Research Article
BibTex RIS Cite

The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure

Year 2025, Volume: 11 Issue: 1, 32 - 39, 25.06.2025
https://doi.org/10.55385/kastamonujes.1678080

Abstract

Kahramanmaraş-Pazarcık depremi dikkate alınarak toplam 10 katlı, orta yükseklikteki betonarme bir yapının sismik performansı, Tek Eğrilikli Sürtünmeli Sarkaç Sistemi (FPS) tipi taban izolasyonu kullanılarak değerlendirilmiştir. Yapı, X doğrultusunda 3 açıklıklı, Y doğrultusunda ise 2 açıklıklı olarak tasarlanmıştır. Sismik izolasyon amacıyla temel seviyesinde FPS tipi izolatörler uygulanmış ve bu izolatörlerin yapının sismik performansına olan etkisi, sabit sürtünme katsayısı (μ = 0.055) değerine sahip iki farklı eğrilik yarıçapı (R = 1.5 m ve R = 4 m) dikkate alınarak yapının sismik davranışı, bir sonlu elemanlar programında zaman tanım alanında doğrusal olmayan analiz yöntemi kullanılarak, 6 Şubat 2023 tarihli Kahramanmaraş-Pazarcık depremi yer hareketi etkisi altında değerlendirilmiştir. FPS izolatör yarıçapının yapının sismik tepkisi üzerindeki etkilerini analiz edebilmek amacıyla taban kesme kuvveti, maksimum tepe noktası yer değiştirmesi, maksimum tepe noktası hızı ve maksimum tepe noktası ivmesi olmak üzere dört temel sismik performans parametresi incelenmiştir. Elde edilen bulgulara göre; daha küçük eğrilik yarıçapına sahip izolatörlerin rijitlik etkisiyle taban kesme kuvvetini artırdığı, ancak yer değiştirme ve ivme taleplerini belirli ölçüde azalttığı görülmüştür. Öte yandan, daha büyük yarıçaplı izolatörlerin yapıya aktarılan yatay kuvveti azaltarak daha uzun periyotlu, daha sünek bir davranış oluşturduğu; buna karşılık yer değiştirme ve hız taleplerini artırdığı tespit edilmiştir. Bu kapsamda, FPS izolatör geometrisinin yapısal performans üzerindeki çok yönlü etkileri ortaya konmuş ve performans temelli tasarımda izolatör seçiminin çoklu parametrelerle değerlendirilmesi gerektiği vurgulanmıştır.

References

  • Ocal, A. (2019). Natural disasters in Turkey: Social and economic perspective. International Journal of Disaster Risk Management, 1, 51–61.
  • Avcil, F., Işık, E., İzol, R., Büyüksaraç, A., Arkan, E., Arslan, M. H., Aksoylu, C., Eyisüren, O., & Harirchian, E. (2024). Effects of the February 6, 2023, Kahramanmaraş earthquake on structures in Kahramanmaraş city. Natural Hazards, 120, 2953–2991.
  • Altunişik, A. C., Arslan, M. E., Kahya, V., Aslan, B., Sezdirmez, T., Dok, G., Kirtel, O., Öztürk, H., Sunca, F., & Baltaci, A. (2023). Field observations and damage evaluation in reinforced concrete buildings after the February 6th, 2023, Kahramanmaraş–Türkiye Earthquakes. Journal of Earthquake and Tsunami, 17, 2350024.
  • Unal, E. O., Kocaman, S., & Gokceoglu, C. (2024). Impact assessment of geohazards triggered by 6 February 2023 Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6) on the natural gas pipelines. Engineering Geology, 334, 107508.
  • Inoue, N., Yamaguchi, R., Yagi, Y., Okuwaki, R., Enescu, B. D., & Tadapansawut, T. (2025). A multiple asymmetric bilateral rupture sequence derived from the peculiar tele-seismic P-waves of the 2025 Myanmar earthquake.
  • Wei, C. M., Meng, G. J., Wu, W. W., Chen, X. L., Zhao, G. Q., Dong, Z. H., ... & Wang, Y. F. (2025). A novel method for evaluating earthquake forecast model performance and its implications for refining seismic likelihood model. Geophysical Journal International, 240(1), 605-619.
  • Ozer, E., Inel, M., & Cayci, B. T. (2022). Seismic behavior of LRB and FPS type isolators considering torsional effects. Structures, 37, 267–283.
  • Providakis, C. (2009). Effect of supplemental damping on LRB and FPS seismic isolators under near-fault ground motions. Soil Dynamics and Earthquake Engineering, 29, 80–90.
  • Tsopelas, P., Constantinou, M., Kim, Y., & Okamoto, S. (1996). Experimental study of FPS system in bridge seismic isolation. Earthquake Engineering & Structural Dynamics, 25, 65–78.
  • Castaldo, P., Palazzo, B., & Della Vecchia, P. (2016). Life-cycle cost and seismic reliability analysis of 3D systems equipped with FPS for different isolation degrees. Engineering Structures, 125, 349–363.
  • Ismail, M., Rodellar, J., & Pozo, F. (2014). An isolation device for near‐fault ground motions. Structural Control and Health Monitoring, 21(3), 249-268.
  • Almazán, J. L., & Llera, J. C. D. (2003). Physical model for dynamic analysis of structures with FPS isolators. Earthquake Engineering & Structural Dynamics, 32, 1157–1184.
  • Zhang, W., El Naggar, M. H., Ni, P., Zhao, M., & Du, X. (2025). Nonlinear seismic response analysis of underground structures considering spatial variability of soil parameters. Tunnelling and Underground Space Technology, 159, 106445.
  • Iervolino, I., & Cornell, C. A. (2005). Record selection for nonlinear seismic analysis of structures. Earthquake Spectra, 21, 685–713.
  • Saiidi, M., & Sozen, M. A. (1981). Simple nonlinear seismic analysis of R/C structures. Journal of the Structural Division, 107, 937–953.
  • Bazzurro, P., Cornell, C. A., Shome, N., & Carballo, J. E. (1998). Three proposals for characterizing MDOF nonlinear seismic response. Journal of Structural Engineering, 124, 1281–1289.
  • Henchi, K., Fafard, M., Talbot, M., & Dhatt, G. (1998). An efficient algorithm for dynamic analysis of bridges under moving vehicles using a coupled modal and physical components approach. Journal of sound and Vibration, 212(4), 663-683.
  • Mayes, R. L., & Naeim, F. (2001). Design of structures with seismic isolation. The seismic design handbook, 723-755.
  • Ozer, E., & Inel, M. (2025). The effect of single and combined use of base isolator and fluid viscous damper on seismic performance in a conventional RC building with torsional irregularity. Journal of Building Engineering, 111898.
  • Constantinou, M. C., Whittaker, A., Kalpakidis, Y., Fenz, D., & Warn, G. P. (2007). Performance of seismic isolation hardware under service and seismic loading.
  • Constantinou, M., Mokha, A., & Reinhorn, A. (1990). Teflon bearings in base isolation II: Modeling. Journal of Structural Engineering, 116, 455–471.
  • Mokha, A., Constantinou, M., & Reinhorn, A. (1990). Teflon bearings in base isolation I: Testing. Journal of Structural Engineering, 116, 438–454.
  • Mosqueda, G., Whittaker, A. S., & Fenves, G. L. (2004). Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation. Journal of Structural Engineering, 130, 433–442.
  • Zayas, V. A., Low, S. S., & Mahin, S. A. (1990). A simple pendulum technique for achieving seismic isolation. Earthquake Spectra, 6, 317–334.
  • Su, L., Ahmadi, G., & Tadjbakhsh, I. G. (1989). Comparative study of base isolation systems. Journal of Engineering Mechanics, 115, 1976–1992.
  • Jangid, R. (2000). Optimum frictional elements in sliding isolation systems. Computers & Structures, 76, 651–661.
  • Jangid, R. (2005). Optimum friction pendulum system for near-fault motions. Engineering Structures, 27, 349–359.
  • Chung, L.-L., Kao, P.-S., Yang, C.-Y., Wu, L.-Y., & Chen, H.-M. (2015). Optimal frictional coefficient of structural isolation system. Journal of Vibration and Control, 21, 525–538.

Doğrusal Olmayan Zaman Tanım Alanında Analiz ile Sismik İzolasyonda FPS Parametrelerinin Etkisi: İzolatör Eğrilik Yarıçapının Yapıların Sismik Performansına Katkısı

Year 2025, Volume: 11 Issue: 1, 32 - 39, 25.06.2025
https://doi.org/10.55385/kastamonujes.1678080

Abstract

Kahramanmaraş-Pazarcık depremini dikkate alarak 10 katlı, orta-yükseklikteki betonarme bir yapının sismik performansı, Tek Eğrilikli Sürtünmeli Sarkaç Sistemi (FPS) tipli taban izolasyonu kullanılarak değerlendirilmiştir. Yapı, X yönünde 3 açıklıklı, Y yönünde ise 2 açıklıklı olarak tasarlanmıştır. Sismik izolasyon amacıyla temel seviyesinde FPS tipi izolatörler uygulanmış ve bu izolatörlerin yapının sismik performansına olan etkisi, sabit sürtünme katsayısı (μ = 0,055) değerine sahip iki farklı eğrilik yarıçapı (R = 1,5 m ve R = 4 m) dikkate alınarak yapının sismik davranışı, bir sonlu elemanlar programında zaman tanım alanında doğrusal olmayan analiz yöntemi kullanılarak, 6 Şubat 2023 tarihli Kahramanmaraş-Pazarcık depremi yer hareketi etkisi altında değerlendirilmiştir. FPS izolatör yarıçapının yapının sismik tepkisi üzerindeki etkilerini analiz edebilmek amacıyla taban kesme kuvveti, maksimum tepe yer değiştirmesi, maksimum tep hızı ve maksimum tepe ivmesi olmak üzere dört temel sismik performans parametresi incelenmiştir. Elde edilen bulgulara göre; daha küçük eğrilik yarıçapına sahip izolatörlerin rijitlik etkisiyle taban kesme kuvvetini artırdığı, ancak yer değiştirme ve ivme taleplerini belirli ölçüde azalttığı görülmüştür. Öte yandan, daha büyük yarıçaplı izolatörlerin yapıya aktarılan yatay kuvveti azaltarak daha uzun periyotlu, daha sünek bir davranış oluşturduğu; buna karşılık yer değiştirme ve hız taleplerini artırdığı tespit edilmiştir. Bu kapsamda, FPS izolatör geometrisinin yapısal performans üzerindeki çok yönlü etkileri ortaya konmuş ve performans temelli tasarımda izolatör seçiminin çoklu parametrelerle değerlendirilmesi gerektiği vurgulanmıştır.

References

  • Ocal, A. (2019). Natural disasters in Turkey: Social and economic perspective. International Journal of Disaster Risk Management, 1, 51–61.
  • Avcil, F., Işık, E., İzol, R., Büyüksaraç, A., Arkan, E., Arslan, M. H., Aksoylu, C., Eyisüren, O., & Harirchian, E. (2024). Effects of the February 6, 2023, Kahramanmaraş earthquake on structures in Kahramanmaraş city. Natural Hazards, 120, 2953–2991.
  • Altunişik, A. C., Arslan, M. E., Kahya, V., Aslan, B., Sezdirmez, T., Dok, G., Kirtel, O., Öztürk, H., Sunca, F., & Baltaci, A. (2023). Field observations and damage evaluation in reinforced concrete buildings after the February 6th, 2023, Kahramanmaraş–Türkiye Earthquakes. Journal of Earthquake and Tsunami, 17, 2350024.
  • Unal, E. O., Kocaman, S., & Gokceoglu, C. (2024). Impact assessment of geohazards triggered by 6 February 2023 Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6) on the natural gas pipelines. Engineering Geology, 334, 107508.
  • Inoue, N., Yamaguchi, R., Yagi, Y., Okuwaki, R., Enescu, B. D., & Tadapansawut, T. (2025). A multiple asymmetric bilateral rupture sequence derived from the peculiar tele-seismic P-waves of the 2025 Myanmar earthquake.
  • Wei, C. M., Meng, G. J., Wu, W. W., Chen, X. L., Zhao, G. Q., Dong, Z. H., ... & Wang, Y. F. (2025). A novel method for evaluating earthquake forecast model performance and its implications for refining seismic likelihood model. Geophysical Journal International, 240(1), 605-619.
  • Ozer, E., Inel, M., & Cayci, B. T. (2022). Seismic behavior of LRB and FPS type isolators considering torsional effects. Structures, 37, 267–283.
  • Providakis, C. (2009). Effect of supplemental damping on LRB and FPS seismic isolators under near-fault ground motions. Soil Dynamics and Earthquake Engineering, 29, 80–90.
  • Tsopelas, P., Constantinou, M., Kim, Y., & Okamoto, S. (1996). Experimental study of FPS system in bridge seismic isolation. Earthquake Engineering & Structural Dynamics, 25, 65–78.
  • Castaldo, P., Palazzo, B., & Della Vecchia, P. (2016). Life-cycle cost and seismic reliability analysis of 3D systems equipped with FPS for different isolation degrees. Engineering Structures, 125, 349–363.
  • Ismail, M., Rodellar, J., & Pozo, F. (2014). An isolation device for near‐fault ground motions. Structural Control and Health Monitoring, 21(3), 249-268.
  • Almazán, J. L., & Llera, J. C. D. (2003). Physical model for dynamic analysis of structures with FPS isolators. Earthquake Engineering & Structural Dynamics, 32, 1157–1184.
  • Zhang, W., El Naggar, M. H., Ni, P., Zhao, M., & Du, X. (2025). Nonlinear seismic response analysis of underground structures considering spatial variability of soil parameters. Tunnelling and Underground Space Technology, 159, 106445.
  • Iervolino, I., & Cornell, C. A. (2005). Record selection for nonlinear seismic analysis of structures. Earthquake Spectra, 21, 685–713.
  • Saiidi, M., & Sozen, M. A. (1981). Simple nonlinear seismic analysis of R/C structures. Journal of the Structural Division, 107, 937–953.
  • Bazzurro, P., Cornell, C. A., Shome, N., & Carballo, J. E. (1998). Three proposals for characterizing MDOF nonlinear seismic response. Journal of Structural Engineering, 124, 1281–1289.
  • Henchi, K., Fafard, M., Talbot, M., & Dhatt, G. (1998). An efficient algorithm for dynamic analysis of bridges under moving vehicles using a coupled modal and physical components approach. Journal of sound and Vibration, 212(4), 663-683.
  • Mayes, R. L., & Naeim, F. (2001). Design of structures with seismic isolation. The seismic design handbook, 723-755.
  • Ozer, E., & Inel, M. (2025). The effect of single and combined use of base isolator and fluid viscous damper on seismic performance in a conventional RC building with torsional irregularity. Journal of Building Engineering, 111898.
  • Constantinou, M. C., Whittaker, A., Kalpakidis, Y., Fenz, D., & Warn, G. P. (2007). Performance of seismic isolation hardware under service and seismic loading.
  • Constantinou, M., Mokha, A., & Reinhorn, A. (1990). Teflon bearings in base isolation II: Modeling. Journal of Structural Engineering, 116, 455–471.
  • Mokha, A., Constantinou, M., & Reinhorn, A. (1990). Teflon bearings in base isolation I: Testing. Journal of Structural Engineering, 116, 438–454.
  • Mosqueda, G., Whittaker, A. S., & Fenves, G. L. (2004). Characterization and modeling of friction pendulum bearings subjected to multiple components of excitation. Journal of Structural Engineering, 130, 433–442.
  • Zayas, V. A., Low, S. S., & Mahin, S. A. (1990). A simple pendulum technique for achieving seismic isolation. Earthquake Spectra, 6, 317–334.
  • Su, L., Ahmadi, G., & Tadjbakhsh, I. G. (1989). Comparative study of base isolation systems. Journal of Engineering Mechanics, 115, 1976–1992.
  • Jangid, R. (2000). Optimum frictional elements in sliding isolation systems. Computers & Structures, 76, 651–661.
  • Jangid, R. (2005). Optimum friction pendulum system for near-fault motions. Engineering Structures, 27, 349–359.
  • Chung, L.-L., Kao, P.-S., Yang, C.-Y., Wu, L.-Y., & Chen, H.-M. (2015). Optimal frictional coefficient of structural isolation system. Journal of Vibration and Control, 21, 525–538.
There are 28 citations in total.

Details

Primary Language English
Subjects Reinforced Concrete Buildings, Earthquake Engineering, Structural Dynamics, Structural Engineering
Journal Section Research Article
Authors

İhsan Türkel 0000-0002-6841-0482

Mahmut Bilgehan 0000-0003-1210-2963

Publication Date June 25, 2025
Submission Date April 17, 2025
Acceptance Date June 20, 2025
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Türkel, İ., & Bilgehan, M. (2025). The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure. Kastamonu University Journal of Engineering and Sciences, 11(1), 32-39. https://doi.org/10.55385/kastamonujes.1678080
AMA Türkel İ, Bilgehan M. The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure. KUJES. June 2025;11(1):32-39. doi:10.55385/kastamonujes.1678080
Chicago Türkel, İhsan, and Mahmut Bilgehan. “The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure”. Kastamonu University Journal of Engineering and Sciences 11, no. 1 (June 2025): 32-39. https://doi.org/10.55385/kastamonujes.1678080.
EndNote Türkel İ, Bilgehan M (June 1, 2025) The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure. Kastamonu University Journal of Engineering and Sciences 11 1 32–39.
IEEE İ. Türkel and M. Bilgehan, “The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure”, KUJES, vol. 11, no. 1, pp. 32–39, 2025, doi: 10.55385/kastamonujes.1678080.
ISNAD Türkel, İhsan - Bilgehan, Mahmut. “The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure”. Kastamonu University Journal of Engineering and Sciences 11/1 (June 2025), 32-39. https://doi.org/10.55385/kastamonujes.1678080.
JAMA Türkel İ, Bilgehan M. The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure. KUJES. 2025;11:32–39.
MLA Türkel, İhsan and Mahmut Bilgehan. “The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure”. Kastamonu University Journal of Engineering and Sciences, vol. 11, no. 1, 2025, pp. 32-39, doi:10.55385/kastamonujes.1678080.
Vancouver Türkel İ, Bilgehan M. The Effect of FPS Parameters in Seismic Isolation under Nonlinear Time History Analysis: Contribution of Curvature Radius of Isolator to Seismic Performance of Structure. KUJES. 2025;11(1):32-9.

18397   |   18396|