Investigation of Biodegradability Properties of Laminated PLA/Flax Biocomposites
Year 2025,
Volume: 15 Issue: 2, 881 - 896, 15.06.2025
Ramazan Yıldırım
,
Levent Elen
Abstract
In this study, a PLA matrix, which is a relatively high mechanical properties, cheap and accessible biopolymer, and knitted raw flax reinforced biocomposite was produced. 20% PBS was added to the matrix to reduce the brittleness of PLA and increase its ductility. The pure PLA and PLA/PBS mixture forming the matrix were produced as plates by injection molding at 190°C. Alkaline treatment was applied to the flax fiber used to improve the interfacial adhesion of the matrix and reinforcement phase using 5% NaOH. The biocomposites were produced by compression molding at 160°C. The water absorption and biodegradation capacities of the produced biocomposites were analyzed. The surface properties of the flax fiber before and after surface modification were examined by FT-IR and SEM-EDX analyses. As a result of the analyses and tests, it was determined that the alkaline treatment using 5% NaOH provided good interfacial adhesion, increased the moisture absorption capacity and the degradation process in the soil.
Project Number
KBÜBAP-24-YL-040
References
- Alvarez, V. A., and Vázquez, A. (2006). Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Composites Part A: Applied Science and Manufacturing, 37(10), 1672-1680. https://doi.org/10.1016/j.compositesa.2005.10.005
- Anuar, H., Zuraida, A., Kovacs, J. G., and Tabi, T. (2012). Improvement of Mechanical Properties of Injection-Molded Polylactic Acid–Kenaf Fiber Biocomposite. Journal of Thermoplastic Composite Materials, 25(2), Article 2. https://doi.org/10.1177/0892705711408984
- Automotive: Green gets in gear - Canadian PlasticsCanadian Plastics. (2010, Ekim). https://www.canplastics.com/features/automotive-green-gets-in-gear/
- Bajpai, P. K., Singh, I., and Madaan, J. (2014). Development and characterization of PLA-based green composites: A review. Journal of Thermoplastic Composite Materials, 27(1), Article 1. https://doi.org/10.1177/0892705712439571
- Bismarck, A., Aranberri-Askargorta, I., Springer, J., Lampke, T., Wielage, B., Stamboulis, A., Shenderovich, I., and Limbach, H.-H. (2002). Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polymer Composites, 23(5), 872-894. https://doi.org/10.1002/pc.10485
- Borchani, K. E., Carrot, C., and Jaziri, M. (2015). Untreated and alkali treated fibers from Alfa stem: Effect of alkali treatment on structural, morphological and thermal features. Cellulose, 22(3), 1577-1589. https://doi.org/10.1007/s10570-015-0583-5
- Bulota, M., and Budtova, T. (2015). Highly porous and light-weight flax/PLA composites. Industrial Crops and Products, 74, 132-138. https://doi.org/10.1016/j.indcrop.2015.04.045
- Carvalho, L. H., Canedo, E. L., Farias Neto, S. R., de Lima, A. G. B., and Silva, C. J. (2013). Moisture Transport Process in Vegetable Fiber Composites: Theory and Analysis for Technological Applications. Içinde J. M. P. Q. Delgado (Ed.), Industrial and Technological Applications of Transport in Porous Materials (ss. 37-62). Springer. https://doi.org/10.1007/978-3-642-37469-2_2
- Chang, F.-L., Hu, B., Huang, W.-T., Chen, L., Yin, X.-C., Cao, X.-W., and He, G.-J. (2022). Improvement of rheology and mechanical properties of PLA/PBS blends by in-situ UV-induced reactive extrusion. Polymer, 259, 125336. https://doi.org/10.1016/j.polymer.2022.125336
- Chomnutcha Boonmee, C. K. (2016). Degradation of Poly(lactic acid) under Simulated Landfill Conditions. Environment and Natural Resources Journal, 14, 2. https://doi.org/10.14456/ENNRJ.2016.8
- Couture, A., Lebrun, G., and Laperrière, L. (2016). Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Composite Structures, 154, 286-295. https://doi.org/10.1016/j.compstruct.2016.07.069
- Dhakal, H. N., Zhang, Z. Y., and Richardson, M. O. W. (2007). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 67(7), 1674-1683. https://doi.org/10.1016/j.compscitech.2006.06.019
- Durante, M., Formisano, A., Boccarusso, L., Langella, A., and Carrino, L. (2017). Creep behaviour of polylactic acid reinforced by woven hemp fabric. Composites Part B: Engineering, 124, 16-22. https://doi.org/10.1016/j.compositesb.2017.05.038
- Elen, N. Ç., Yıldırım, M., and Kanbur, Y. (2023). Tribological properties of hemp fiber reinforced polylactic acid bio-composites: Effect of different types of modification methods. Functional Composites and Structures, 5(1), 015009. https://doi.org/10.1088/2631-6331/acbf9d
- Erkul, Ş. N., and Uçaroğlu, S. (2023). Topraklarda Polilaktik Asitin (PLA) Biyobozunması. Uludağ University Journal of The Faculty of Engineering, 28(1), 25-40. https://doi.org/10.17482/uumfd.1246168
- Farag, M. M. (2017). Design and Manufacture of Biodegradable Products from Renewable Resources. Içinde Handbook of Composites from Renewable Materials (ss. 111-131). John Wiley and Sons, Ltd. https://doi.org/10.1002/9781119441632.ch23
- Fotopoulou, K. N., and Karapanagioti, H. K. (2019). Degradation of Various Plastics in the Environment. Içinde H. Takada and H. K. Karapanagioti (Ed.), Hazardous Chemicals Associated with Plastics in the Marine Environment (ss. 71-92). Springer International Publishing. https://doi.org/10.1007/698_2017_11
- Gautam, N., and Kaur, I. (2013). Soil burial biodegradation studies of starch grafted polyethylene and identification of Rhizobium meliloti therefrom. Journal of Environmental Chemistry and Ecotoxicology, 5(6), 147-158. https://doi.org/10.5897/JECE09.022
- Gholampour, A., and Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), Article 3. https://doi.org/10.1007/s10853-019-03990-y
- Gurunathan, T., Mohanty, S., and Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. https://doi.org/10.1016/j.compositesa.2015.06.007
- Hassan, M. L., Rowell, R. M., Fadl, N. A., Yacoub, S. F., and Christainsen, A. W. (2000). Thermoplasticization of bagasse. II. dimensional stability and mechanical properties of esterified bagasse composite. Journal of Applied Polymer Science, 76(4), 575-586. https://doi.org/10.1002/(SICI)1097-4628(20000425)76:4<575::AID-APP15>3.0.CO;2-9
- Hemath, M., Mavinkere Rangappa, S., Kushvaha, V., Dhakal, H. N., and Siengchin, S. (2020). A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polymer Composites, 41(10), 3940-3965. https://doi.org/10.1002/pc.25703
- Itävaara, M., Karjomaa, S., and Selin, J.-F. (2002). Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere, 46(6), 879-885. https://doi.org/10.1016/S0045-6535(01)00163-1
- Jandas, P. J., Mohanty, S., and Nayak, S. K. (2012). Renewable Resource-Based Biocomposites of Various Surface Treated Banana Fiber and Poly Lactic Acid: Characterization and Biodegradability. Journal of Polymers and the Environment, 20(2), 583-595. https://doi.org/10.1007/s10924-012-0415-8
- Karamanlioglu, M., and Robson, G. D. (2013). The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 98(10), 2063-2071. https://doi.org/10.1016/j.polymdegradstab.2013.07.004
- Lalit, R., Mayank, P., and Ankur, K. (2018). Natural Fibers and Biopolymers Characterization: A Future Potential Composite Material. Strojnícky Časopis - Journal of Mechanical Engineering, 68(1), 33-50. https://doi.org/10.2478/scjme-2018-0004
- Marom, G. (1985). The Role of Water Transport in Composite Materials. Içinde J. Comyn (Ed.), Polymer Permeability (ss. 341-374). Springer Netherlands. https://doi.org/10.1007/978-94-009-4858-7_9
- Martucci, J. F., and Ruseckaite, R. A. (2015). Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polymer Degradation and Stability, 116, 36-44. https://doi.org/10.1016/j.polymdegradstab.2015.03.005
- Massardier-Nageotte, V., Pestre, C., Cruard-Pradet, T., and Bayard, R. (2006). Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polymer Degradation and Stability, 91(3), Article 3. https://doi.org/10.1016/j.polymdegradstab.2005.02.029
- Matuana, L. M., Balatinecz, J. J., Sodhi, R. N. S., and Park, C. B. (2001). Surface characterization of esterified cellulosic fibers by XPS and FTIR Spectroscopy. Wood Science and Technology, 35(3), 191-201. https://doi.org/10.1007/s002260100097
- Mohee, R., Unmar, G. D., Mudhoo, A., and Khadoo, P. (2008). Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Management (New York, N.Y.), 28(9), 1624-1629. https://doi.org/10.1016/j.wasman.2007.07.003
- Moudood, A., Rahman, A., Öchsner, A., Islam, M., and Francucci, G. (2019). Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. Journal of Reinforced Plastics and Composites, 38(7), 323-339. https://doi.org/10.1177/0731684418818893
- Mwaikambo, L. (2006). Review of the history, properties and application of plant fibres. African Journal of Science and Technology, 7, 120-133.
- Palai, B., Mohanty, S., and Nayak, S. K. (2021). A Comparison on Biodegradation Behaviour of Polylactic Acid (PLA) Based Blown Films by Incorporating Thermoplasticized Starch (TPS) and Poly (Butylene Succinate-co-Adipate) (PBSA) Biopolymer in Soil. Journal of Polymers and the Environment, 29(9), 2772-2788. https://doi.org/10.1007/s10924-021-02055-z
- Prithivirajan, R., Jayabal, S., and Bharathiraja, G. (2015). Bio-based composites from waste agricultural residues: Mechanical and morphological properties. Cellulose Chemistry and Technology, 49(1), 65-68. Scopus.
- Rahman, M. Z., Rahman, M., Mahbub, T., Ashiquzzaman, M., Sagadevan, S., and Hoque, M. E. (2023). Advanced biopolymers for automobile and aviation engineering applications. Journal of Polymer Research, 30(3), 106. https://doi.org/10.1007/s10965-023-03440-z
- Rajeshkumar, G., Arvindh Seshadri, S., Devnani, G. L., Sanjay, M. R., Siengchin, S., Prakash Maran, J., Al-Dhabi, N. A., Karuppiah, P., Mariadhas, V. A., Sivarajasekar, N., and Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 310, 127483. https://doi.org/10.1016/j.jclepro.2021.127483
- Ray, D., and Sarkar, B. K. (2001). Characterization of alkali-treated jute fibers for physical and mechanical properties. Journal of Applied Polymer Science, 80(7), 1013-1020. https://doi.org/10.1002/app.1184
- Reddy, A. B., Manjula, B., Jayaramudu, T., Owonubi, S. j., Owonubi, S. j., Sadiku, E. r., Agboola, O., Sivanjineyulu, V., Molelekwa, G. F., and Molelekwa, G. F. (2017). Biocomposites from Renewable Resources: Preparation and Applications of Chitosan–Clay Nanocomposites. Içinde Handbook of Composites from Renewable Materials (ss. 275-303). John Wiley and Sons, Ltd. https://doi.org/10.1002/9781119441632.ch158
- Roussière, F., Baley, C., Godard, G., and Burr, D. (2012). Compressive and Tensile Behaviours of PLLA Matrix Composites Reinforced with Randomly Dispersed Flax Fibres. Applied Composite Materials, 19(2), 171-188. https://doi.org/10.1007/s10443-011-9189-8
- Saba, N., Paridah, M. T., and Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. https://doi.org/10.1016/j.conbuildmat.2014.11.043
- Sawpan, M. A., Pickering, K. L., and Fernyhough, A. (2011). Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing, 42(9), Article 9. https://doi.org/10.1016/j.compositesa.2011.05.003
- Siva, R., Sundar Reddy Nemali, S., Kishore kunchapu, S., Gokul, K., and Arun kumar, T. (2021). Comparison of Mechanical Properties and Water Absorption Test on Injection Molding and Extrusion—Injection Molding Thermoplastic Hemp Fiber Composite. Materials Today: Proceedings, 47, 4382-4386. https://doi.org/10.1016/j.matpr.2021.05.189
- Siva, R., and Valarmathi, T. N. (2019). Investigation of use of different volume percentages of cissus quadrangularis natural fiber constitute in epoxy matrix composite. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 1, 413-417. https://doi.org/10.1109/ICONSTEM.2019.8918740
- Smitthipong, W., Tantatherdtam, R., and Chollakup, R. (2015). Effect of pineapple leaf fiber-reinforced thermoplastic starch/poly(lactic acid) green composite: Mechanical, viscosity, and water resistance properties. Journal of Thermoplastic Composite Materials, 28(5), 717-729. https://doi.org/10.1177/0892705713489701
- Valapa, R. babu, G., P., and Katiyar, V. (2016). Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites. International Journal of Biological Macromolecules, 89, 70-80. https://doi.org/10.1016/j.ijbiomac.2016.04.040
- Vinod, A., Sanjay, M. R., Suchart, S., and Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, 120978. https://doi.org/10.1016/j.jclepro.2020.120978
- Xia, X., Liu, W., Zhou, L., Hua, Z., Liu, H., and He, S. (2016). Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites. Iranian Polymer Journal, 25(1), 25-35. https://doi.org/10.1007/s13726-015-0395-3
- Yıldırım, R. (2024). Lamine edilmiş pla/keten biyokompozit malzemelerin mekanik ve biyobozunurluk özelliklerinin incelenmesi [M. Sc. Thesis]. Karabük Üniversitesi.
- Zhang, M., Jiang, C., Wu, Q., Zhang, G., Liang, F., and Yang, Z. (2022). Poly(lactic acid)/Poly(butylene succinate) (PLA/PBS) Layered Composite Gas Barrier Membranes by Anisotropic Janus Nanosheets Compartibilizers. ACS Macro Letters, 11(5), 657-662. https://doi.org/10.1021/acsmacrolett.2c00139
Lamine edilmiş Poli(laktik asit)/Keten Biyokompozitlerin Biyobozunurluk Özelliklerinin İncelenmesi
Year 2025,
Volume: 15 Issue: 2, 881 - 896, 15.06.2025
Ramazan Yıldırım
,
Levent Elen
Abstract
Bu çalışmada mekanik özellikleri nispeten yüksek, ucuz ve ulaşılabilir bir biyopolimer olan PLA (poli(laktik asit)) matrisli, örülmüş ham keten takviyeli bir biyokompozit üretilmiştir. PLA matrisine kırılganlığını azaltıp sünekliğini arttırmak için %20 PBS (polibütilen süksinat) katkısı yapılmıştır. Saf PLA ve PLA/PBS karışımı 190°C sıcaklıkta enjeksiyon kalıplama yöntemi ile plakalar halinde üretilmiştir. Matris ve takviye fazının arayüzey yapışmasını iyileştirmek için kullanılan keten elyafa %5 NaOH (Sodyum hidroksit) kullanılarak alkali muamelesi yapılmıştır. Biyokompozitler 160°C’de sıkıştırma kalıplama yöntemi ile üretilmiştir. Üretilen biyokompozitlerin su emme ve biyobozunma kapasiteleri analiz edilmiştir. FT-IR (Fourier Dönüşümlü Kızılötesi Spektroskopisi) ve SEM (Taramalı Elektron Mikroskobu)-EDX (Enerji Dağıtıcı X-ışını) analizleri ile keten elyafın, yüzey modifikasyonu öncesi ve sonrası, yüzey özellikleri incelenmiştir. Yapılan analiz ve testler sonucunda %5 NaOH kullanılarak yapılan alkali muamelesinin iyi bir arayüzey yapışması sağladığı, nem emme kapasitesini ve toprakta bozunma sürecini artırdığı tespit edilmiştir.
Supporting Institution
Karabük Üniversitesi
Project Number
KBÜBAP-24-YL-040
Thanks
Bu çalışma Karabük Üniversitesi Bilimsel Araştırma Projesi (BAP) KBÜBAP-24-YL-040 projesi kapsamında desteklenmiştir.
References
- Alvarez, V. A., and Vázquez, A. (2006). Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Composites Part A: Applied Science and Manufacturing, 37(10), 1672-1680. https://doi.org/10.1016/j.compositesa.2005.10.005
- Anuar, H., Zuraida, A., Kovacs, J. G., and Tabi, T. (2012). Improvement of Mechanical Properties of Injection-Molded Polylactic Acid–Kenaf Fiber Biocomposite. Journal of Thermoplastic Composite Materials, 25(2), Article 2. https://doi.org/10.1177/0892705711408984
- Automotive: Green gets in gear - Canadian PlasticsCanadian Plastics. (2010, Ekim). https://www.canplastics.com/features/automotive-green-gets-in-gear/
- Bajpai, P. K., Singh, I., and Madaan, J. (2014). Development and characterization of PLA-based green composites: A review. Journal of Thermoplastic Composite Materials, 27(1), Article 1. https://doi.org/10.1177/0892705712439571
- Bismarck, A., Aranberri-Askargorta, I., Springer, J., Lampke, T., Wielage, B., Stamboulis, A., Shenderovich, I., and Limbach, H.-H. (2002). Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polymer Composites, 23(5), 872-894. https://doi.org/10.1002/pc.10485
- Borchani, K. E., Carrot, C., and Jaziri, M. (2015). Untreated and alkali treated fibers from Alfa stem: Effect of alkali treatment on structural, morphological and thermal features. Cellulose, 22(3), 1577-1589. https://doi.org/10.1007/s10570-015-0583-5
- Bulota, M., and Budtova, T. (2015). Highly porous and light-weight flax/PLA composites. Industrial Crops and Products, 74, 132-138. https://doi.org/10.1016/j.indcrop.2015.04.045
- Carvalho, L. H., Canedo, E. L., Farias Neto, S. R., de Lima, A. G. B., and Silva, C. J. (2013). Moisture Transport Process in Vegetable Fiber Composites: Theory and Analysis for Technological Applications. Içinde J. M. P. Q. Delgado (Ed.), Industrial and Technological Applications of Transport in Porous Materials (ss. 37-62). Springer. https://doi.org/10.1007/978-3-642-37469-2_2
- Chang, F.-L., Hu, B., Huang, W.-T., Chen, L., Yin, X.-C., Cao, X.-W., and He, G.-J. (2022). Improvement of rheology and mechanical properties of PLA/PBS blends by in-situ UV-induced reactive extrusion. Polymer, 259, 125336. https://doi.org/10.1016/j.polymer.2022.125336
- Chomnutcha Boonmee, C. K. (2016). Degradation of Poly(lactic acid) under Simulated Landfill Conditions. Environment and Natural Resources Journal, 14, 2. https://doi.org/10.14456/ENNRJ.2016.8
- Couture, A., Lebrun, G., and Laperrière, L. (2016). Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Composite Structures, 154, 286-295. https://doi.org/10.1016/j.compstruct.2016.07.069
- Dhakal, H. N., Zhang, Z. Y., and Richardson, M. O. W. (2007). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 67(7), 1674-1683. https://doi.org/10.1016/j.compscitech.2006.06.019
- Durante, M., Formisano, A., Boccarusso, L., Langella, A., and Carrino, L. (2017). Creep behaviour of polylactic acid reinforced by woven hemp fabric. Composites Part B: Engineering, 124, 16-22. https://doi.org/10.1016/j.compositesb.2017.05.038
- Elen, N. Ç., Yıldırım, M., and Kanbur, Y. (2023). Tribological properties of hemp fiber reinforced polylactic acid bio-composites: Effect of different types of modification methods. Functional Composites and Structures, 5(1), 015009. https://doi.org/10.1088/2631-6331/acbf9d
- Erkul, Ş. N., and Uçaroğlu, S. (2023). Topraklarda Polilaktik Asitin (PLA) Biyobozunması. Uludağ University Journal of The Faculty of Engineering, 28(1), 25-40. https://doi.org/10.17482/uumfd.1246168
- Farag, M. M. (2017). Design and Manufacture of Biodegradable Products from Renewable Resources. Içinde Handbook of Composites from Renewable Materials (ss. 111-131). John Wiley and Sons, Ltd. https://doi.org/10.1002/9781119441632.ch23
- Fotopoulou, K. N., and Karapanagioti, H. K. (2019). Degradation of Various Plastics in the Environment. Içinde H. Takada and H. K. Karapanagioti (Ed.), Hazardous Chemicals Associated with Plastics in the Marine Environment (ss. 71-92). Springer International Publishing. https://doi.org/10.1007/698_2017_11
- Gautam, N., and Kaur, I. (2013). Soil burial biodegradation studies of starch grafted polyethylene and identification of Rhizobium meliloti therefrom. Journal of Environmental Chemistry and Ecotoxicology, 5(6), 147-158. https://doi.org/10.5897/JECE09.022
- Gholampour, A., and Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), Article 3. https://doi.org/10.1007/s10853-019-03990-y
- Gurunathan, T., Mohanty, S., and Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. https://doi.org/10.1016/j.compositesa.2015.06.007
- Hassan, M. L., Rowell, R. M., Fadl, N. A., Yacoub, S. F., and Christainsen, A. W. (2000). Thermoplasticization of bagasse. II. dimensional stability and mechanical properties of esterified bagasse composite. Journal of Applied Polymer Science, 76(4), 575-586. https://doi.org/10.1002/(SICI)1097-4628(20000425)76:4<575::AID-APP15>3.0.CO;2-9
- Hemath, M., Mavinkere Rangappa, S., Kushvaha, V., Dhakal, H. N., and Siengchin, S. (2020). A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polymer Composites, 41(10), 3940-3965. https://doi.org/10.1002/pc.25703
- Itävaara, M., Karjomaa, S., and Selin, J.-F. (2002). Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere, 46(6), 879-885. https://doi.org/10.1016/S0045-6535(01)00163-1
- Jandas, P. J., Mohanty, S., and Nayak, S. K. (2012). Renewable Resource-Based Biocomposites of Various Surface Treated Banana Fiber and Poly Lactic Acid: Characterization and Biodegradability. Journal of Polymers and the Environment, 20(2), 583-595. https://doi.org/10.1007/s10924-012-0415-8
- Karamanlioglu, M., and Robson, G. D. (2013). The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability, 98(10), 2063-2071. https://doi.org/10.1016/j.polymdegradstab.2013.07.004
- Lalit, R., Mayank, P., and Ankur, K. (2018). Natural Fibers and Biopolymers Characterization: A Future Potential Composite Material. Strojnícky Časopis - Journal of Mechanical Engineering, 68(1), 33-50. https://doi.org/10.2478/scjme-2018-0004
- Marom, G. (1985). The Role of Water Transport in Composite Materials. Içinde J. Comyn (Ed.), Polymer Permeability (ss. 341-374). Springer Netherlands. https://doi.org/10.1007/978-94-009-4858-7_9
- Martucci, J. F., and Ruseckaite, R. A. (2015). Biodegradation behavior of three-layer sheets based on gelatin and poly (lactic acid) buried under indoor soil conditions. Polymer Degradation and Stability, 116, 36-44. https://doi.org/10.1016/j.polymdegradstab.2015.03.005
- Massardier-Nageotte, V., Pestre, C., Cruard-Pradet, T., and Bayard, R. (2006). Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polymer Degradation and Stability, 91(3), Article 3. https://doi.org/10.1016/j.polymdegradstab.2005.02.029
- Matuana, L. M., Balatinecz, J. J., Sodhi, R. N. S., and Park, C. B. (2001). Surface characterization of esterified cellulosic fibers by XPS and FTIR Spectroscopy. Wood Science and Technology, 35(3), 191-201. https://doi.org/10.1007/s002260100097
- Mohee, R., Unmar, G. D., Mudhoo, A., and Khadoo, P. (2008). Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Management (New York, N.Y.), 28(9), 1624-1629. https://doi.org/10.1016/j.wasman.2007.07.003
- Moudood, A., Rahman, A., Öchsner, A., Islam, M., and Francucci, G. (2019). Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. Journal of Reinforced Plastics and Composites, 38(7), 323-339. https://doi.org/10.1177/0731684418818893
- Mwaikambo, L. (2006). Review of the history, properties and application of plant fibres. African Journal of Science and Technology, 7, 120-133.
- Palai, B., Mohanty, S., and Nayak, S. K. (2021). A Comparison on Biodegradation Behaviour of Polylactic Acid (PLA) Based Blown Films by Incorporating Thermoplasticized Starch (TPS) and Poly (Butylene Succinate-co-Adipate) (PBSA) Biopolymer in Soil. Journal of Polymers and the Environment, 29(9), 2772-2788. https://doi.org/10.1007/s10924-021-02055-z
- Prithivirajan, R., Jayabal, S., and Bharathiraja, G. (2015). Bio-based composites from waste agricultural residues: Mechanical and morphological properties. Cellulose Chemistry and Technology, 49(1), 65-68. Scopus.
- Rahman, M. Z., Rahman, M., Mahbub, T., Ashiquzzaman, M., Sagadevan, S., and Hoque, M. E. (2023). Advanced biopolymers for automobile and aviation engineering applications. Journal of Polymer Research, 30(3), 106. https://doi.org/10.1007/s10965-023-03440-z
- Rajeshkumar, G., Arvindh Seshadri, S., Devnani, G. L., Sanjay, M. R., Siengchin, S., Prakash Maran, J., Al-Dhabi, N. A., Karuppiah, P., Mariadhas, V. A., Sivarajasekar, N., and Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 310, 127483. https://doi.org/10.1016/j.jclepro.2021.127483
- Ray, D., and Sarkar, B. K. (2001). Characterization of alkali-treated jute fibers for physical and mechanical properties. Journal of Applied Polymer Science, 80(7), 1013-1020. https://doi.org/10.1002/app.1184
- Reddy, A. B., Manjula, B., Jayaramudu, T., Owonubi, S. j., Owonubi, S. j., Sadiku, E. r., Agboola, O., Sivanjineyulu, V., Molelekwa, G. F., and Molelekwa, G. F. (2017). Biocomposites from Renewable Resources: Preparation and Applications of Chitosan–Clay Nanocomposites. Içinde Handbook of Composites from Renewable Materials (ss. 275-303). John Wiley and Sons, Ltd. https://doi.org/10.1002/9781119441632.ch158
- Roussière, F., Baley, C., Godard, G., and Burr, D. (2012). Compressive and Tensile Behaviours of PLLA Matrix Composites Reinforced with Randomly Dispersed Flax Fibres. Applied Composite Materials, 19(2), 171-188. https://doi.org/10.1007/s10443-011-9189-8
- Saba, N., Paridah, M. T., and Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. https://doi.org/10.1016/j.conbuildmat.2014.11.043
- Sawpan, M. A., Pickering, K. L., and Fernyhough, A. (2011). Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing, 42(9), Article 9. https://doi.org/10.1016/j.compositesa.2011.05.003
- Siva, R., Sundar Reddy Nemali, S., Kishore kunchapu, S., Gokul, K., and Arun kumar, T. (2021). Comparison of Mechanical Properties and Water Absorption Test on Injection Molding and Extrusion—Injection Molding Thermoplastic Hemp Fiber Composite. Materials Today: Proceedings, 47, 4382-4386. https://doi.org/10.1016/j.matpr.2021.05.189
- Siva, R., and Valarmathi, T. N. (2019). Investigation of use of different volume percentages of cissus quadrangularis natural fiber constitute in epoxy matrix composite. 2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 1, 413-417. https://doi.org/10.1109/ICONSTEM.2019.8918740
- Smitthipong, W., Tantatherdtam, R., and Chollakup, R. (2015). Effect of pineapple leaf fiber-reinforced thermoplastic starch/poly(lactic acid) green composite: Mechanical, viscosity, and water resistance properties. Journal of Thermoplastic Composite Materials, 28(5), 717-729. https://doi.org/10.1177/0892705713489701
- Valapa, R. babu, G., P., and Katiyar, V. (2016). Hydrolytic degradation behaviour of sucrose palmitate reinforced poly(lactic acid) nanocomposites. International Journal of Biological Macromolecules, 89, 70-80. https://doi.org/10.1016/j.ijbiomac.2016.04.040
- Vinod, A., Sanjay, M. R., Suchart, S., and Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, 120978. https://doi.org/10.1016/j.jclepro.2020.120978
- Xia, X., Liu, W., Zhou, L., Hua, Z., Liu, H., and He, S. (2016). Modification of flax fiber surface and its compatibilization in polylactic acid/flax composites. Iranian Polymer Journal, 25(1), 25-35. https://doi.org/10.1007/s13726-015-0395-3
- Yıldırım, R. (2024). Lamine edilmiş pla/keten biyokompozit malzemelerin mekanik ve biyobozunurluk özelliklerinin incelenmesi [M. Sc. Thesis]. Karabük Üniversitesi.
- Zhang, M., Jiang, C., Wu, Q., Zhang, G., Liang, F., and Yang, Z. (2022). Poly(lactic acid)/Poly(butylene succinate) (PLA/PBS) Layered Composite Gas Barrier Membranes by Anisotropic Janus Nanosheets Compartibilizers. ACS Macro Letters, 11(5), 657-662. https://doi.org/10.1021/acsmacrolett.2c00139