Sustain Cities Soc, 1(1), 54–62. [CrossRef]
  • 112. Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renew Sustain Energy Rev, 26, 224–240. [CrossRef]
  • 113. Nwakaire, C. M., Onn, C. C., Yap, S. P., Yuen, C. W., & Onodagu, P. D. (2020). Urban heat island studies with emphasis on urban pavements: A review. Sustain Cities Soc, 63, 102476. [CrossRef]
  • 114. Jamei, E., Rajagopalan, P., Seyedmahmoudian, M., & Jamei, Y. (2016). Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renew Sustain Energy Rev, 54, 1002–1017. [CrossRef]
  • 115. Kalinkat, G., Rall, B. C., Bjorkman, C., & Niemela, P. (2015). Effects of climate change on the interactions between insect pests and their natural enemies. Clim Change Insect Pests, 5, 74–91. [CrossRef]
  • 116. Scherba, A., Sailor, D. J., Rosensteil, T. N., & Wanner, C. C. (2011). Modeling impacts of roof reflectivity, integrated photovoltaic panels, and green roof systems on sensible heat flux into the urban environment. Build Environ, 46(12), 2542–2551. [CrossRef]
  • 117. Zhang, N., Chen, Y., Luo, L., & Wang, Y. (2017). Effectiveness of different urban heat island mitigation methods and their regional impacts. J Hydrometeorol, 18(11), 2991–3012. [CrossRef]
  • 118. Qin, Y., & Hiller, J. E. (2014). Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build, 85, 389–399. [CrossRef]
  • 119. Guo, F., Zhang, H., Fan, Y., Zhu, P., Wang, S., Lu, X., & Jin, Y. (2018). Detection and evaluation of a ventilation path in a mountainous city for a sea breeze: The case of Dalian. Build Environ, 145, 177–195. [CrossRef]
  • 120. Oke, T. R. (1989). The micrometeorology of the urban forest. Philos Trans R Soc Lond B Biol Sci, 324(1223), 335–349. [CrossRef]
  • 121. Chau, C. K., Tse, M. S., & Chung, K. Y. (2010). A choice experiment to estimate the effect of green experience on preferences and willingness-to-pay for green building attributes. Build Environ, 45(11), 2553–2561. [CrossRef]
  • 122. Chung, W., & Hui, Y. V. (2009). A study of energy efficiency of private office buildings in Hong Kong. Energy Build, 41(6), 696–701. [CrossRef]
  • 123. Ali-Toudert, F. (2007). Towards urban sustainability: Trends and challenges of building environmental assessment methods. In Central Europa towards Sustainable Building (CESB 07). Prague, Czechia.
  • 124. Anderson, J., & Shiers, D. (2009). The green guide to specification. John Wiley & Sons.
  • 125. International Organization for Standardization. (2000). Environmental management—Life cycle assessment—Life cycle impact assessment (1st ed.). ISO 14042:2000.
  • 126. Gu, C. (2019). Urbanization: Processes and driving forces. Sci China Earth Sci, 62, 1351–1360. [CrossRef]
  • 127. European Green Infrastructure & Territorial Cohesion. (2011). The concept of green infrastructure and its integration into policies using monitoring systems. European Environmental Agency, Copenhagen, Denmark.
  • 128. Sturiale, L., & Scuderi, A. (2019). The role of green infrastructures in urban planning for climate change adaptation. Climate, 7(10), 119. [CrossRef]
  • 129. Wang, J., Pauleit, S., & Banzhaf, E. (2019). An integrated indicator framework for the assessment of multifunctional green infrastructure —Exemplified in a European city. Remote Sens, 11(16), 1869. [CrossRef]
  • 130. Kamal-Chaoui, L. (2008). Competitive cities and climate change: An introductory paper. Competitive Cities and Climate Change, 29.
  • 131. Sturiale, L., & Scuderi, A. (2018). The evaluation of green investments in urban areas: A proposal of an eco-social-green model of the city. Sustainability, 10(12), 4541. [CrossRef]
  • 132. Sturiale, L., Scuderi, A., Timpanaro, G., Foti, V. T., & Stella, G. (2020). Social and inclusive “value” generation in metropolitan areas with the “urban gardens” planning. In G. Mondini, A. Oppio, S. Stanghellini, M. Bottero, & F. Abastante (Eds.), Values and functions for future cities (pp. 285–302). Springer. [CrossRef]
  • 133. Caspersen, O. H., & Olafsson, A. S. (2010). Recreational mapping and planning for enlargement of the green structure in greater Copenhagen. Urban For Urban Greening, 9(2), 101–112. [CrossRef]
  • 134. Isaksson, R., & Rosvall, M. (2020). Understanding building sustainability – The case of Sweden. Total Qual Manag Bus Excell, 36(3–4), 222–236. [CrossRef]
  • 135. Lin, M., Afshari, A., & Azar, E. (2018). A data-driven analysis of building energy use with emphasis on operation and maintenance: A case study from the UAE. J Clean Prod, 192, 169–178. [CrossRef]
  • 136. Fox, M., Coley, D., Goodhew, S., & De Wilde, P. (2015). Time-lapse thermography for building defect detection. Energy Build, 92, 95–106. [CrossRef]
  • 137. Friday-Stroud, S. S., & Sutterfield, J. S. (2007). A conceptual framework for integrating six-sigma and strategic management methodologies to quantify decision making. The TQM Mag, 19(6), 561–571. [CrossRef]
  • 138. Boyne, G. A., & Walker, R. M. (2010). Strategic management and public service performance: The way ahead. Public Adm Rev, 70, 185–192. [CrossRef]
  • 139. Vargo, J., & Seville, E. (2011). Crisis strategic planning for SMEs: Finding the silver lining. Int J Prod Res, 49(18), 5619–5635. [CrossRef]
  • 140. Cao, Y., Wang, T., & Song, X. (2015). An energy-aware, agent-based maintenance-scheduling framework to improve occupant satisfaction. Autom Constr, 60, 49–57. [CrossRef]
  • 141. Hausahdh, A., Jailani, J., & Rahman, I. A. (2021). Structural equation model for assessing factors affecting building maintenance success. J Build Eng, 44, 102680. [CrossRef]
  • 142. Hausahdh, A., Jailani, J., Abdul Rahman, I., & AL-fadhali, N. (2020). Building maintenance practices in Malaysia: A systematic review of issues, effects, and the way forward. Int J Build Pathol Adapt, 38(5), 653–672. [CrossRef]
  • 143. Chiang, Y. H., Li, J., Zhou, L., Wong, F. K., & Lam, P. T. (2015). The nexus among employment opportunities, life-cycle costs, and carbon emissions: A case study of sustainable building maintenance in Hong Kong. J Clean Prod, 109, 326–335. [CrossRef]
  • 144. Chiang, Y. H., Li, V. J., Zhou, L., Wong, F., & Lam, P. (2016). Evaluating sustainable building-maintenance projects: Balancing economic, social, and environmental impacts in the case of Hong Kong. J Constr Eng Manag, 142(2), 06015003. [CrossRef]
  • 145. Au-Yong, C. P., Ali, A. S., Ahmad, F., & Chua, S. J. L. (2017). Influences of key stakeholders’ involvement in maintenance management. Prop Manag, 35(2), 217–231. [CrossRef]
  • 146. Au-Yong, C. P., Ali, A. S., & Ahmad, F. (2014). Improving occupants’ satisfaction with effective maintenance management of HVAC system in office buildings. Autom Constr, 43, 31–37. [CrossRef]
  • 147. Chan, D. W. (2019). Sustainable building maintenance for safer and healthier cities: Effective strategies for implementing the Mandatory Building Inspection Scheme (MBIS) in Hong Kong. J Build Eng, 24, 100737. [CrossRef]
  • 148. Shahi, S., Esfahani, M. E., Bachmann, C., & Haas, C. (2020). A definition framework for building adaptation projects. Sustain Cities Soc, 63, 102345. [CrossRef]
  • 149. Au-Yong, C. P., Ali, A. S., & Chua, S. J. L. (2019). A literature review of routine maintenance in high-rise residential buildings: A theoretical framework and directions for future research. J Facilities Manag, 17(1), 2–17. [CrossRef]
  • 150. Almeida, L. M., Tam, V. W., & Le, K. N. (2021). Users’ building optimal performance manual. Clean Response Consum, 2, 100009. [CrossRef]
  • 151. Hausahdh, A., Jailani, J., & Rahman, I. A. (2022). Strategic approaches towards achieving sustainable and effective building maintenance practices in maintenance-managed buildings: A combination of expert interviews and a literature review. J Build Eng, 45, 103490. [CrossRef]
  • 152. Gorgolewski, M. (2000). The recycled building project. In Sustainable building (pp. 125–127).
  • 153. Fennis, S. A. A. M., & Walraven, J. C. (2012). Using particle packing technology for sustainable concrete mixture design. Heron, 57(2), 73–101.
  • 154. Xiang, P., Deng, Z. H., Su, Y. S., Wang, H. P., & Wan, Y. F. (2017). Experimental investigation on joints between steel-reinforced concrete T-shaped column and reinforced concrete beam under bidirectional low-cyclic reversed loading. Adv Struct Eng, 20(3), 446–460. [CrossRef]
  • 155. Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from CRD waste & its use in concrete-A breakthrough towards sustainability in construction sector: A review. Constr Build Mater, 68, 501–516. [CrossRef]
  • 156. Fathifazi, G., Abbas, A., Razagnur, A. G., Isgor, O. B., Fournier, B., & Foo, S. (2009). New mixture proportioning method for concrete made with coarse recycled concrete aggregate. J Mater Civ Eng, 21(10), 601–611. [CrossRef]
  • 157. Garip, E. (2011). Shear strength of reinforced concrete beams without stirrups [Master’s thesis], Yildiz Technical University.
  • 158. Fathifazi, G., Razagnur, A. G., Isgor, O. B., Abbas, A., Fournier, B., & Foo, S. (2012). Bond performance of deformed steel bars in concrete produced with coarse recycled concrete aggregate. Can J Civ Eng, 39(2), 128–139. [CrossRef]
  • 159. Chan, D., & Sun, P. C. (2006). Effects of fine recycled aggregate as sand replacement in concrete. HKIE Trans, 13(4), 2-7. [CrossRef]
  • 160. Noel, M., Sanchez, L., & Fathifazi, G. (2016). Recent advances in sustainable concrete for structural applications. Sustain Constr Mater Technol, 4(10).
  • 161. Ali, R. A., & Kharofa, O. H. (2021). The impact of nanomaterials on sustainable architectural applications smart concrete as a model. Mater Today Proc, 42, 3010–3017. [CrossRef]
  • 162. Han, B., Yu, X., & Ou, J. (2014). Self-sensing concrete in smart structures. Butterworth-Heinemann.
  • 163. Singh, N. B., Kalra, M., & Saxena, S. K. (2017). Nanoscience of cement and concrete. Mater Today Proc, 4(4), 5478–5487. [CrossRef]
  • 164. Du, S., Wu, J., AlShareedah, O., & Shi, X. (2019). Nanotechnology in cement-based materials: A review of durability, modeling, and advanced characterization. Nanomaterials, 9(9), 1213. [CrossRef]
  • 165. Dong, J., Cai, B., Zhang, S., Wang, J., Yue, H., Wang, C., Mao, X., Cong, J., & Guo, F. (2023). Closing the gap between carbon neutrality targets and action: Technology solutions for Chinas key energy-intensive sectors. Environ Sci Technol, 57(11), 4396–4405. [CrossRef]
  • 166. Xie, W. H., Li, H., Yang, M., He, L. N., & Li, H. R. (2022). CO2 capture and utilization with solid waste. Green Chem Eng, 3(3), 199–209. [CrossRef]
  • 167. Nejat, P., Jomehzadeh, E., Taheri, M. M., Gohari, M., & Majid, M. Z. A. (2015). A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew Sustain Energy Rev, 43, 843–862. [CrossRef]
  • 168. Miller, S. A., Van Roijen, E., Cunningham, P., & Kim, A. (2021). Opportunities and challenges for engineering construction materials as carbon sinks. RILEM Tech Lett, 6, 105–118. [CrossRef]
  • 169. Badjatya, P., Akca, A. H., Fraga Alvarez, D. V., Chang, B., Ma, S., Pang, X., Wang, E., van Hinsberg, Q., Esposito, D. V., & Kawashima, S. (2022). Carbon-negative cement manufacturing from seawater-derived magnesium feedstocks. Proc Natl Acad Sci, 119(34), e2114680119. [CrossRef]
  • 170. Yang, W., Min, Z., Yang, M., & Yan, J. (2022). Exploration of the implementation of carbon neutralization in the field of natural resources under the background of sustainable development—An overview. Int J Environ Res Public Health, 19(21), 14109. [CrossRef]
  • 171. Zhang, Y., He, M., Wang, L., Yan, J., Ma, B., Zhu, X., Ok, Y. S., Mechtcherine, V., & Tsang, D. C. W. (2022). Biochar as construction materials for achieving carbon neutrality. Biochar, 4(1), 59. [CrossRef]
  • 172. Chausali, N., Saxena, J., & Prasad, R. (2021). Nanobiochar and biochar-based nanocomposites: Advances and applications. J Agric Food Res, 5, 100191. [CrossRef]
  • 173. Sisman, M., Toomete, E., Yanik, J., Malayoglu, U., & Tac, G. D. (2023). The effects of apricot kernel shell nanobiochar on mechanical properties of cement composites. Cement Wapno Beton, 28(1), 2–15. [CrossRef]
  • 174. Full, J., Merseburg, S., Miehe, R., & Sauer, A. (2021). A new perspective for climate change mitigation—introducing carbon-negative hydrogen production from biomass with carbon capture and storage (Hybeccs). Sustainability, 13(7), 4026. [CrossRef]
  • 175. Saharudin, M. S., Ilyas, R. A., Awang, N., Hasbi, S., Shyha, I., & Inam, F. (2023). Advances in sustainable nanocomposites. Sustainability, 15(6), 5125. [CrossRef]
  • 176. Chausali, N., Saxena, J., & Prasad, R. (2023). Nanotechnology as a sustainable approach for combating the environmental effects of climate change. J Agric Food Res, 12, 100541. [CrossRef]
  • 177. Niero, M., & Rivera, X. C. S. (2018). The role of life cycle sustainability assessment in the implementation of circular economy principles in organizations. Procedia CIRP, 69, 793–798. [CrossRef]
  • 178. Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The circular economy-A new sustainability paradigm? J Clean Prod, 143, 757–768. [CrossRef]
There are 178 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Review Articles
Authors

Abdur Rahman Siddiqui 0009-0002-9367-6650

Rizwan Khan 0000-0003-2317-3994

Md Nazeem Akhtar 0009-0003-9427-794X

Publication Date March 29, 2025
Submission Date October 13, 2024
Acceptance Date January 29, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Siddiqui, A. R., Khan, R., & Akhtar, M. N. (2025). Sustainable concrete solutions for green infrastructure development: A review. Journal of Sustainable Construction Materials and Technologies, 10(1), 108-141. https://doi.org/10.47481/jscmt.1667793