Research Article
BibTex RIS Cite

Türkiye müfredat kaynaklarındaki matematik içeriklerinin bağlamsal gerçeklik seviyelerinin araştırılması

Year 2025, Volume: 33 Issue: 2, 276 - 285, 25.04.2025
https://doi.org/10.24106/kefdergi.1683443

Abstract

Çalışmanın amacı: Bu çalışma, Türkiye’deki müfredat kaynaklarının (ders kitapları ve ulusal sınavlar) gerçeklik düzeyini araştırmayı amaçlamaktadır.
Materyal ve Yöntem: Nitel bir doğaya sahip olan mevcut araştırma, müfredat kaynaklarının bağlamsal gerçeklik durumlarını incelemek için doküman analizi yöntemini kullanmıştır. Bu çalışmanın kaynağını, 2018 yılından itibaren uygulanan ortaöğretim kurumları için merkezi sınavlar (CASEI) ve bir ortaokul matematik ders kitabı oluşturmaktadır. Müfredat kaynaklarının gerçeklik yapısını belirlemek amacıyla 749 içerik (609 ders kitabından ve 140 sınavdan) incelenmiştir. Matematiksel problemlerin bağlamsal gerçeklik düzeyini ortaya koymak amacıyla, olay, soru, dil kullanımı, bilgi/veri varlığı, bilgi/veri gerçekçiliği, bilgi/veri özgüllüğü ve duyuşsal amaç unsurlarını içeren bir rubrik kullanılmıştır.
Bulgular: Sonuçlar, ders kitaplarındaki ve sınavlardaki soruların önemli bir bölümünün (%90’dan fazla) düşük uyum seviyesinde kaldığını göstermektedir. Buna karşılık, bağlamsal gerçekçilik açısından iyi uyum seviyesine ulaşan soru sayısı oldukça sınırlıdır; ders kitaplarında yalnızca 3 ve CASEI’de 4 soru bulunmaktadır. Mevcut çalışmanın sonuçları ayrıca her iki kaynaktan bazı maddelerin toplam puan açısından kalıplaşmış puan seviyesine ulaştığını, ancak bağlamsal gerçekliğin bir veya daha fazla temel bileşenindeki yetersizlikler nedeniyle düşük uyum seviyesinde kategorize edildiğini ortaya koymaktadır. CASEI ve ders kitabı sorularındaki bağlamsal gerçeklik bileşenlerinin yeterlilik durumları değerlendirildiğinde, dil kullanımı dışındaki bileşenlerde soruların büyük ölçüde yetersiz olduğu gözlemlenmiştir. Özellikle soru, bilgi özgüllüğü ve duyuşsal amaç bileşenlerinde yetersiz problem oranı dikkat çekici şekilde daha yüksektir. Öte yandan, dil kullanımı bileşenine ek olarak, düşük oranlarda da olsa bilgi gerçekçiliği ve olay bileşenlerinde kabul edilebilir yeterlilik düzeyine sahip soru sayısının diğer bileşenlere göre daha yüksek olduğu söylenebilir. Ayrıca, ders kitaplarına kıyasla CASEI’de her bileşen için kısmen yeterli ve yeterli yeterliliğe sahip soru sayısı daha fazladır.
Önemli Vurgular: Çalışmanın sonuçları, müfredat kaynaklarının bağlamsal gerçeklik çerçevesi açısından yetersiz olduğunu göstermiştir. Sonuçlar detaylı bir şekilde tartışılmış ve ilgili önerilerde bulunulmuştur. Bu çalışmada tespit edilen yetersizliklerin öğretmen ve öğrenciler üzerindeki yansımalarının kapsamlı bir şekilde anlaşılabilmesi için daha fazla araştırmaya ihtiyaç duyulmaktadır. Ayrıca, problemlerin bağlamsal uygunluk düzeylerini artırmaya yönelik müdahale çalışmaları bu konudaki mevcut alan yazınına katkı sağlayacaktır. Bağlamsal gerçekçilikle ilgili yeterliklerin farklı müfredat kaynaklarındaki yansımalarını inceleyen araştırmaların yapılması önerilmektedir.

References

  • Atasoy, Ö. G. D. (2019). Mantıksal akıl yürütme sorularının daha kolay çözülebilmesi üzerine bir çalışma. C. Polat ve Z. Alimgerey (Ed.), 6. Uluslararası Mesleki ve Teknik Bilimler Kongresi Bildiriler içinde (ss. 416-432), Iğdır, Türkiye.
  • Bishop, J. H. (1998). The effect of curriculum-based external exit exam systems on student achievement. The Journal of Economic Education, 29(2), 171-182.
  • Bonotto, C. (2007). How to replace word problems with activities of realistic mathematical modelling. In W. Blum, P. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (New ICMI; Studies Series) (Vol. 10, pp. 185–192). New York: Springer
  • Brenner, M. E., & Moschkovich, J. N. (Eds.). (2002). Everyday and academic mathematics in the classroom. Reston, VA: National Council of Teachers of Mathematics.
  • Chapman, O. (2006). Classroom practices for context of mathematics word problems. Educational Studies in Mathematics, 62, 211–230.
  • Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education. Routledge.
  • Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88(4), 715–730.
  • Darling-Hammond, L., Ancess, J., & Falk, B. (1995). Authentic assessment in action: Studies of schools and students at work. Teachers College Press.
  • Depaepe, F., De Corte, E., & Verschaffel, L. (2010). Teachers’ approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education, 26(2), 152–160.
  • Dewolf, T., Van Dooren, W., Hermens, F., & Verschaffel, L. (2015). Do students attend to representational illustrations of non-standard mathematical word problems, and, if so, how helpful are they?. Instructional Science, 43, 147-171.
  • Dolapçıoğlu, S. (2020). Düşünen sınıf materyallerinin (DSM) PISA okuma becerileri üzerinde etkisi. Ana Dili Eğitimi Dergisi, 8(1), 196-210.
  • Floden, R. E., Porter, A. C., Schmidt, W. H., Freeman, D. J., & Schwille, J. R. (1981). Responses to curriculum pressures: A policy-capturing study of teacher decisions about content. Journal of Educational Psychology, 73(2), 129.
  • Fukkink, R. G. (2010). Missing pages? A study of textbooks for Dutch early childhood teacher education. Teaching and Teacher Education, 26(3), 371–376.
  • Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11(3), 199–219
  • Gündoğdu, K., Kızıltaş, E., & Çimen, N. (2010). Seviye belirleme sınavına (SBS) ilişkin öğrenci ve öğretmen görüşleri (Erzurum il örneği). İlköğretim Online, 9(1), 316-330.
  • Gracin, D. G. (2011). Requirements in Mathematics Textbooks and PISA Assessment. (Unpublished doctoral dissertation). University of Klagenfurt, Austria.
  • Gracin, D. G., & Matić, L. J. (2016). The role of mathematics textbooks in lower secondary education in Croatia: An empirical study. The Mathematics Educator, 16(2), 31–58.
  • Haggarty, L., & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: Who gets an opportunity to learn what? British Educational Research Journal, 28(4), 567–590.
  • Hankeln, C. (2020). Mathematical modeling in Germany and France: A comparison of students’ modeling processes. Educational Studies in Mathematics, 103, 209–229.
  • İncikabı, L., Ayanoğlu, P., & Uysal, R. (2020). Sixth-grade students’ procedural and conceptual understandings of division operation in a real-life context. International Electronic Journal of Elementary Education, 13(1), 35-45.
  • Incikabi, S., Sadak, M., & Incikabi, L. (2023). Identifying Mathematical Literacy Demands in Turkish, Singaporean and Australian Textbooks. Acta Educationis Generalis, 13(1), 147-169.
  • Jitendra, A. K., Deatline-Buchman, A., & Sczesniak, E. (2005). A comparative analysis of third-grade mathematics textbooks before and after the 2000 NCTM standards. Assessment for Effective Intervention, 30(2), 47-62.
  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63-85.
  • Jonassen, D., & Tessmer, M. (1996). An outcomes-based taxonomy for the design, evaluation, and research of instructional systems. Training Research Journal, 2, 97.
  • Jurdak, M. (2006). Contrasting perspectives and performance of high school students on problem solving in real world, situated, and school contexts. Educational Studies in Mathematics, 63, 283–301.
  • Jurdak, M. (2016). Learning and teaching real world problem solving in school mathematics. Springer
  • Kim, T. (2005). Shadow education: school quality and demand for private tutoring in Korea. Kyoto: Kyoto University.
  • Korkmaz, E., Tutak, T., & İlhan, A. (2020). Ortaokul matematik ders kitaplarının matematik öğretmenleri tarafından değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (18), 118-128.
  • Lee, J.E. (2012). Prospective elementary teachers’ perceptions of real-life connections reflected in posing and evaluating story problems. Journal of Mathematics Teacher Education, 15(6), 429–452. https:// doi.org/10.1007/s10857-012-9220-5.
  • Lepik, M. (2015). Analyzing the use of textbook in mathematics education: The case of Estonia. Acta Paedagogica Vilnensia, 35(35), 90–102.
  • Marco, N., & Palatnik, A. (2024). Teachers pose and design context-based mathematics tasks: what can be learned from product evolution?. Educational Studies in Mathematics, 115(2), 223-246.
  • Miles, M. B., & Huberman, A. M. (1984). Drawing valid meaning from qualitative data: Toward a shared craft. Educational researcher, 13(5), 20-30.
  • Ministry of National Education (MNE). (2018). Milli Eğitim Bakanlığı ortaöğretime geçiş yönergesi. It was available at https://www.meb.gov.tr/meb_iys_dosyalar/2018_03/26191912_yonerge.pdf
  • Ministry of National Education (MNE). (2024). Middle school mathematics teaching program. Ankara
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics (NCTM). (2009). Guiding principles for mathematics curriculum and assessment. Reston, VA: Author.
  • Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 1–32). New York: Springer. https:// doi.org/10.1007/978-0-387-29822-
  • Palm, T. (2002). The realism of mathematical school tasks: Features and consequences (Doctoral dissertation, Umeå universitet, Matematiska institutionen).
  • Palm, T. (2006). Word problems as simulations of real-world situations: A proposed framework. For the Learning of Mathematics, 26(1), 42–47.
  • Palm, T. (2008). Impact of authenticity on sense making in word problem solving. Educational Studies in Mathematics, 67(1), 37–58.
  • Palm, T. (2009). Theory of authentic task situations. In B. Greer, L. Verschaffel, W. Van Dooren, & S. Mukhopadhyay (Eds.) Word and worlds: Modelling verbal descriptions of situations. (pp. 3-19). Rotterdam, the Netherlands: Sense Publishers.
  • Palm, T., & Burman, L. (2004). Reality in mathematics assessment: An analysis of task-reality concordance in Finnish and Swedish national assessments. Nordic Studies in Mathematics Education 9(3), 1-33.
  • Pepin, B., & Haggarty, L. (2001). Mathematics textbooks and their use in English, French and German classrooms: A way to understand teaching and learning cultures. ZDM: International Journal on Mathematics Education, 33(5), 158–175.
  • Rasmussen, K. (1997). Using real-life problems to make real-world connections. Curriculum Update, 8.
  • Reinke, L. T., & Casto, A. R. (2020). Motivators or conceptual foundation? Investigating the development of teachers’ conceptions of contextual problems. Mathematics Education Research Journal, 34, 113–137.
  • Savard, A., & Polotskaia, E. (2017). Who’s wrong? Tasks fostering understanding of mathematical relationships in word problems in elementary students. ZDM Mathematics Education, 49(6), 823–833.
  • Thompson, P. W., Philipp, R., & Boyd, B. (1994). Calculational and conceptual orientations in teaching mathematics. In 1994 Yearbook of the NCTM.
  • Tran, D., Nguyen, D. T., Nguyen, A. T. T., Nguyen, G. N. T., & Ta, P. M. (2020). Bridging to mathematical modelling: Vietnamese students’ response to different levels of authenticity in contextualized tasks. International journal of mathematical education in science and technology, 51(6), 893-912.
  • Ulusoy, F., & İncikabı L. (2020). Middle School Teachers’ Use of Compulsory Textbooks in Instruction of Mathematics. International Journal for Mathematics Teaching and Learning, 21(1), 1−18.
  • Ünal, M. (2019). PISA sınavlarının özelliklerinin fen bilimleri öğretmenlerinin hazırlamış oldukları sınav soruları ile karşılaştırılması: PISA kültürünü yaygınlaştırma model önerisi (Yayımlanmamış yüksek lisans tezi). Uludağ Üniversitesi Eğitim Bilimleri Enstitüsü, Bursa.
  • Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse: Swets and Zeiglinger.
  • Verschaffel, L., Greer, B., Van Dooren, W., & Mukhopadhyay, S. (2009). Words and worlds: Modeling verbal descriptions of situations (Vol. 16). BRILL.
  • Verschafel, L., Schukajlow, S., Star, J., & Van Dooren, W. (2020). Word problems in mathematics education: A survey. ZDM Mathematics Education, 52(1), 1–16. https://doi.org/10.1007/ s11858-020-01130-4.
  • Vicente, S., & Manchado, E. (2016). Arithmetic word problem solving. Are authentic word problems easier to solve than standard ones?/Resolución de problemas aritméticos verbales.¿ Se resuelven mejor si se presentan como problemas auténticos?. Infancia y Aprendizaje, 39(2), 349-379.
  • Walkington, C., Sherman, M., & Petrosino, A. (2012). “Playing the game” of story problems: Coordinating situation based reasoning with algebraic representation. The Journal of Mathematical Behavior, 31, 174–195.
  • Wernet, J. L. W. (2009). The reality of relevance in the classroom: How secondary teachers at Lansing Christian Schools Use Real-World Connections (Unpublished manuscript). Spring Arbor University, Spring Arbor, MI.

Investigating the contextual realism levels of the mathematics contents in curriculum resources in Türkiye

Year 2025, Volume: 33 Issue: 2, 276 - 285, 25.04.2025
https://doi.org/10.24106/kefdergi.1683443

Abstract

Purpose: The current study aims to investigate the realistic level of curriculum resources (textbooks and national examinations) in Turkey.
Design/Methodology/Approach: Being qualitative in nature, the current study utilized the document analysis method to examine contextual reality aspects of curriculum resources. The source for this study comprises the centralized assessments for secondary education institutions (CASEI) implemented since 2018 and a middle school mathematics textbook. 749 content items (609 from textbooks and 140 from examinations) were investigated in order to determine the realistic structure of the curriculum resources. In order to reveal the contextual reality level of mathematical problems, I have utilized a rubric including event, question, language use, existence of information/data, realism of information/data, specificity of information/data, and affective purpose aspects.
Findings: The results indicated that a significant portion (more than 90%) of the questions in textbooks and in exams remain at the poor-fit level. In contrast, the number of questions reaching the good-fit level in terms of contextual realism is quite limited, with only 3 items in textbooks and 4 items in CASEI. The results of the current study also reveal that some items from both sources fall into the stereotyped score level in terms of total score but are categorized as poor-fit contextual reality due to inadequacies in one or more core components of contextual realism. When evaluating the competency statuses of the contextual reality components in the CASEI and textbook questions, it is observed that the majority of questions are largely inadequate in components other than language use. In particular, the rate of inadequate problems is notably higher in the question, specificity of information, and affective purpose components. On the other hand, in addition to the language use component, it can be said that the number of questions with acceptable competency in the realism of information and event components, although at low rates, is higher than the other components. Furthermore, compared to textbooks, the number of questions in CASEI with partial sufficient and sufficient competency for each component is higher.
Highlights: The results of the study indicated curriculum resources’ in adequacy regarding contextual reality framework. The results discussed in detail, and suggestions were provided accordingly. Further research is required to gain a comprehensive understanding of the reflections of the inadequacies identified in this study on teachers and students. Additionally, intervention studies to enhance the contextual relevance levels of the problems will contribute to the existing literature on this topic. It is also recommended that research be conducted to examine the reflections of the competencies related to contextual realism in different curriculum resources.

References

  • Atasoy, Ö. G. D. (2019). Mantıksal akıl yürütme sorularının daha kolay çözülebilmesi üzerine bir çalışma. C. Polat ve Z. Alimgerey (Ed.), 6. Uluslararası Mesleki ve Teknik Bilimler Kongresi Bildiriler içinde (ss. 416-432), Iğdır, Türkiye.
  • Bishop, J. H. (1998). The effect of curriculum-based external exit exam systems on student achievement. The Journal of Economic Education, 29(2), 171-182.
  • Bonotto, C. (2007). How to replace word problems with activities of realistic mathematical modelling. In W. Blum, P. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (New ICMI; Studies Series) (Vol. 10, pp. 185–192). New York: Springer
  • Brenner, M. E., & Moschkovich, J. N. (Eds.). (2002). Everyday and academic mathematics in the classroom. Reston, VA: National Council of Teachers of Mathematics.
  • Chapman, O. (2006). Classroom practices for context of mathematics word problems. Educational Studies in Mathematics, 62, 211–230.
  • Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education. Routledge.
  • Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88(4), 715–730.
  • Darling-Hammond, L., Ancess, J., & Falk, B. (1995). Authentic assessment in action: Studies of schools and students at work. Teachers College Press.
  • Depaepe, F., De Corte, E., & Verschaffel, L. (2010). Teachers’ approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education, 26(2), 152–160.
  • Dewolf, T., Van Dooren, W., Hermens, F., & Verschaffel, L. (2015). Do students attend to representational illustrations of non-standard mathematical word problems, and, if so, how helpful are they?. Instructional Science, 43, 147-171.
  • Dolapçıoğlu, S. (2020). Düşünen sınıf materyallerinin (DSM) PISA okuma becerileri üzerinde etkisi. Ana Dili Eğitimi Dergisi, 8(1), 196-210.
  • Floden, R. E., Porter, A. C., Schmidt, W. H., Freeman, D. J., & Schwille, J. R. (1981). Responses to curriculum pressures: A policy-capturing study of teacher decisions about content. Journal of Educational Psychology, 73(2), 129.
  • Fukkink, R. G. (2010). Missing pages? A study of textbooks for Dutch early childhood teacher education. Teaching and Teacher Education, 26(3), 371–376.
  • Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11(3), 199–219
  • Gündoğdu, K., Kızıltaş, E., & Çimen, N. (2010). Seviye belirleme sınavına (SBS) ilişkin öğrenci ve öğretmen görüşleri (Erzurum il örneği). İlköğretim Online, 9(1), 316-330.
  • Gracin, D. G. (2011). Requirements in Mathematics Textbooks and PISA Assessment. (Unpublished doctoral dissertation). University of Klagenfurt, Austria.
  • Gracin, D. G., & Matić, L. J. (2016). The role of mathematics textbooks in lower secondary education in Croatia: An empirical study. The Mathematics Educator, 16(2), 31–58.
  • Haggarty, L., & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: Who gets an opportunity to learn what? British Educational Research Journal, 28(4), 567–590.
  • Hankeln, C. (2020). Mathematical modeling in Germany and France: A comparison of students’ modeling processes. Educational Studies in Mathematics, 103, 209–229.
  • İncikabı, L., Ayanoğlu, P., & Uysal, R. (2020). Sixth-grade students’ procedural and conceptual understandings of division operation in a real-life context. International Electronic Journal of Elementary Education, 13(1), 35-45.
  • Incikabi, S., Sadak, M., & Incikabi, L. (2023). Identifying Mathematical Literacy Demands in Turkish, Singaporean and Australian Textbooks. Acta Educationis Generalis, 13(1), 147-169.
  • Jitendra, A. K., Deatline-Buchman, A., & Sczesniak, E. (2005). A comparative analysis of third-grade mathematics textbooks before and after the 2000 NCTM standards. Assessment for Effective Intervention, 30(2), 47-62.
  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48(4), 63-85.
  • Jonassen, D., & Tessmer, M. (1996). An outcomes-based taxonomy for the design, evaluation, and research of instructional systems. Training Research Journal, 2, 97.
  • Jurdak, M. (2006). Contrasting perspectives and performance of high school students on problem solving in real world, situated, and school contexts. Educational Studies in Mathematics, 63, 283–301.
  • Jurdak, M. (2016). Learning and teaching real world problem solving in school mathematics. Springer
  • Kim, T. (2005). Shadow education: school quality and demand for private tutoring in Korea. Kyoto: Kyoto University.
  • Korkmaz, E., Tutak, T., & İlhan, A. (2020). Ortaokul matematik ders kitaplarının matematik öğretmenleri tarafından değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, (18), 118-128.
  • Lee, J.E. (2012). Prospective elementary teachers’ perceptions of real-life connections reflected in posing and evaluating story problems. Journal of Mathematics Teacher Education, 15(6), 429–452. https:// doi.org/10.1007/s10857-012-9220-5.
  • Lepik, M. (2015). Analyzing the use of textbook in mathematics education: The case of Estonia. Acta Paedagogica Vilnensia, 35(35), 90–102.
  • Marco, N., & Palatnik, A. (2024). Teachers pose and design context-based mathematics tasks: what can be learned from product evolution?. Educational Studies in Mathematics, 115(2), 223-246.
  • Miles, M. B., & Huberman, A. M. (1984). Drawing valid meaning from qualitative data: Toward a shared craft. Educational researcher, 13(5), 20-30.
  • Ministry of National Education (MNE). (2018). Milli Eğitim Bakanlığı ortaöğretime geçiş yönergesi. It was available at https://www.meb.gov.tr/meb_iys_dosyalar/2018_03/26191912_yonerge.pdf
  • Ministry of National Education (MNE). (2024). Middle school mathematics teaching program. Ankara
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics (NCTM). (2009). Guiding principles for mathematics curriculum and assessment. Reston, VA: Author.
  • Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 1–32). New York: Springer. https:// doi.org/10.1007/978-0-387-29822-
  • Palm, T. (2002). The realism of mathematical school tasks: Features and consequences (Doctoral dissertation, Umeå universitet, Matematiska institutionen).
  • Palm, T. (2006). Word problems as simulations of real-world situations: A proposed framework. For the Learning of Mathematics, 26(1), 42–47.
  • Palm, T. (2008). Impact of authenticity on sense making in word problem solving. Educational Studies in Mathematics, 67(1), 37–58.
  • Palm, T. (2009). Theory of authentic task situations. In B. Greer, L. Verschaffel, W. Van Dooren, & S. Mukhopadhyay (Eds.) Word and worlds: Modelling verbal descriptions of situations. (pp. 3-19). Rotterdam, the Netherlands: Sense Publishers.
  • Palm, T., & Burman, L. (2004). Reality in mathematics assessment: An analysis of task-reality concordance in Finnish and Swedish national assessments. Nordic Studies in Mathematics Education 9(3), 1-33.
  • Pepin, B., & Haggarty, L. (2001). Mathematics textbooks and their use in English, French and German classrooms: A way to understand teaching and learning cultures. ZDM: International Journal on Mathematics Education, 33(5), 158–175.
  • Rasmussen, K. (1997). Using real-life problems to make real-world connections. Curriculum Update, 8.
  • Reinke, L. T., & Casto, A. R. (2020). Motivators or conceptual foundation? Investigating the development of teachers’ conceptions of contextual problems. Mathematics Education Research Journal, 34, 113–137.
  • Savard, A., & Polotskaia, E. (2017). Who’s wrong? Tasks fostering understanding of mathematical relationships in word problems in elementary students. ZDM Mathematics Education, 49(6), 823–833.
  • Thompson, P. W., Philipp, R., & Boyd, B. (1994). Calculational and conceptual orientations in teaching mathematics. In 1994 Yearbook of the NCTM.
  • Tran, D., Nguyen, D. T., Nguyen, A. T. T., Nguyen, G. N. T., & Ta, P. M. (2020). Bridging to mathematical modelling: Vietnamese students’ response to different levels of authenticity in contextualized tasks. International journal of mathematical education in science and technology, 51(6), 893-912.
  • Ulusoy, F., & İncikabı L. (2020). Middle School Teachers’ Use of Compulsory Textbooks in Instruction of Mathematics. International Journal for Mathematics Teaching and Learning, 21(1), 1−18.
  • Ünal, M. (2019). PISA sınavlarının özelliklerinin fen bilimleri öğretmenlerinin hazırlamış oldukları sınav soruları ile karşılaştırılması: PISA kültürünü yaygınlaştırma model önerisi (Yayımlanmamış yüksek lisans tezi). Uludağ Üniversitesi Eğitim Bilimleri Enstitüsü, Bursa.
  • Verschaffel, L., Greer, B., & De Corte, E. (2000). Making sense of word problems. Lisse: Swets and Zeiglinger.
  • Verschaffel, L., Greer, B., Van Dooren, W., & Mukhopadhyay, S. (2009). Words and worlds: Modeling verbal descriptions of situations (Vol. 16). BRILL.
  • Verschafel, L., Schukajlow, S., Star, J., & Van Dooren, W. (2020). Word problems in mathematics education: A survey. ZDM Mathematics Education, 52(1), 1–16. https://doi.org/10.1007/ s11858-020-01130-4.
  • Vicente, S., & Manchado, E. (2016). Arithmetic word problem solving. Are authentic word problems easier to solve than standard ones?/Resolución de problemas aritméticos verbales.¿ Se resuelven mejor si se presentan como problemas auténticos?. Infancia y Aprendizaje, 39(2), 349-379.
  • Walkington, C., Sherman, M., & Petrosino, A. (2012). “Playing the game” of story problems: Coordinating situation based reasoning with algebraic representation. The Journal of Mathematical Behavior, 31, 174–195.
  • Wernet, J. L. W. (2009). The reality of relevance in the classroom: How secondary teachers at Lansing Christian Schools Use Real-World Connections (Unpublished manuscript). Spring Arbor University, Spring Arbor, MI.
There are 56 citations in total.

Details

Primary Language English
Subjects Mathematics Education
Journal Section Research Article
Authors

Semahat İncikabı 0000-0002-7686-1996

Publication Date April 25, 2025
Submission Date November 1, 2024
Acceptance Date April 20, 2025
Published in Issue Year 2025 Volume: 33 Issue: 2

Cite

APA İncikabı, S. (2025). Investigating the contextual realism levels of the mathematics contents in curriculum resources in Türkiye. Kastamonu Education Journal, 33(2), 276-285. https://doi.org/10.24106/kefdergi.1683443

10037