Research Article
BibTex RIS Cite

A Comparative Study of Waste Heat Utilization and Solar Power Plant for Sustainable Energy Production

Year 2025, Volume: 11 Issue: 1, 56 - 72, 30.06.2025
https://doi.org/10.34186/klujes.1586607

Abstract

A comparison of the energy production from a steam turbine system utilizing waste heat and a solar power plant (SPP) in the same region was conducted. The study aims to analyze the potential energy production of both systems and evaluate investment viability. The steam turbine system enhances energy efficiency in industrial facilities by generating electricity from waste heat, which is produced during furnace operations. The waste heat availability and quantity depend on fuel types, with natural gas and petroleum coke commonly used. While petroleum coke produces more waste heat, natural gas is cleaner but generates less. This variability impacts electricity production, with an average daily output of 7.56 MWh. In contrast, solar power plants are sustainable and renewable, typically requiring lower initial investment. Solar energy production depends on factors like geographical conditions, sunlight exposure, and panel efficiency, with fluctuations in output due to varying environmental conditions. Both systems were evaluated based on payback periods and energy production capacities. The steam turbine system offers stable production in large facilities with continuous waste heat, but its efficiency depends on fuel types. Solar power plants provide lower initial costs and shorter payback periods but can be affected by environmental factors. The study concludes that each system has its own advantages and disadvantages, and the most suitable system should be chosen based on local energy needs and environmental conditions.

References

  • Adekanbi, M. L. (2021). Optimization and digitization of wind farms using internet of things. International Journal of Energy Research.
  • Arshian, S., Meo, M., Ashraful, M., Chowdhury, F., & Sohag, K. (2021). Role of solar energy in reducing ecological footprints: An empirical analysis. Journal of Cleaner Production.
  • Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, 325-342.
  • Bogdanov, D., Farfan, J., Sadovskaia, K., Aghahosseini, A., Child, M., Gulagi, A., ... & Breyer, C. (2021). Global transition to 100% renewable energy across the sectors: The role of storage and demand side measures. Renewable and Sustainable Energy Reviews, 141, 110742.
  • Chaudhari, A., Joshi, P., & Deshmukh, R. (2020). Sustainability in renewable energy systems: Solar and wind power as alternatives to fossil fuels. Renewable Energy, 152, 1221-1233. https://doi.org/10.1016/j.renene.2020.01.028
  • Dong, Y., Liang, S., Zhang, Y., & Li, M. (2020). Economic analysis of waste heat recovery systems in industry: A case study for the cement sector. Energy Reports, 6, 183-190.
  • Erbas, O. (2021). Investigation of factors affecting thermal performance in a coal-fired boiler and determination of thermal losses by energy balance method. Case Studies in Thermal Engineering, 26, 101047. https://doi.org/10.1016/j.csite.2021.101047
  • Eshiemogie, S., Ighalo, J., Adekanbi, M., Banji, T., Eshiemogie, S., Okoh, R., . . . Dulta, K. (2023). Current Effect and Projected Implications of Climate Change on Nigeria's Sustainable Development Plan. Springer International Publishing.
  • Feldman, D., Ramasamy, V., Fu, R., Ramdas, A., Desai, J., & Margolis, R. (2021). U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020. National Renewable Energy Laboratory (NREL).
  • Forman, C., Muritala, I. K., Pardemann, R., & Meyer, B. (2016). Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews, 57, 1568-1579.
  • Ghosh, A. (2020). Soiling Losses: A Barrier for India's Energy Security Dependency from Photovoltaic Power. Challenges.
  • Guo, S., Li, Y., Zhang, X., & Wang, K. (2021). A review of waste heat recovery technologies towards molten steel industry. Energy Conversion and Management, 245, 114605.
  • Harsito, C., Triyono, T., & Rovianto, E. (2022). Analysis of Heat Potential in Solar Panels for Thermoelectric Generators using ANSYS Software. Civil Engineering Journal.
  • Hayat, M., Ali, D., Monyake, K., Alagha, L., & Ahmed, N. (2019). Solar energy-A look into power generation, challenges, and a solar-powered future. Internatinal Journal of Energy Research.
  • IRENA. (2020). Renewable Power Generation Costs in 2020. International Renewable Energy Agency (IRENA).
  • Jacobson, M. Z., Delucchi, M. A., Cameron, M. A., & Frew, B. A. (2017). Low-cost solutions to global warming, air pollution, and energy insecurity for 139 countries. Joule, 1(1), 108-121.
  • Jordan, D., Wohlgemuth, J., & Kurtz, S. (2012). Technology and Climate Trends in PV Module Degradation: Preprint. Presented at the 27th EuropeanPhptpvoltaic Solar Energy Conference and Exhibition, 24-28 September 2012 Frankurt Germany.
  • Kabir, E., Kumar, P., Kumar, S., Adelodun, A., & Kim , K.-H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews.
  • Lamb, W., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J., . . . House, J. (2021). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Enviromental Research Letter.
  • Lehtola, T., & Zahedi, A. (2019). Solar energy and wind power supply supported by storage technology: A review. Sustainable Energy Technologies and Assessments.
  • Li, W., Zhou, F., & Zhang, X. (2017). Dynamic modeling and control of energy storage systems in microgrids: A comprehensive review. Renewable and Sustainable Energy Reviews, 67, 355–367. https://doi.org/10.1016/j.rser.2016.09.063
  • Liu, H., Xiao, S., & Wang, J. (2019). Comparative study of CO₂ emission reduction effects of different renewable energy sources in China. Journal of Cleaner Production, 233, 644-655. https://doi.org/10.1016/j.jclepro.2019.06.231
  • Olcay K. &Çetinkaya N. (2023) Analysis of the Electric Vehicle Charging Stations Effects on the Electricity Network with Artificial Neural Network. Energies. 2023; 16(3):1282. https://doi.org/10.3390/en16031282
  • Olcay K. & Çetinkaya N., "Solar Power Plant Suggestion for Charging Electric Vehicles and The Effects of The System on The Electric Network and CO2 Emission," 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2021, pp. 249-254, doi: 10.1109/KhPIWeek53812.2021.9570056.
  • Olcay, K., Tunca, S. G., & Özgür, M. A. (2024). “Forecasting and performance analysis of energy production in solar power plants using long short-term memory (LSTM) and random forest models.” IEEE Access, 12,103299-103312. https://doi.org/10.1109/ACCESS.2024.3432574
  • Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues, and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990
  • Oyedepo, SO & Fakeye, BA (2021). ATIK ISI GERİ KAZANIM TEKNOLOJİLERİ: SÜRDÜRÜLEBİLİR ENERJİ GELİŞİMİNE GİDEN YOL. Termal Mühendislik Dergisi, 7(1), 324-348. https://doi.org/10.18186/thermal.850796
  • Özgür, M. A., & Köse, G. (2012). A technoeconomic analysis of solar photovoltaic power systems: Kütahya case study. International Journal of Energy Optimization and Engineering, 42-57. https://doi.org/10.1080/15567036.2010.523761
  • Panayiotou, G., Kalogirou, S., & Tassou, S. (2012). Design and simulation of a PV and a PV–Wind standalone energy system to power a household application. Renewable Energy.
  • Parida, B., Iniyan, S., & Goic, R. (2018). A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 15(3), 1625-1636. https://doi.org/10.1016/j.rser.2018.06.110
  • Rabaia, M., Abdelkareem , M., Sayed, E., Elsaid, K., Chae, K.-J., Wilberforce, T., & Olabi, A. (2021). Environmental Impact of Solar Energy Systems: A Review. Science of The Total Environment.
  • Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews.
  • Sharma, A., & Jain, S. (2019). Economic feasibility analysis of solar photovoltaic systems: A case study of India. Renewable and Sustainable Energy Reviews, 111, 415-428. https://doi.org/10.1016/j.rser.2019.05.030
  • Smith, J., Brown, T., & Zhang, Y. (2019). Industrial waste heat recovery technologies and applications. Energy Conversion and Management, 180, 248–256. https://doi.org/10.1016/j.enconman.2018.10.023
  • Toth, S., Hannigan, M., Vance, M., & Deceglie, M. (2019). Enhanced Photovoltaic Soiling In An Urban Environment. 2019 IEEE 46th Prhotovoltaic Specialists Conference (PVSV).
  • Tunca, S. G., & Akbulut, A. (2023). Sinter Manyezit Üretimi Döner Firinindaki Atik Isinin Kojenerasyon Sistem Performansi ve Ekonomik Analizi. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 9(2), 498-515. https://doi.org/10.34186/klujes.1391426
  • Tunca, S. G., Olcay, K., & Özgür, M. A. (2023). Güneş enerji santrallerinin üretim performans analizi ve kamu kurumları için santral örneği. In Mühendislik alanında uluslararası araştırma ve değerlendirmeler (Vol. 2, pp. 195-216). Serüven Yayınevi.
  • Vélez, F., Segovia, J. J., Martín, M. C., Antolín, G., Chejne, F., & Quijano, A. (2012). A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews, 16(6), 4175-4189.
  • Wang, H., Liu, X., & Li, Z. (2020). Advances in waste heat recovery systems for industrial processes: A review. Renewable and Sustainable Energy Reviews, 125, 109799. https://doi.org/10.1016/j.rser.2020.109799
  • Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2016). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 9(6), 973-981.
  • Yolcan, O. O., & Köse, R. (2020). Türkiye’nin güneş enerjisi durumu ve güneş enerjisi santrali kurulumunda önemli parametreler. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 6(2), 196-215. https://doi.org/10.34186/klujes.793471
  • Yolcan, O. O., & Köse, R. (2023). Photovoltaic module cell temperature estimation: Developing a novel expression. Solar Energy, 249, 1-11. https://doi.org/10.1016/j.solener.2022.11.001
  • Zhao, Z., Li, S., Jin, B., Wang, H., & Li, G. (2020). A comprehensive study of smart energy management for multi-energy systems based on multi-agent reinforcement learning. Energy, 204, 117925. https://doi.org/10.1016/j.energy.2020.117925

Sürdürülebilir Enerji Üretimi için Atık Isı Kullanımı ve Güneş Enerjisi Santralinin Karşılaştırması

Year 2025, Volume: 11 Issue: 1, 56 - 72, 30.06.2025
https://doi.org/10.34186/klujes.1586607

Abstract

Aynı bölgede atık ısı kullanarak elektrik üreten bir buhar türbini sistemi ile güneş enerjisi santrali (GES) arasındaki enerji üretimi karşılaştırılmıştır. Bu çalışma, her iki sistemin potansiyel enerji üretimini analiz etmeyi ve yatırım değerlendirmesi yapmayı amaçlamaktadır. Buhar türbini sistemi, endüstriyel tesislerde, fırınlarda üretilen atık ısıdan elektrik üreterek enerji verimliliğini artırmaktadır. Atık ısının mevcudiyeti ve miktarı, kullanılan yakıt türlerine bağlıdır; doğal gaz ve petrokok yaygın olarak kullanılmaktadır. Petrokok, daha fazla atık ısı üretirken, doğal gaz daha temiz bir yakıt olup daha düşük miktarda atık ısı üretmektedir. Bu değişkenlik, elektrik üretimini etkilemekte ve günlük ortalama 7,52 MWh üretim sağlanmaktadır. Buna karşın, güneş enerjisi santralleri sürdürülebilir ve yenilenebilir olup, genellikle daha düşük başlangıç yatırımı gerektirmektedir. Güneş enerjisi üretimi, coğrafi koşullar, güneş ışığına maruz kalma süresi ve panel verimliliği gibi faktörlere bağlıdır; ancak üretim kapasitesi sabit olup çevresel koşullar ve günün saatine bağlı olarak değişkenlik gösterebilmektedir. Her iki sistem de geri ödeme süreleri ve enerji üretim kapasiteleri açısından değerlendirilmiştir. Buhar türbini sistemi, büyük tesislerde sürekli atık ısının sağlanması ile istikrarlı üretim sunarken, verimliliği yakıt türlerine bağlıdır. Güneş enerjisi santralleri ise daha düşük başlangıç maliyetleri ve kısa geri ödeme süreleri sağlamakta, ancak çevresel faktörlerden etkilenebilmektedir. Çalışma, her iki sistemin de kendi avantaj ve dezavantajlarına sahip olduğunu ve en uygun sistemin yerel enerji ihtiyaçları ve çevresel koşullara göre seçilmesi gerektiğini vurgulamaktadır.

References

  • Adekanbi, M. L. (2021). Optimization and digitization of wind farms using internet of things. International Journal of Energy Research.
  • Arshian, S., Meo, M., Ashraful, M., Chowdhury, F., & Sohag, K. (2021). Role of solar energy in reducing ecological footprints: An empirical analysis. Journal of Cleaner Production.
  • Bao, J., & Zhao, L. (2013). A review of working fluid and expander selections for organic Rankine cycle. Renewable and Sustainable Energy Reviews, 24, 325-342.
  • Bogdanov, D., Farfan, J., Sadovskaia, K., Aghahosseini, A., Child, M., Gulagi, A., ... & Breyer, C. (2021). Global transition to 100% renewable energy across the sectors: The role of storage and demand side measures. Renewable and Sustainable Energy Reviews, 141, 110742.
  • Chaudhari, A., Joshi, P., & Deshmukh, R. (2020). Sustainability in renewable energy systems: Solar and wind power as alternatives to fossil fuels. Renewable Energy, 152, 1221-1233. https://doi.org/10.1016/j.renene.2020.01.028
  • Dong, Y., Liang, S., Zhang, Y., & Li, M. (2020). Economic analysis of waste heat recovery systems in industry: A case study for the cement sector. Energy Reports, 6, 183-190.
  • Erbas, O. (2021). Investigation of factors affecting thermal performance in a coal-fired boiler and determination of thermal losses by energy balance method. Case Studies in Thermal Engineering, 26, 101047. https://doi.org/10.1016/j.csite.2021.101047
  • Eshiemogie, S., Ighalo, J., Adekanbi, M., Banji, T., Eshiemogie, S., Okoh, R., . . . Dulta, K. (2023). Current Effect and Projected Implications of Climate Change on Nigeria's Sustainable Development Plan. Springer International Publishing.
  • Feldman, D., Ramasamy, V., Fu, R., Ramdas, A., Desai, J., & Margolis, R. (2021). U.S. Solar Photovoltaic System and Energy Storage Cost Benchmark: Q1 2020. National Renewable Energy Laboratory (NREL).
  • Forman, C., Muritala, I. K., Pardemann, R., & Meyer, B. (2016). Estimating the global waste heat potential. Renewable and Sustainable Energy Reviews, 57, 1568-1579.
  • Ghosh, A. (2020). Soiling Losses: A Barrier for India's Energy Security Dependency from Photovoltaic Power. Challenges.
  • Guo, S., Li, Y., Zhang, X., & Wang, K. (2021). A review of waste heat recovery technologies towards molten steel industry. Energy Conversion and Management, 245, 114605.
  • Harsito, C., Triyono, T., & Rovianto, E. (2022). Analysis of Heat Potential in Solar Panels for Thermoelectric Generators using ANSYS Software. Civil Engineering Journal.
  • Hayat, M., Ali, D., Monyake, K., Alagha, L., & Ahmed, N. (2019). Solar energy-A look into power generation, challenges, and a solar-powered future. Internatinal Journal of Energy Research.
  • IRENA. (2020). Renewable Power Generation Costs in 2020. International Renewable Energy Agency (IRENA).
  • Jacobson, M. Z., Delucchi, M. A., Cameron, M. A., & Frew, B. A. (2017). Low-cost solutions to global warming, air pollution, and energy insecurity for 139 countries. Joule, 1(1), 108-121.
  • Jordan, D., Wohlgemuth, J., & Kurtz, S. (2012). Technology and Climate Trends in PV Module Degradation: Preprint. Presented at the 27th EuropeanPhptpvoltaic Solar Energy Conference and Exhibition, 24-28 September 2012 Frankurt Germany.
  • Kabir, E., Kumar, P., Kumar, S., Adelodun, A., & Kim , K.-H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews.
  • Lamb, W., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J., . . . House, J. (2021). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Enviromental Research Letter.
  • Lehtola, T., & Zahedi, A. (2019). Solar energy and wind power supply supported by storage technology: A review. Sustainable Energy Technologies and Assessments.
  • Li, W., Zhou, F., & Zhang, X. (2017). Dynamic modeling and control of energy storage systems in microgrids: A comprehensive review. Renewable and Sustainable Energy Reviews, 67, 355–367. https://doi.org/10.1016/j.rser.2016.09.063
  • Liu, H., Xiao, S., & Wang, J. (2019). Comparative study of CO₂ emission reduction effects of different renewable energy sources in China. Journal of Cleaner Production, 233, 644-655. https://doi.org/10.1016/j.jclepro.2019.06.231
  • Olcay K. &Çetinkaya N. (2023) Analysis of the Electric Vehicle Charging Stations Effects on the Electricity Network with Artificial Neural Network. Energies. 2023; 16(3):1282. https://doi.org/10.3390/en16031282
  • Olcay K. & Çetinkaya N., "Solar Power Plant Suggestion for Charging Electric Vehicles and The Effects of The System on The Electric Network and CO2 Emission," 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine, 2021, pp. 249-254, doi: 10.1109/KhPIWeek53812.2021.9570056.
  • Olcay, K., Tunca, S. G., & Özgür, M. A. (2024). “Forecasting and performance analysis of energy production in solar power plants using long short-term memory (LSTM) and random forest models.” IEEE Access, 12,103299-103312. https://doi.org/10.1109/ACCESS.2024.3432574
  • Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues, and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990
  • Oyedepo, SO & Fakeye, BA (2021). ATIK ISI GERİ KAZANIM TEKNOLOJİLERİ: SÜRDÜRÜLEBİLİR ENERJİ GELİŞİMİNE GİDEN YOL. Termal Mühendislik Dergisi, 7(1), 324-348. https://doi.org/10.18186/thermal.850796
  • Özgür, M. A., & Köse, G. (2012). A technoeconomic analysis of solar photovoltaic power systems: Kütahya case study. International Journal of Energy Optimization and Engineering, 42-57. https://doi.org/10.1080/15567036.2010.523761
  • Panayiotou, G., Kalogirou, S., & Tassou, S. (2012). Design and simulation of a PV and a PV–Wind standalone energy system to power a household application. Renewable Energy.
  • Parida, B., Iniyan, S., & Goic, R. (2018). A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 15(3), 1625-1636. https://doi.org/10.1016/j.rser.2018.06.110
  • Rabaia, M., Abdelkareem , M., Sayed, E., Elsaid, K., Chae, K.-J., Wilberforce, T., & Olabi, A. (2021). Environmental Impact of Solar Energy Systems: A Review. Science of The Total Environment.
  • Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews.
  • Sharma, A., & Jain, S. (2019). Economic feasibility analysis of solar photovoltaic systems: A case study of India. Renewable and Sustainable Energy Reviews, 111, 415-428. https://doi.org/10.1016/j.rser.2019.05.030
  • Smith, J., Brown, T., & Zhang, Y. (2019). Industrial waste heat recovery technologies and applications. Energy Conversion and Management, 180, 248–256. https://doi.org/10.1016/j.enconman.2018.10.023
  • Toth, S., Hannigan, M., Vance, M., & Deceglie, M. (2019). Enhanced Photovoltaic Soiling In An Urban Environment. 2019 IEEE 46th Prhotovoltaic Specialists Conference (PVSV).
  • Tunca, S. G., & Akbulut, A. (2023). Sinter Manyezit Üretimi Döner Firinindaki Atik Isinin Kojenerasyon Sistem Performansi ve Ekonomik Analizi. Kırklareli Üniversitesi Mühendislik Ve Fen Bilimleri Dergisi, 9(2), 498-515. https://doi.org/10.34186/klujes.1391426
  • Tunca, S. G., Olcay, K., & Özgür, M. A. (2023). Güneş enerji santrallerinin üretim performans analizi ve kamu kurumları için santral örneği. In Mühendislik alanında uluslararası araştırma ve değerlendirmeler (Vol. 2, pp. 195-216). Serüven Yayınevi.
  • Vélez, F., Segovia, J. J., Martín, M. C., Antolín, G., Chejne, F., & Quijano, A. (2012). A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews, 16(6), 4175-4189.
  • Wang, H., Liu, X., & Li, Z. (2020). Advances in waste heat recovery systems for industrial processes: A review. Renewable and Sustainable Energy Reviews, 125, 109799. https://doi.org/10.1016/j.rser.2020.109799
  • Worrell, E., Bernstein, L., Roy, J., Price, L., & Harnisch, J. (2016). Industrial energy efficiency and climate change mitigation. Energy Efficiency, 9(6), 973-981.
  • Yolcan, O. O., & Köse, R. (2020). Türkiye’nin güneş enerjisi durumu ve güneş enerjisi santrali kurulumunda önemli parametreler. Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi, 6(2), 196-215. https://doi.org/10.34186/klujes.793471
  • Yolcan, O. O., & Köse, R. (2023). Photovoltaic module cell temperature estimation: Developing a novel expression. Solar Energy, 249, 1-11. https://doi.org/10.1016/j.solener.2022.11.001
  • Zhao, Z., Li, S., Jin, B., Wang, H., & Li, G. (2020). A comprehensive study of smart energy management for multi-energy systems based on multi-agent reinforcement learning. Energy, 204, 117925. https://doi.org/10.1016/j.energy.2020.117925
There are 43 citations in total.

Details

Primary Language English
Subjects Photovoltaic Power Systems, Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Issue
Authors

Samet Giray Tunca 0000-0002-7632-8745

Kadir Olcay 0000-0001-7918-6482

Early Pub Date May 12, 2025
Publication Date June 30, 2025
Submission Date November 16, 2024
Acceptance Date December 8, 2024
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Tunca, S. G., & Olcay, K. (2025). A Comparative Study of Waste Heat Utilization and Solar Power Plant for Sustainable Energy Production. Kirklareli University Journal of Engineering and Science, 11(1), 56-72. https://doi.org/10.34186/klujes.1586607