Research Article
BibTex RIS Cite

The role of active and conductive layer thickness in maximizing power conversion efficiency of perovskite solar cells

Year 2025, Issue: 061, 1 - 12, 30.06.2025

Abstract

This study investigates the effect of active and conductive layer thickness on photovoltaic performance in perovskite solar cells, addressing the need for efficient and sustainable energy solutions in light of current environmental challenges. Using OghmaNano software, we analyzed how variations in thickness of the perovskite, fluorine-doped tin oxide (FTO), and gold (Au) layers influence key performance metrics, including power conversion efficiency (PCE), fill factor (FF), open-circuit voltage (Voc), and short-circuit current density (Jsc). The ideal thicknesses identified for achieving maximum PCE are 775 nm for the perovskite layer, 50 nm for the FTO layer, and 100 nm for the Au layer. This study underscores the complex relationship between light absorption and charge transport in perovskite solar cells and highlights the importance of fine-tuning layer thickness for enhanced efficiency. The simulation-based approach used here proves valuable for its practical efficiency, reducing both time and cost compared to experimental fabrication.

References

  • [1] Z. Chen, X. Yiliang, Z. Hongxia, G. Yujie, and Z. Xiongwen, “Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system,” Energy, vol. 262, pp. 125453, 2023.
  • [2] A. I. Osman et al., “Cost, environmental impact, and resilience of renewable energy under a changing climate: a review,” Environ. Chem. Lett. 2022 212, vol. 21, no. 2, pp. 741–764, 2022.
  • [3] O. Abedinia, A. Ghasemi-Marzbali, S. Gouran-Orimi, and M. Bagheri, “Presence of Renewable Resources in a Smart City for Supplying Clean and Sustainable Energy,” Decision Making Using AI in Energy and Sustainability pp. 233–251, 2023.
  • [4] K. Dong, Q. Jiang, Y. Liu, Z. Shen, and M. Vardanyan, “Is energy aid allocated fairly? A global energy vulnerability perspective,” World Dev., vol. 173, pp. 106409, 2024.
  • [5] U. K. Pata, Q. Wang, M. T. Kartal, and A. Sharif, “The role of disaggregated renewable energy consumption on income and load capacity factor: A novel inclusive sustainable growth approach,” Geosci. Front., vol. 15, no. 1, pp. 101693, 2024.
  • [6] A. Sohrabi, M. Meratizaman, and S. Liu, “Comparative analysis of integrating standalone renewable energy sources with brackish water reverse osmosis plants: Technical and economic perspectives,” Desalination, vol. 571, pp. 117106, 2024.
  • [7] N. A. N. Ouedraogo et al., “Eco-friendly processing of perovskite solar cells in ambient air,” Renew. Sustain. Energy Rev., vol. 192, p. 114161, 2024.
  • [8] H. Si, X. Zhao, Z. Zhang, Q. Liao, and Y. Zhang, “Low-temperature electron-transporting materials for perovskite solar cells: Fundamentals, progress, and outlook,” Coord. Chem. Rev., vol. 500, pp. 215502, 2024.
  • [9] H. J. Kim, Y. J. Kim, G. S. Han, and H. S. Jung, “Green Solvent Strategies toward Sustainable Perovskite Solar Cell Fabrication,” Sol. RRL, pp. 2300910, 2024.
  • [10] X. Li et al., “Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: exploring the potential of mixed-dimensional integrations,” J. Mater. Chem. A, 2024.
  • [11] P. Zhu et al., “Toward the Commercialization of Perovskite Solar Modules,” Adv. Mater., pp. 2307357, 2024.
  • [12] R. Tian, S. Zhou, Y. Meng, C. Liu, and Z. Ge, “Material and Device Design of Flexible Perovskite Solar Cells for Next-Generation Power Supplies,” Adv. Mater., pp. 2311473, 2024.
  • [13] J. Qin et al., “Towards operation-stabilizing perovskite solar cells: Fundamental materials, device designs, and commercial applications,” InfoMat, pp. e12522, 2024.
  • [14] S. Wang et al., “Efficient thermoelectric properties and high UV absorption of stable zinc-doped all-inorganic perovskite for BIPV applications in multiple scenarios,” Sol. Energy, vol. 267, p. 112240, 2024.
  • [15] J. Zhang et al., “Templated-seeding renders tailored crystallization in perovskite photovoltaics: path towards future efficient modules,” J. Mater. Chem. A, vol. 12, no. 3, pp. 1407–1421, 2024.
  • [16] N. K. Elangovan, R. Kannadasan, B. B. Beenarani, M. H. Alsharif, M. K. Kim, and Z. Hasan Inamul, “Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells,” Energy Reports, vol. 11, pp. 1171–1190, 2024.
  • [17] J. Cheng, H. Cao, S. Zhang, F. Yue, and Z. Zhou, “Reinforcing built-in electric field to enable efficient carrier extraction for high-performance perovskite solar cells,” Mater. Chem. Front., 2023.
  • [18] X. Dong et al., “Improve the Charge Carrier Transporting in Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells,” Adv. Mater., pp. 2313056, 2024.
  • [19] L. jing Huang, M. Zhang, Z. yan Wang, S. yu Zhao, H. Ji, and B. jia Li, “Fabrication of fractal Ag mesh/FTO transparent electrodes/heaters with enhanced electrical conductivity based on mesh hierarchy and shape optimization,” Opt. Laser Technol., vol. 168, pp. 109895, 2024.
  • [20] H.-J. Seok et al., “Cost-Effective Transparent N-Doped Tin Oxide Electrodes with Excellent Thermal and Chemical Stabilities Enabling Stable Perovskite Photovoltaics Based on Tin Oxide Electron Transport Layer,” Adv. Energy Mater., pp. 2303859, 2024.
  • [21] Y. Sun, J. Zhang, B. Yu, S. Shi, and H. Yu, “Regulate defects and energy levels for perovskite solar cells by co-modification strategy,” Nano Energy, vol. 121, pp. 109245, 2024.
  • [22] A. Sadhanala et al., “Recent Advances and Challenges in Halide Perovskite Crystals in Optoelectronic Devices from Solar Cells to Other Applications,” Cryst. 2021, Vol. 11, Page 39, vol. 11, no. 1, pp. 39, 2020.
  • [23] D. K. Sarkar et al., “Numerical investigation of Aloe Vera-mediated green synthesized CuAlO2 as HTL in Pb-free perovskite solar cells,” J. Taibah Univ. Sci., vol. 18, no. 1, pp. 2300856, 2024.
  • [24] J. Maleki, M. Eskandari, and D. Fathi, “New design and optimization of half-tandem quantum dot solar cell: Over 30% power conversion efficiency using nanostructure oriented core-shell,” Renew. Energy, vol. 222, pp. 119938, 2024.
  • [25] A. Mortadi, E. El Hafidi, M. Monkade, and R. El Moznine, “Investigating the influence of absorber layer thickness on the performance of perovskite solar cells: A combined simulation and impedance spectroscopy study,” Mater. Sci. Energy Technol., vol. 7, pp. 158–165, 2024.
  • [26] M. Sadullah and K. Ghosh, “Bandgap tuning and performance analysis of hybrid MAPb1−xSnxI3 perovskite solar cell: A numerical approach,” Optik (Stuttg)., vol. 300, pp. 171644, 2024.
  • [27] J. Bisquert, The physics of solar cells: Organic-Inorganic Halide Perovskite Photovoltaics, vol. 50, no. 8. 2018.
  • [28] S. Adak and H. Cangi, “Development software program for finding photovoltaic cell open-circuit voltage and fill factor based on the photovoltaic cell one-diode equivalent circuit model,” Electr. Eng., pp. 1–14, 2024.
  • [29] A. K. K. Soopy et al., “Towards High Performance: Solution-Processed Perovskite Solar Cells with Cu-Doped CH3NH3PbI3,” Nanomaterials, vol. 14, no. 2, pp. 172, 2024.
  • [30] J. Kaur, S. Kumar, R. Basu, and A. K. Sharma, “Modelling and Simulation of Planar Heterojunction Perovskite Solar Cell featuring CH3NH3PbI3, CH3NH3SnI3, CH3NH3GeI3 Absorber Layers,” Silicon, vol. 1, pp. 1–11, 2023.
  • [31] Y. Song, “Electrical and photovoltaic properties of metal/para-indium-phosphide Schottky barriers,” 1988.
  • [32] H. A. Maddah, “Investigation of charge transport mechanism at TiO2/MAPbI3/β-Carotene heterostructure in natural dye sensitized solar cells,” Mater. Sci. Eng. B, vol. 302, pp. 117197, 2024.
  • [33] V. Deswal, S. Kaushik, R. Kundara, and S. Baghel, “Numerical simulation of highly efficient Cs2AgInBr6-based double perovskite solar cell using SCAPS 1-D,” Mater. Sci. Eng. B, vol. 299, pp. 117041, 2024.
  • [34] P. Ghosh, S. Sundaram, T. P. Nixon, and S. Krishnamurthy, “Influence of Nanostructures in Perovskite Solar Cells,” Encycl. Smart Mater., pp. 646–660, 2021.
  • [35] Q. Zhao, Y. Yang, Z. Hu, and H. Zhang, “A new full-spectrum solar power system based on perovskite solar cell and thermally regenerative electrochemical cycle: Influential mechanism and performance limit,” Energy Convers. Manag., vol. 302, pp. 118086, 2024.
  • [36] L. Mi, Y. Zhang, T. Chen, E. Xu, and Y. Jiang, “Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells,” RSC Adv., vol. 10, no. 21, pp. 12298–12303, 2020.
  • [37] B. Nath, · Praveen, C. Ramamurthy, · Gopalkrishna Hegde, · Debiprosad, and R. Mahapatra, “Role of electrodes on perovskite solar cells performance: A review,” ISSS J. Micro Smart Syst. 2022 111, vol. 11, no. 1, pp. 61–79, 2022.
  • [38] N. Chawki, R. Essajai, M. Rouchdi, M. Braiche, M. Al-Hattab, and B. Fares, “Efficacy analysis of BaZrS3-based perovskite solar cells: investigated through a numerical simulation,” Adv. Mater. Process. Technol., pp. 1–14, 2024.
  • [39] Z. S. Ismail, E. F. Sawires, F. Z. Amer, and S. O. Abdellatif, “Perovskites informatics: Studying the impact of thicknesses, doping, and defects on the perovskite solar cell efficiency using a machine learning algorithm,” Int. J. Numer. Model. Electron. Networks, Devices Fields, vol. 37, no. 2, pp. e3164, 2024.
  • [40] J. Qi et al., “Modulation of intermolecular interactions in hole transporting materials for improvement of perovskite solar cell efficiency: a strategy of trifluoromethoxy isomerization,” J. Mater. Chem. A, vol. 12, no. 7, pp. 4067–4076, 2024.
  • [41] F. Xie et al., “One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells,” Mater. Res. Bull., vol. 173, pp. 112677, 2024.
  • [42] N. Chawki, R. Essajai, M. Rouchdi, M. Braiche, M. Al-Hattab, and B. Fares, “Efficacy analysis of BaZrS3-based perovskite solar cells: investigated through a numerical simulation,” Adv. Mater. Process. Technol., 2024.
  • [43] D. Shen et al., “Tunable Photoluminescent Nitrogen-Doped Graphene Quantum Dots at the Interface for High-Efficiency Perovskite Solar Cells,” ACS Appl. Nano Mater., 2023.
Year 2025, Issue: 061, 1 - 12, 30.06.2025

Abstract

References

  • [1] Z. Chen, X. Yiliang, Z. Hongxia, G. Yujie, and Z. Xiongwen, “Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system,” Energy, vol. 262, pp. 125453, 2023.
  • [2] A. I. Osman et al., “Cost, environmental impact, and resilience of renewable energy under a changing climate: a review,” Environ. Chem. Lett. 2022 212, vol. 21, no. 2, pp. 741–764, 2022.
  • [3] O. Abedinia, A. Ghasemi-Marzbali, S. Gouran-Orimi, and M. Bagheri, “Presence of Renewable Resources in a Smart City for Supplying Clean and Sustainable Energy,” Decision Making Using AI in Energy and Sustainability pp. 233–251, 2023.
  • [4] K. Dong, Q. Jiang, Y. Liu, Z. Shen, and M. Vardanyan, “Is energy aid allocated fairly? A global energy vulnerability perspective,” World Dev., vol. 173, pp. 106409, 2024.
  • [5] U. K. Pata, Q. Wang, M. T. Kartal, and A. Sharif, “The role of disaggregated renewable energy consumption on income and load capacity factor: A novel inclusive sustainable growth approach,” Geosci. Front., vol. 15, no. 1, pp. 101693, 2024.
  • [6] A. Sohrabi, M. Meratizaman, and S. Liu, “Comparative analysis of integrating standalone renewable energy sources with brackish water reverse osmosis plants: Technical and economic perspectives,” Desalination, vol. 571, pp. 117106, 2024.
  • [7] N. A. N. Ouedraogo et al., “Eco-friendly processing of perovskite solar cells in ambient air,” Renew. Sustain. Energy Rev., vol. 192, p. 114161, 2024.
  • [8] H. Si, X. Zhao, Z. Zhang, Q. Liao, and Y. Zhang, “Low-temperature electron-transporting materials for perovskite solar cells: Fundamentals, progress, and outlook,” Coord. Chem. Rev., vol. 500, pp. 215502, 2024.
  • [9] H. J. Kim, Y. J. Kim, G. S. Han, and H. S. Jung, “Green Solvent Strategies toward Sustainable Perovskite Solar Cell Fabrication,” Sol. RRL, pp. 2300910, 2024.
  • [10] X. Li et al., “Dimensional diversity (0D, 1D, 2D, and 3D) in perovskite solar cells: exploring the potential of mixed-dimensional integrations,” J. Mater. Chem. A, 2024.
  • [11] P. Zhu et al., “Toward the Commercialization of Perovskite Solar Modules,” Adv. Mater., pp. 2307357, 2024.
  • [12] R. Tian, S. Zhou, Y. Meng, C. Liu, and Z. Ge, “Material and Device Design of Flexible Perovskite Solar Cells for Next-Generation Power Supplies,” Adv. Mater., pp. 2311473, 2024.
  • [13] J. Qin et al., “Towards operation-stabilizing perovskite solar cells: Fundamental materials, device designs, and commercial applications,” InfoMat, pp. e12522, 2024.
  • [14] S. Wang et al., “Efficient thermoelectric properties and high UV absorption of stable zinc-doped all-inorganic perovskite for BIPV applications in multiple scenarios,” Sol. Energy, vol. 267, p. 112240, 2024.
  • [15] J. Zhang et al., “Templated-seeding renders tailored crystallization in perovskite photovoltaics: path towards future efficient modules,” J. Mater. Chem. A, vol. 12, no. 3, pp. 1407–1421, 2024.
  • [16] N. K. Elangovan, R. Kannadasan, B. B. Beenarani, M. H. Alsharif, M. K. Kim, and Z. Hasan Inamul, “Recent developments in perovskite materials, fabrication techniques, band gap engineering, and the stability of perovskite solar cells,” Energy Reports, vol. 11, pp. 1171–1190, 2024.
  • [17] J. Cheng, H. Cao, S. Zhang, F. Yue, and Z. Zhou, “Reinforcing built-in electric field to enable efficient carrier extraction for high-performance perovskite solar cells,” Mater. Chem. Front., 2023.
  • [18] X. Dong et al., “Improve the Charge Carrier Transporting in Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells,” Adv. Mater., pp. 2313056, 2024.
  • [19] L. jing Huang, M. Zhang, Z. yan Wang, S. yu Zhao, H. Ji, and B. jia Li, “Fabrication of fractal Ag mesh/FTO transparent electrodes/heaters with enhanced electrical conductivity based on mesh hierarchy and shape optimization,” Opt. Laser Technol., vol. 168, pp. 109895, 2024.
  • [20] H.-J. Seok et al., “Cost-Effective Transparent N-Doped Tin Oxide Electrodes with Excellent Thermal and Chemical Stabilities Enabling Stable Perovskite Photovoltaics Based on Tin Oxide Electron Transport Layer,” Adv. Energy Mater., pp. 2303859, 2024.
  • [21] Y. Sun, J. Zhang, B. Yu, S. Shi, and H. Yu, “Regulate defects and energy levels for perovskite solar cells by co-modification strategy,” Nano Energy, vol. 121, pp. 109245, 2024.
  • [22] A. Sadhanala et al., “Recent Advances and Challenges in Halide Perovskite Crystals in Optoelectronic Devices from Solar Cells to Other Applications,” Cryst. 2021, Vol. 11, Page 39, vol. 11, no. 1, pp. 39, 2020.
  • [23] D. K. Sarkar et al., “Numerical investigation of Aloe Vera-mediated green synthesized CuAlO2 as HTL in Pb-free perovskite solar cells,” J. Taibah Univ. Sci., vol. 18, no. 1, pp. 2300856, 2024.
  • [24] J. Maleki, M. Eskandari, and D. Fathi, “New design and optimization of half-tandem quantum dot solar cell: Over 30% power conversion efficiency using nanostructure oriented core-shell,” Renew. Energy, vol. 222, pp. 119938, 2024.
  • [25] A. Mortadi, E. El Hafidi, M. Monkade, and R. El Moznine, “Investigating the influence of absorber layer thickness on the performance of perovskite solar cells: A combined simulation and impedance spectroscopy study,” Mater. Sci. Energy Technol., vol. 7, pp. 158–165, 2024.
  • [26] M. Sadullah and K. Ghosh, “Bandgap tuning and performance analysis of hybrid MAPb1−xSnxI3 perovskite solar cell: A numerical approach,” Optik (Stuttg)., vol. 300, pp. 171644, 2024.
  • [27] J. Bisquert, The physics of solar cells: Organic-Inorganic Halide Perovskite Photovoltaics, vol. 50, no. 8. 2018.
  • [28] S. Adak and H. Cangi, “Development software program for finding photovoltaic cell open-circuit voltage and fill factor based on the photovoltaic cell one-diode equivalent circuit model,” Electr. Eng., pp. 1–14, 2024.
  • [29] A. K. K. Soopy et al., “Towards High Performance: Solution-Processed Perovskite Solar Cells with Cu-Doped CH3NH3PbI3,” Nanomaterials, vol. 14, no. 2, pp. 172, 2024.
  • [30] J. Kaur, S. Kumar, R. Basu, and A. K. Sharma, “Modelling and Simulation of Planar Heterojunction Perovskite Solar Cell featuring CH3NH3PbI3, CH3NH3SnI3, CH3NH3GeI3 Absorber Layers,” Silicon, vol. 1, pp. 1–11, 2023.
  • [31] Y. Song, “Electrical and photovoltaic properties of metal/para-indium-phosphide Schottky barriers,” 1988.
  • [32] H. A. Maddah, “Investigation of charge transport mechanism at TiO2/MAPbI3/β-Carotene heterostructure in natural dye sensitized solar cells,” Mater. Sci. Eng. B, vol. 302, pp. 117197, 2024.
  • [33] V. Deswal, S. Kaushik, R. Kundara, and S. Baghel, “Numerical simulation of highly efficient Cs2AgInBr6-based double perovskite solar cell using SCAPS 1-D,” Mater. Sci. Eng. B, vol. 299, pp. 117041, 2024.
  • [34] P. Ghosh, S. Sundaram, T. P. Nixon, and S. Krishnamurthy, “Influence of Nanostructures in Perovskite Solar Cells,” Encycl. Smart Mater., pp. 646–660, 2021.
  • [35] Q. Zhao, Y. Yang, Z. Hu, and H. Zhang, “A new full-spectrum solar power system based on perovskite solar cell and thermally regenerative electrochemical cycle: Influential mechanism and performance limit,” Energy Convers. Manag., vol. 302, pp. 118086, 2024.
  • [36] L. Mi, Y. Zhang, T. Chen, E. Xu, and Y. Jiang, “Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells,” RSC Adv., vol. 10, no. 21, pp. 12298–12303, 2020.
  • [37] B. Nath, · Praveen, C. Ramamurthy, · Gopalkrishna Hegde, · Debiprosad, and R. Mahapatra, “Role of electrodes on perovskite solar cells performance: A review,” ISSS J. Micro Smart Syst. 2022 111, vol. 11, no. 1, pp. 61–79, 2022.
  • [38] N. Chawki, R. Essajai, M. Rouchdi, M. Braiche, M. Al-Hattab, and B. Fares, “Efficacy analysis of BaZrS3-based perovskite solar cells: investigated through a numerical simulation,” Adv. Mater. Process. Technol., pp. 1–14, 2024.
  • [39] Z. S. Ismail, E. F. Sawires, F. Z. Amer, and S. O. Abdellatif, “Perovskites informatics: Studying the impact of thicknesses, doping, and defects on the perovskite solar cell efficiency using a machine learning algorithm,” Int. J. Numer. Model. Electron. Networks, Devices Fields, vol. 37, no. 2, pp. e3164, 2024.
  • [40] J. Qi et al., “Modulation of intermolecular interactions in hole transporting materials for improvement of perovskite solar cell efficiency: a strategy of trifluoromethoxy isomerization,” J. Mater. Chem. A, vol. 12, no. 7, pp. 4067–4076, 2024.
  • [41] F. Xie et al., “One-step hydrothermal synthesis of Zr-doped brookite TiO2 nanorods for highly efficient perovskite solar cells,” Mater. Res. Bull., vol. 173, pp. 112677, 2024.
  • [42] N. Chawki, R. Essajai, M. Rouchdi, M. Braiche, M. Al-Hattab, and B. Fares, “Efficacy analysis of BaZrS3-based perovskite solar cells: investigated through a numerical simulation,” Adv. Mater. Process. Technol., 2024.
  • [43] D. Shen et al., “Tunable Photoluminescent Nitrogen-Doped Graphene Quantum Dots at the Interface for High-Efficiency Perovskite Solar Cells,” ACS Appl. Nano Mater., 2023.
There are 43 citations in total.

Details

Primary Language English
Subjects Photovoltaic Power Systems, Solar Energy Systems
Journal Section Research Articles
Authors

Enes Nayman 0000-0002-3656-3126

Mehmet Fatih Gözükızıl 0000-0003-1719-959X

Publication Date June 30, 2025
Submission Date October 31, 2024
Acceptance Date March 24, 2025
Published in Issue Year 2025 Issue: 061

Cite

IEEE E. Nayman and M. F. Gözükızıl, “The role of active and conductive layer thickness in maximizing power conversion efficiency of perovskite solar cells”, JSR-A, no. 061, pp. 1–12, June 2025.